We're experiencing a problem with asynchronous operation of standalone (non-Boost) Asio 1.10.6 on Linux, which is demonstrated using the following test app:
#define ASIO_STANDALONE
#define ASIO_HEADER_ONLY
#define ASIO_NO_EXCEPTIONS
#define ASIO_NO_TYPEID
#include "asio.hpp"
#include <chrono>
#include <iostream>
#include <list>
#include <map>
#include <thread>
static bool s_freeInboundSocket = false;
static bool s_freeOutboundSocket = false;
class Tester
{
public:
Tester(asio::io_service& i_ioService, unsigned i_n)
: m_inboundStrand(i_ioService)
, m_listener(i_ioService)
, m_outboundStrand(i_ioService)
, m_resolver(i_ioService)
, m_n(i_n)
, m_traceStart(std::chrono::high_resolution_clock::now())
{}
~Tester()
{}
void TraceIn(unsigned i_line)
{
m_inboundTrace.emplace_back(i_line, std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now() - m_traceStart));
}
void AbortIn(unsigned i_line)
{
TraceIn(i_line);
abort();
}
void TraceOut(unsigned i_line)
{
m_outboundTrace.emplace_back(i_line, std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now() - m_traceStart));
}
void AbortOut(unsigned i_line)
{
TraceOut(i_line);
abort();
}
void DumpTrace(std::map<unsigned, unsigned>& o_counts)
{
std::cout << "## " << m_n << " ##\n";
std::cout << "-- " << m_traceStart.time_since_epoch().count() << "\n";
std::cout << "- in - - out -\n";
auto in = m_inboundTrace.begin();
auto out = m_outboundTrace.begin();
while ((in != m_inboundTrace.end()) || (out != m_outboundTrace.end()))
{
if (in == m_inboundTrace.end())
{
++o_counts[out->first];
std::cout << " " << out->first << " : " << out->second.count() << "\n";
++out;
}
else if (out == m_outboundTrace.end())
{
++o_counts[in->first];
std::cout << in->first << " : " << in->second.count() << "\n";
++in;
}
else if (out->second < in->second)
{
++o_counts[out->first];
std::cout << " " << out->first << " : " << out->second.count() << "\n";
++out;
}
else
{
++o_counts[in->first];
std::cout << in->first << " : " << in->second.count() << "\n";
++in;
}
}
std::cout << std::endl;
}
//////////////
// Inbound
void Listen(uint16_t i_portBase)
{
m_inboundSocket.reset(new asio::ip::tcp::socket(m_inboundStrand.get_io_service()));
asio::error_code ec;
if (m_listener.open(asio::ip::tcp::v4(), ec)
|| m_listener.bind(asio::ip::tcp::endpoint(asio::ip::tcp::v4(), i_portBase+m_n), ec)
|| m_listener.listen(-1, ec))
{
AbortIn(__LINE__); return;
}
TraceIn(__LINE__);
m_listener.async_accept(*m_inboundSocket,
m_inboundStrand.wrap([this](const asio::error_code& i_error)
{
OnInboundAccepted(i_error);
}));
}
void OnInboundAccepted(const asio::error_code& i_error)
{
TraceIn(__LINE__);
if (i_error) { AbortIn(__LINE__); return; }
asio::async_read_until(*m_inboundSocket, m_inboundRxBuf, '\n',
m_inboundStrand.wrap([this](const asio::error_code& i_err, size_t i_nRd)
{
OnInboundReadCompleted(i_err, i_nRd);
}));
}
void OnInboundReadCompleted(const asio::error_code& i_error, size_t i_nRead)
{
TraceIn(__LINE__);
if (i_error.value() != 0) { AbortIn(__LINE__); return; }
if (bool(i_error)) { AbortIn(__LINE__); return; }
if (i_nRead != 4) { AbortIn(__LINE__); return; } // "msg\n"
std::istream is(&m_inboundRxBuf);
std::string s;
if (!std::getline(is, s)) { AbortIn(__LINE__); return; }
if (s != "msg") { AbortIn(__LINE__); return; }
if (m_inboundRxBuf.in_avail() != 0) { AbortIn(__LINE__); return; }
asio::async_read_until(*m_inboundSocket, m_inboundRxBuf, '\n',
m_inboundStrand.wrap([this](const asio::error_code& i_err, size_t i_nRd)
{
OnInboundWaitCompleted(i_err, i_nRd);
}));
}
void OnInboundWaitCompleted(const asio::error_code& i_error, size_t i_nRead)
{
TraceIn(__LINE__);
if (i_error != asio::error::eof) { AbortIn(__LINE__); return; }
if (i_nRead != 0) { AbortIn(__LINE__); return; }
if (s_freeInboundSocket)
{
m_inboundSocket.reset();
}
}
//////////////
// Outbound
void Connect(std::string i_host, uint16_t i_portBase)
{
asio::error_code ec;
auto endpoint = m_resolver.resolve(asio::ip::tcp::resolver::query(i_host, std::to_string(i_portBase+m_n)), ec);
if (ec) { AbortOut(__LINE__); return; }
m_outboundSocket.reset(new asio::ip::tcp::socket(m_outboundStrand.get_io_service()));
TraceOut(__LINE__);
asio::async_connect(*m_outboundSocket, endpoint,
m_outboundStrand.wrap([this](const std::error_code& i_error, const asio::ip::tcp::resolver::iterator& i_ep)
{
OnOutboundConnected(i_error, i_ep);
}));
}
void OnOutboundConnected(const asio::error_code& i_error, const asio::ip::tcp::resolver::iterator& i_endpoint)
{
TraceOut(__LINE__);
if (i_error) { AbortOut(__LINE__); return; }
std::ostream(&m_outboundTxBuf) << "msg" << '\n';
asio::async_write(*m_outboundSocket, m_outboundTxBuf.data(),
m_outboundStrand.wrap([this](const asio::error_code& i_error, size_t i_nWritten)
{
OnOutboundWriteCompleted(i_error, i_nWritten);
}));
}
void OnOutboundWriteCompleted(const asio::error_code& i_error, size_t i_nWritten)
{
TraceOut(__LINE__);
if (i_error) { AbortOut(__LINE__); return; }
if (i_nWritten != 4) { AbortOut(__LINE__); return; } // "msg\n"
TraceOut(__LINE__);
m_outboundSocket->shutdown(asio::socket_base::shutdown_both);
asio::async_read_until(*m_outboundSocket, m_outboundRxBuf, '\n',
m_outboundStrand.wrap([this](const asio::error_code& i_error, size_t i_nRead)
{
OnOutboundWaitCompleted(i_error, i_nRead);
}));
}
void OnOutboundWaitCompleted(const asio::error_code& i_error, size_t i_nRead)
{
TraceOut(__LINE__);
if (i_error != asio::error::eof) { AbortOut(__LINE__); return; }
if (i_nRead != 0) { AbortOut(__LINE__); return; }
if (s_freeOutboundSocket)
{
m_outboundSocket.reset();
}
}
private:
//////////////
// Inbound
asio::io_service::strand m_inboundStrand;
asio::ip::tcp::acceptor m_listener;
std::unique_ptr<asio::ip::tcp::socket> m_inboundSocket;
asio::streambuf m_inboundRxBuf;
asio::streambuf m_inboundTxBuf;
//////////////
// Outbound
asio::io_service::strand m_outboundStrand;
asio::ip::tcp::resolver m_resolver;
std::unique_ptr<asio::ip::tcp::socket> m_outboundSocket;
asio::streambuf m_outboundRxBuf;
asio::streambuf m_outboundTxBuf;
//////////////
// Common
unsigned m_n;
const std::chrono::high_resolution_clock::time_point m_traceStart;
std::vector<std::pair<unsigned, std::chrono::nanoseconds>> m_inboundTrace;
std::vector<std::pair<unsigned, std::chrono::nanoseconds>> m_outboundTrace;
};
static int Usage(int i_ret)
{
std::cout << "[" << i_ret << "]" << "Usage: example <nThreads> <nConnections> <inboundFree> <outboundFree>" << std::endl;
return i_ret;
}
int main(int argc, char* argv[])
{
if (argc < 5)
return Usage(__LINE__);
const unsigned nThreads = unsigned(std::stoul(argv[1]));
if (nThreads == 0)
return Usage(__LINE__);
const unsigned nConnections = unsigned(std::stoul(argv[2]));
if (nConnections == 0)
return Usage(__LINE__);
s_freeInboundSocket = (*argv[3] == 'y');
s_freeOutboundSocket = (*argv[4] == 'y');
const uint16_t listenPortBase = 25000;
const uint16_t connectPortBase = 25000;
const std::string connectHost = "127.0.0.1";
asio::io_service ioService;
std::cout << "Creating." << std::endl;
std::list<Tester> testers;
for (unsigned i = 0; i < nConnections; ++i)
{
testers.emplace_back(ioService, i);
testers.back().Listen(listenPortBase);
testers.back().Connect(connectHost, connectPortBase);
}
std::cout << "Starting." << std::endl;
std::vector<std::thread> threads;
for (unsigned i = 0; i < nThreads; ++i)
{
threads.emplace_back([&]()
{
ioService.run();
});
}
std::cout << "Waiting." << std::endl;
for (auto& thread : threads)
{
thread.join();
}
std::cout << "Stopped." << std::endl;
return 0;
}
void DumpAllTraces(std::list<Tester>& i_testers)
{
std::map<unsigned, unsigned> counts;
for (auto& tester : i_testers)
{
tester.DumpTrace(counts);
}
std::cout << "##############################\n";
for (const auto& count : counts)
{
std::cout << count.first << " : " << count.second << "\n";
}
std::cout << std::endl;
}
#if defined(ASIO_NO_EXCEPTIONS)
namespace asio
{
namespace detail
{
template <typename Exception>
void throw_exception(const Exception& e)
{
abort();
}
} // namespace detail
} // namespace asio
#endif
We compile as follows (the problem only occurs in optimised builds):
g++ -o example -m64 -g -O3 --no-exceptions --no-rtti --std=c++11 -I asio-1.10.6/include -lpthread example.cpp
We're running on Debian Jessie. uname -a reports (Linux <hostname> 3.16.0-4-amd64 #1 SMP Debian 3.16.36-1+deb8u2 (2016-10-19) x86_64 GNU/Linux.
The problem appears under both GCC (g++ (Debian 4.9.2-10) 4.9.2) and Clang (Debian clang version 3.5.0-10 (tags/RELEASE_350/final) (based on LLVM 3.5.0)).
[EDITED TO ADD: It also happens on Debian Stretch Linux <hostname> 4.6.0-1-amd64 #1 SMP Debian 4.6.1-1 (2016-06-06) x86_64 GNU/Linux with g++ (Debian 6.2.1-5) 6.2.1 20161124.]
In summary, the test app does the following:
We create N connections, each consisting of an inbound (listening)
end and an outbound (connecting) end. Each inbound listener is bound
to a unique port (starting at 25000), and each outbound connector
uses a system-selected originating port.
The inbound end performs an async_accept, and on
completion issues an async_read. When the read completes it issues
another async_read that we expect to return eof. When that
completes, we either free the socket immediately, or leave it as-is
(with no pending async operations) to be cleaned up by the relevant
destructors at program exit. (Note that the listener socket is
always left as-is, with no pending accept, until exit.)
The outbound end performs an async_connect, and on completion issues
an async_write. When the write completes it issues a shutdown
(specifically, shutdown(both)) followed by an async_read that we
expect to return eof. On completion, we once again either leave the
socket as-is, with no pending operations, or we free it immediately.
Any error or unexpected receive data results in an immediate abort()
call.
The test app lets us specify the number of worker threads for the
io_service, as well as the total number of connections to create, as
well as flags controlling whether inbound and outbound sockets
respectively are freed or left as-is.
We run the test app repeatedly, specifying 50 threads and 1000
connections.
i.e. while ./example 50 1000 n y >out.txt ; do echo -n . ; done
If we specify that all sockets are left as-is, the test loop runs indefinitely. To avoid muddying the waters with SO_REUSEADDR considerations, we take care that no sockets are in TIME_WAIT state from a previous test run before we start the test, otherwise the listens can fail. But with this caveat satisfied, the test app runs literally hundreds, even thousands of times with no error. Similarly, if we specify that inbound sockets (but NOT outbound sockets) should be explicitly freed, all runs fine.
However, if we specify that outbound sockets should be freed, the app stalls after a variable number of executions - sometimes ten or fewer, sometimes a hundred or more, usually somewhere in between.
Connecting to the stalled process with GDB, we see that the main thread is waiting to join the worker threads, all but one of the worker threads are idle (waiting on an Asio internal condition variable), and that one worker thread is waiting in Asio's call to epoll(). The internal trace instrumentation verifies that some of the sockets are waiting on async operations to complete - sometimes the initial (inbound) accept, sometimes the (inbound) data read, and sometimes the final inbound or outbound reads that normally complete with eof.
In all cases, the other end of the connection has successfully done its bit: if the inbound accept is still pending, we see that the corresponding outbound connect has successfully completed, along with the outbound write; likewise if the inbound data read is pending, the corresponding outbound connect and write have completed; if the inbound EOF read is pending, the outbound shutdown has been performed, and likewise if the outbound EOF read is pending, the inbound EOF read has completed due to the outbound shutdown.
Examining the process's /proc/N/fdinfo shows that the epoll file descriptor is indeed waiting on the file descriptors indicated by the instrumentation.
Most puzzlingly, netstat shows nonzero RecvQ sizes for the waiting sockets - that is, sockets for which there is a read operation pending are shown to have receive data or close events ready to read. This is consistent with our instrumentation, in that it shows that write data has been delivered to the inbound socket, but has not yet been read (or alternatively that the outbound shutdown has issued a FIN to the inbound side, but that the EOF has not yet been 'read').
This leads me to suspect that Asio's epoll bookkeeping - in particular its edge-triggered event management - is getting out of sync somewhere due to a race condition. Clearly this is more than likely due to incorrect operations on my part, but I can't see where the problem would be.
All insights, suggestions, known issues, and pointing-out-glaring-screwups would be greatly appreciated.
[EDITED TO ADD: Using strace to capture kernel calls interferes with execution such that the stall doesn't happen. Using sysdig doesn't have this effect, but it currently doesn't capture the parameters of the epoll_wait and epoll_ctl syscalls. Sigh.]
This appears to have been resolved by the maintainer of ASIO:
See https://github.com/chriskohlhoff/asio/issues/180
and https://github.com/chriskohlhoff/asio/commit/669e6b8b9de1309927b29d8b6be3630cc69c07ac
Related
I would like to bypass system configured nameserver and use my own nameserver (or list of them) configured in application. I can do in nslookup in windows. How can I do it in C++ preferably by using boost::asio? I would like to avoid using std::system("nslookup ...> output.txt") and reading the file.
I cannot see where I can specify nameserver to use for lookup in boost::asio.
#include <boost/asio.hpp>
#include <string>
#include <iostream>
using namespace boost;
int main()
{
asio::io_service io_service;
asio::ip::tcp::resolver resolver(io_service);//how to pass specific nameserver?
asio::ip::tcp::resolver::iterator itr = resolver.resolve("bbc.co.uk","");
asio::ip::tcp::resolver::iterator end;
for (int i = 1; itr != end; itr++, i++)
std::cout << "hostname #" << i << ": " << itr->host_name() << " " << itr->endpoint() << '\n';
return 0;
}
You can't. The DNS resvoling is handled by the sockets api and you can't specify the DNS servers.
You will have to directly use either a OS specific API to resolve names like DnsQueryEx in win32 or using a library like LDNS.
/*
* DNSResolver.h
*
* Created on: Jan 12, 2023
* Author: marian
*/
#ifndef DNSRESOLVER_H_
#define DNSRESOLVER_H_
#include <cstdint>
#include <cstddef>
#include <vector>
#include <string_view>
#include <string>
#include <ostream>
#include <iostream>
#include <thread>
#include <chrono>
#include <boost/asio.hpp>
namespace tools
{
template <typename Func>
std::string_view find_first_success(const std::string_view& str,const Func& func, size_t pos0=0, char delim=',')
{
size_t pos=0;
do
{
pos=str.find_first_of(delim,pos0);
std::string_view sv=str.substr(pos0,pos-pos0);
if (func(sv))
return sv;
pos0=pos+1;
} while (pos!=std::string_view::npos);
return {};
}
template<int unused=0>
uint16_t be2uint16(const uint8_t* hi)
{
uint16_t hi1=*(hi+1);
return (((uint16_t)*hi)<<8)|hi1;
}
template<int unused=0>
uint32_t be2uint32(const uint8_t* hi)
{
uint32_t v3=*(hi+3);
uint32_t v2=*(hi+2);
uint32_t v1=*(hi+1);
uint32_t v0=*hi;
return (v0<<24)|(v1<<16)|(v2<<8)|v3;
}
template<int unused=0>
void out_IP4(std::ostream& os,uint32_t IP4)
{
os << (IP4>>24) << '.' << ((IP4>>16)&0xFF) << '.' << ((IP4>>8)&0xFF) << '.' << (IP4&0xFF);
}
}
namespace DNS
{
const char *rcode_msg[]={"No error","Format error","Server failure","Name error","Not implemented","Refused"};
const char *opcode_msg[]={"Standard query","Inverse query","Status"};
const char *type_msg[]={"0","A","NS","MD","MF","CNAME","SOA","MB","MG","MR","NULL","WKS","PTR","HINFO","MINFO","MX","TX"};
/*
A 1 a host address
NS 2 an authoritative name server
MD 3 a mail destination (Obsolete - use MX)
MF 4 a mail forwarder (Obsolete - use MX)
CNAME 5 the canonical name for an alias
SOA 6 marks the start of a zone of authority
MB 7 a mailbox domain name (EXPERIMENTAL)
MG 8 a mail group member (EXPERIMENTAL)
MR 9 a mail rename domain name (EXPERIMENTAL)
NULL 10 a null RR (EXPERIMENTAL)
WKS 11 a well known service description
PTR 12 a domain name pointer
HINFO 13 host information
MINFO 14 mailbox or mail list information
MX 15 mail exchange
TXT 16 text strings
*/
template<int unused=0>
void disp_type(std::ostream&os,uint16_t type)
{
os << (int)type;
if (type<=16)
os << " " << type_msg[type];
}
typedef boost::asio::detail::socket_option::integer<SOL_SOCKET, SO_RCVTIMEO> rcv_timeout_option; //somewhere in your headers to be used everywhere you need it
template<int unused=0>
class resolver
{
public:
resolver(const std::string_view& nameservers="127.0.0.53",boost::asio::chrono::milliseconds timeout=boost::asio::chrono::milliseconds{3000})
:nameservers_{nameservers},timeout_(timeout)
{}
std::vector<uint32_t> resolve(
const std::string_view& hostname,
std::string_view& nameserver_used,
std::vector<uint32_t>* pTTLs=nullptr)
{
std::vector<uint8_t> result;
result.resize(1024);
nameserver_used=resolve(hostname,result);
if (nameserver_used.empty())
return {};
std::string qname;
std::vector<uint32_t> IP4s;
int cnt=answer_A(result,qname,IP4s,pTTLs);
(void)cnt;
if (hostname!=qname)
return {};
return IP4s;
}
void resolve_ostream(
const std::string_view& hostname,
std::string_view& nameserver_used,
std::ostream& os)
{
std::vector<uint8_t> result;
result.resize(1024);
nameserver_used=resolve(hostname,result);
if (nameserver_used.empty())
return;
os << "nameserver:" << nameserver_used << std::endl;
disp_result(os,result);
}
private:
static void out_name(std::ostream&os,const std::vector<uint8_t>& result,uint16_t& pos)
{
uint8_t sz=result[pos++];
for (;sz;)
{
if (sz>=64)
{
if ((sz>>6)!=3)
throw "label size exceed 64 character and not pointer, see RFC 1035";
uint16_t offset=(((uint16_t)(sz&63))<<8)|result[pos++];
out_name(os,result,offset);//recursion, hope not too deep
return;
}
uint16_t epos=pos+sz;
while (pos<epos)
os << result[pos++];
sz=result[pos++];
if (sz)
os << ".";
}
}
static void disp_rr(std::ostream&os,const std::vector<uint8_t>& result,uint16_t& pos)
{
if (pos>=result.size())
return;
if (result[pos]==0)
return;
out_name(os,result,pos);
if (((size_t)pos+10)>=(size_t)result.size())
{
throw "wrong packet size1";
}
uint16_t rr_type=tools::be2uint16(&result[pos]);
os << " (" ;
os << "type:" ; disp_type(os,rr_type) ;
pos+=2;
os << " class:" << tools::be2uint16(&result[pos]) ;
pos+=2;
os << " TTL:" << tools::be2uint32(&result[pos]) << " secs) ";
pos+=4;
uint16_t len=tools::be2uint16(&result[pos]);
pos+=2;
if (pos+len>result.size())
throw "wrong packet size2";
if (rr_type==1)
{
if (len!=4)
{
throw "unknown data size";
}
os << (int)result[pos] << "." << (int)result[pos+1] << "." << (int)result[pos+2] << "." << (int)result[pos+3];
} else if (rr_type==2)
{
uint16_t pos2=pos;
out_name(os,result,pos2);
} else
{
throw "unimplement type";
}
pos+=len;
}
static void split_rr(const std::vector<uint8_t>& result,
uint16_t& pos,
std::string& name,
uint16_t& rr_type,
uint16_t& rr_class,
uint32_t& TTL,
uint32_t& IP4,
std::string* pname2=nullptr
)
{
if (pos>=result.size())
return;
if (result[pos]==0)
return;
std::stringstream ss;
out_name(ss,result,pos);
name=ss.str();
if (((size_t)pos+10)>=(size_t)result.size())
{
throw "wrong packet size1";
}
rr_type=tools::be2uint16(&result[pos]);
pos+=2;
rr_class=tools::be2uint16(&result[pos]) ;
pos+=2;
TTL=tools::be2uint32(&result[pos]);
pos+=4;
uint16_t len=tools::be2uint16(&result[pos]);
pos+=2;
if (pos+len>result.size())
throw "wrong packet size2";
if (rr_type==1)
{
if (len!=4)
{
throw "unknown data size";
}
IP4=tools::be2uint32(&result[pos]); //*(uint32_t*)&result[pos];
} else if (rr_type==2)
{
uint16_t pos2=pos;
std::stringstream ss;
out_name(ss,result,pos2);
if (pname2)
*pname2=ss.str();
} else
{
throw "unimplement type";
}
pos+=len;
}
static int check_A(const std::vector<uint8_t>& result)
{
if (result.size()<12)
return -1;
uint8_t response=(result[2]>>7);
if (response!=1)
return -2;
uint8_t rcode=result[3]&0xf;
if (rcode!=0)
return -3;
uint8_t opcode=(result[2]>>3)&0xF;
if (opcode!=0)
return -4;
return 0;
}
static int answer_A(const std::vector<uint8_t>& result,
std::string& q_name,
std::vector<uint32_t>& IP4s,
std::vector<uint32_t>* pTTLs=nullptr)
{
int ret=check_A(result);
if (ret<0)
return ret;
std::string name;
uint16_t q_type=0;
uint16_t q_class=0;
uint16_t rr_type=0;
uint16_t rr_class=0;
uint32_t TTL=0;
uint32_t IP4=0;
uint16_t qc=tools::be2uint16(&result[4]);
uint16_t pos=12;
for (int i=0;i<qc;i++)//qc =1 usually
{
std::stringstream ss;
out_name(ss,result,pos);
q_name=ss.str();
q_type=tools::be2uint16(&result[pos]);
pos+=2;
q_class=tools::be2uint16(&result[pos]);
pos+=2;
}
uint16_t ac=tools::be2uint16(&result[6]);
IP4s.resize(ac);
if (pTTLs)
pTTLs->resize(ac);
for (int i=0;i<ac;i++)
{
split_rr(result,pos,name,rr_type,rr_class,TTL,IP4);
if (name!=q_name)
break;
if (rr_type!=q_type)
break;
if (rr_class!=q_class)
break;
IP4s[i]=IP4;
if (pTTLs)
(*pTTLs)[i]=TTL;
}
return ac;
}
static void disp_result(std::ostream&os,const std::vector<uint8_t>& result)
{
if (result.size()<12)
return;
os << std::string((result[2]&0x80) ? "response" : "query") << std::endl;
os << "size=" << result.size() << " bytes" << std::endl;
uint8_t opcode=(result[2]>>3)&0xF;
os << "Opcode:" << (int)opcode;
if (opcode<=2)
os << " " << opcode_msg[opcode];
os << std::endl;
os << ((result[2]&1) ? "recursion asked" : "recursion NOT asked") << std::endl;
if (result[2]&2)
os << "response truncated" << std::endl;
if (result[2]&4)
os << "Authoritative answer" << std::endl;
os << ((result[3]&0x80) ? "recursion available" : "recursion NOT available") << std::endl;
uint8_t rcode=result[3]&0xf;
os << "rcode:" << (int)rcode;
if (rcode<=5)
os << " " << rcode_msg[rcode];
os << std::endl;
uint16_t qc=tools::be2uint16(&result[4]);
os << "Query Count:" << qc << std::endl;
uint16_t ac=tools::be2uint16(&result[6]);
os << "Answer Count:" << ac << std::endl;
uint16_t nc=tools::be2uint16(&result[8]);
os << "Authoritative Name Server Count:" << nc << std::endl;
uint16_t arc=tools::be2uint16(&result[10]);
os << "Additional resource records Count:" << arc << std::endl;
uint16_t pos=12;
os << "_____________" << std::endl;
os << "Query:" << std::endl;
for (int i=0;i<qc;i++)//qc =1 usually
{
out_name(os,result,pos);
os << " (";
os << "type:"; disp_type(os,tools::be2uint16(&result[pos]));
pos+=2;
os << " class:" << tools::be2uint16(&result[pos]) << " ) ";
pos+=2;
os << std::endl;
}
//answer
if (ac)
{
os << "_________________________" << std::endl;
os << "Answer:" << std::endl;
}
for (int i=0;i<ac;i++)
{
disp_rr(os,result,pos);
os << std::endl;
}
if (nc)
{
os << "_________________________" << std::endl;
os << "Authoritative nameservers:" << std::endl;
}
for (int i=0;i<nc;i++)
{
disp_rr(os,result,pos);
os << std::endl;
}
if (arc)
{
os << "_________________________" << std::endl;
os << "Additional resource records:" << std::endl;
}
for (int i=0;i<arc;i++)
{
disp_rr(os,result,pos);
os << std::endl;
}
}
size_t udp_request(const boost::asio::const_buffer& request,
const boost::asio::mutable_buffer& response,
const std::string_view& destination_ip,
const unsigned short port,
boost::system::error_code& ec)
{
using namespace boost;
asio::ip::udp::socket socket(io_context_);
auto remote = asio::ip::udp::endpoint(asio::ip::make_address(destination_ip), port);
socket.open(boost::asio::ip::udp::v4());
size_t sent=socket.send_to(request, remote);
if (request.size()!=sent)
return 0;
return receive_from(socket,response,timeout_,ec);
}
std::size_t receive_from(
boost::asio::ip::udp::socket& sock,
const boost::asio::mutable_buffer& buffer,
boost::asio::chrono::steady_clock::duration timeout,
boost::system::error_code& ec)
{
std::size_t length = 0;
sock.async_receive(boost::asio::buffer(buffer),
[&](const boost::system::error_code& ec1,std::size_t sz){
ec=ec1;
length=sz;
}
);
run(sock,timeout);
return length;
}
void run(boost::asio::ip::udp::socket& sock,boost::asio::chrono::steady_clock::duration timeout)
{
// Restart the io_context, as it may have been left in the "stopped" state
// by a previous operation.
io_context_.restart();
// Block until the asynchronous operation has completed, or timed out. If
// the pending asynchronous operation is a composed operation, the deadline
// applies to the entire operation, rather than individual operations on
// the socket.
io_context_.run_for(timeout);
// If the asynchronous operation completed successfully then the io_context
// would have been stopped due to running out of work. If it was not
// stopped, then the io_context::run_for call must have timed out.
if (!io_context_.stopped())
{
// Cancel the outstanding asynchronous operation.
sock.cancel();
// Run the io_context again until the operation completes.
io_context_.run();
}
}
static std::vector<uint8_t> make_dns_request(const std::string_view& hostname)
{
static uint16_t id=257;
id++;
std::vector<uint8_t> req;
uint16_t epos=12+1+hostname.size();
req.resize(epos+1+4);//plus null plus type (2 bytes) plus class (2 bytes)
*((uint16_t*)&req[0])=id;
req[2]=1;//recursive
req[3]=32;//??, linux has 32, but 0 works too
req[5]=1;//one query
req[epos]=0;//end of string
req[epos+2]=1;//type A - host address
req[epos+4]=1;//class INT
uint16_t cnt=0;
for(int i=hostname.size()-1;i>=0;i--)
{
req[13+i]=(hostname[i]=='.') ? cnt : hostname[i];
cnt=(hostname[i]=='.') ? 0 : cnt+1;
}
req[12]=cnt;
return req;
}
std::string_view resolve(const std::string_view& hostname,std::vector<uint8_t>& result)
{
auto myrequest=make_dns_request(hostname);
return tools::find_first_success(nameservers_,
[&](const std::string_view& nameserver)
{
size_t sz=0;
try
{
boost::system::error_code ec;
sz=udp_request(boost::asio::buffer(myrequest),
boost::asio::mutable_buffer(&result[0],result.size()),
nameserver,53,ec);
if (ec.value()!=boost::system::errc::success)
{
std::cerr << "skipping due to error code not a success : error code=" << ec.value() << " " << ec.message() << std::endl;
return false;
}
if (sz<35)//min packet , 12 header+3 name+4 type/class+ 16 (rr type 1)
{
std::cerr << "skipping because packet size < 35" << std::endl;
return false;
}
if ((myrequest[0]!=result[0])||(myrequest[1]!=result[1]))
{
std::cerr << "skipping because ID respond not matching ID request " << std::endl;
return false;
}
if (check_A(result)<0)
{
std::cerr << "skipping because packet check failed " << std::endl;
return false;
}
}
catch(std::exception& ex)
{
std::cerr << "Skipping because of exception:" << ex.what() << std::endl;
return false;
}
catch(...)
{
std::cerr << "Skipping because of unknown exception:" << std::endl;
return false;
}
result.resize(sz);
return true;
});
}
private:
boost::asio::io_context io_context_;
std::string nameservers_;
boost::asio::chrono::milliseconds timeout_;
};
}
#endif /* DNSRESOLVER_H_ */
/*
* main.cpp
*
* Created on: Jan 12, 2023
* Author: marian
*/
#include <iostream>
#include <vector>
#include "DNSResolver.h"
#define check_offset if (offset==argc) { print_error(); return 1;}
int main (int argc, char **argv) {
auto print_error=[&]()
{
std::cerr << "Usage: " << argv[0] << " [-v] [-t timeout_msecs] [--nottl] [--nons] <query> [csv_ip_nameserver_list] \n";
std::cerr << "Example: " << argv[0] << " bbc.co.uk 127.0.0.53,8.8.8.8" << std::endl;
std::cerr << "Example: " << argv[0] << " -v bbc.co.uk" << std::endl;
};
if (argc < 2) {
print_error();
return 1;
}
int offset=1;
bool verbose= (std::string(argv[offset])=="-v");
if (verbose)
offset++;
check_offset;
int millisecs=3000;
if (std::string(argv[offset])=="-t")
{
offset++;
check_offset;
millisecs=std::stoi(argv[offset++]);
}
check_offset;
bool ttl=true;
if (std::string(argv[offset])=="--nottl")
{
ttl=false;
offset++;
}
check_offset;
bool ns=true;
if (std::string(argv[offset])=="--nons")
{
ns=false;
offset++;
}
check_offset;
const char *dname=argv[offset];
const char *nameservers= (offset+1<argc) ? argv[offset+1] : "127.0.0.53,8.8.8.8";
if (ns)
std::cout << "nameservers:" << nameservers << std::endl;
DNS::resolver resolver{nameservers,boost::asio::chrono::milliseconds{millisecs}};
if (verbose)
{
std::string_view nameserver_used;
resolver.resolve_ostream(dname,nameserver_used,std::cout);
return 0;
}
std::vector<uint32_t> TTLs;
std::string_view nameserver_used;
std::vector<uint32_t> IP4s=resolver.resolve(dname,nameserver_used,&TTLs);
if (ns&&(!nameserver_used.empty()))
std::cout << "nameserver:" << nameserver_used << std::endl;
int n=IP4s.size();
if (!n)
{
std::cerr << "Error: No IPs found" << std::endl;
return 2;
}
for (int i=0;i<n;i++)
{
tools::out_IP4(std::cout,IP4s[i]);
if (ttl)
std::cout << " (TTL:" << TTLs[i] << " sec)" ;
std::cout << std::endl;
}
return 0;
}
I am looking at multithreading and written a basic producer/consumer. I have two issues with the producer/consumer written below. 1) Even by setting the consumer sleep time lower than the producer sleep time, the producer still seems to execute quicker. 2) In the consumer I have duplicated the code in the case where the producer finishes adding to the queue, but there is still elements in the queue. Any advise for a better way of structuring the code?
#include <iostream>
#include <queue>
#include <mutex>
class App {
private:
std::queue<int> m_data;
bool m_bFinished;
std::mutex m_Mutex;
int m_ConsumerSleep;
int m_ProducerSleep;
int m_QueueSize;
public:
App(int &MaxQueue) :m_bFinished(false), m_ConsumerSleep(1), m_ProducerSleep(5), m_QueueSize(MaxQueue){}
void Producer() {
for (int i = 0; i < m_QueueSize; ++i) {
std::lock_guard<std::mutex> guard(m_Mutex);
m_data.push(i);
std::cout << "Producer Thread, queue size: " << m_data.size() << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(m_ProducerSleep));
}
m_bFinished = true;
}
void Consumer() {
while (!m_bFinished) {
if (m_data.size() > 0) {
std::lock_guard<std::mutex> guard(m_Mutex);
std::cout << "Consumer Thread, queue element: " << m_data.front() << " size: " << m_data.size() << std::endl;
m_data.pop();
}
else {
std::cout << "No elements, skipping" << std::endl;
}
std::this_thread::sleep_for(std::chrono::seconds(m_ConsumerSleep));
}
while (m_data.size() > 0) {
std::lock_guard<std::mutex> guard(m_Mutex);
std::cout << "Emptying remaining elements " << m_data.front() << std::endl;
m_data.pop();
std::this_thread::sleep_for(std::chrono::seconds(m_ConsumerSleep));
}
}
};
int main()
{
int QueueElements = 10;
App app(QueueElements);
std::thread consumer_thread(&App::Consumer, &app);
std::thread producer_thread(&App::Producer, &app);
producer_thread.join();
consumer_thread.join();
std::cout << "loop exited" << std::endl;
return 0;
}
You should use condition_variable. Don't use sleep for threads.
Main scheme:
Producer pushes value under lock and signals condition_variable.
Consumer waits under lock on condition variable and checks predicate to prevent spurious wakeups.
My version:
#include <iostream>
#include <queue>
#include <mutex>
#include <thread>
#include <condition_variable>
#include <atomic>
class App {
private:
std::queue<int> m_data;
std::atomic_bool m_bFinished;
std::mutex m_Mutex;
std::condition_variable m_cv;
int m_QueueSize;
public:
App(int MaxQueue)
: m_bFinished(false)
, m_QueueSize(MaxQueue)
{}
void Producer()
{
for (int i = 0; i < m_QueueSize; ++i)
{
{
std::unique_lock<std::mutex> lock(m_Mutex);
m_data.push(i);
}
m_cv.notify_one();
std::cout << "Producer Thread, queue size: " << m_data.size() << std::endl;
}
m_bFinished = true;
}
void Consumer()
{
do
{
std::unique_lock<std::mutex> lock(m_Mutex);
while (m_data.empty())
{
m_cv.wait(lock, [&](){ return !m_data.empty(); }); // predicate an while loop - protection from spurious wakeups
}
while(!m_data.empty()) // consume all elements from queue
{
std::cout << "Consumer Thread, queue element: " << m_data.front() << " size: " << m_data.size() << std::endl;
m_data.pop();
}
} while(!m_bFinished);
}
};
int main()
{
int QueueElements = 10;
App app(QueueElements);
std::thread consumer_thread(&App::Consumer, &app);
std::thread producer_thread(&App::Producer, &app);
producer_thread.join();
consumer_thread.join();
std::cout << "loop exited" << std::endl;
return 0;
}
Also note, that it's better to use atomic for end flag, when you have deal with concurrent threads, because theoretically value of the m_bFinished will be stored in the cache-line and if there is no cache invalidation in the producer thread, the changed value can be unseen from the consumer thread. Atomics have memory fences, that guarantees, that value will be updated for other threads.
Also you can take a look on memory_order page.
First, you should use a condition variable instead of a delay on the consumer. This way, the consumer thread only wakes up when the queue is not empty and the producer notifies it.
That said, the reason why your producer calls are more frequent is the delay on the producer thread. It's executed while holding the mutex, so the consumer will never execute until the delay is over. You should release the mutex before calling sleep_for:
for (int i = 0; i < m_QueueSize; ++i) {
/* Introduce a scope to release the mutex before sleeping*/
{
std::lock_guard<std::mutex> guard(m_Mutex);
m_data.push(i);
std::cout << "Producer Thread, queue size: " << m_data.size() << std::endl;
} // Mutex is released here
std::this_thread::sleep_for(std::chrono::seconds(m_ProducerSleep));
}
Well, I have created a program which picks up the input signal from serial input. I can successfully receive the data transmitted from the device through UART. I want to terminate the thread after achieving certain conditions( such as receiving more than 5 bytes, etc.) I think the problem is how to terminate the thread in Qt correctly, but I couldn't find the way. The program seems falls into deadlock after calling the exec() in the sub function. Can anyone help with that problem? Thank you very much!
Here's my header file:
#ifndef SERIALTHREAD
#define SERIALTHREAD
#include <QtSerialPort/QSerialPort>
#include <QDebug>
#include <QString>
#include <QThread>
#include <QtCore>
#include <iostream>
#include <fstream>
class SerialControlThread : public QThread
{
Q_OBJECT
public:
explicit SerialControlThread(QString ComPort,QObject *parent = 0);
~SerialControlThread(); // Destructor
bool openSerialPort();
void closeSerialPort();
void run();
bool TelltoExit();
void StarttoRun();
private:
int DataCount;
QString ComPortNumber;
QSerialPort *serial;
int* VoltageStorage; // Total 3 channels, each channel takes 10 data
unsigned int Channel_A[10]; // Channel_A is for Phase Tx s
int DataCountIndexA; // This is how many data has been sent to the buffer;
int SentDataCount;
unsigned char StoreDataBuffer[2];
unsigned char TotalDataCounter;
std::ofstream write;
signals:
void BufferisFull(int*);
void TimeToQuit();
public slots:
private slots:
void readData();
void handleError(QSerialPort::SerialPortError error);
};
#endif // SERIALTHREAD
This is the.cpp
#include "serialcontrol.h"
#include <iostream>
SerialControlThread::SerialControlThread(QString ComPort,QObject *parent) :
QThread(parent),ComPortNumber(ComPort)
{
DataCountIndexA=0;
DataCount=0;
serial = new QSerialPort(this);
connect(this,SIGNAL(TimeToQuit()),this,SLOT(quit()));\
connect(serial, SIGNAL(readyRead()), this, SLOT(readData()));
connect(serial, SIGNAL(error(QSerialPort::SerialPortError)), this,
SLOT(handleError(QSerialPort::SerialPortError)));
for (int i=0;i<10;i++)
Channel_A[i]=0;
}
SerialControlThread::~SerialControlThread()
{
this->closeSerialPort();
delete serial;
}
bool SerialControlThread::openSerialPort()
{
// std::cout << "Hey I am in serial function" << std::endl;
serial->setPortName(ComPortNumber) ;
serial->setBaudRate(QSerialPort::Baud9600); //This can be set through menu in the future
serial->setDataBits(QSerialPort::Data8); // A packets contains 8 bits ( 3 for signature bits)
serial->setParity(QSerialPort::NoParity);
serial->setStopBits(QSerialPort::OneStop);
serial->setFlowControl(QSerialPort::NoFlowControl);
if (!(serial->open(QIODevice::ReadWrite))) {
return false; // return false when the device can't be opened
}else
{
return true;} // return true when the device is avalaible
}
void SerialControlThread::closeSerialPort()
{
if (serial->isOpen())
serial->close();
}
void SerialControlThread::handleError(QSerialPort::SerialPortError error)
{
}
void SerialControlThread::readData()
{
QByteArray data=serial->read(100);
const char *TempChar=data.data();
std::cout << TempChar << std::endl;
DataCount++;
if(DataCount>=4)
{
std::cout << "I am bigger than 4" << std::endl;
this->quit();
}
}
}
void SerialControlThread::run()
{
}
bool SerialControlThread::TelltoExit()
{
}
void SerialControlThread::StarttoRun()
{
// Sending the msp430 S to activate the following sequence
const char *temp="S";
serial->write(temp);
serial->waitForBytesWritten(30000);
this->exec();
}
This is the main.cpp
#include <QCoreApplication>
#include <QtSerialPort/QSerialPortInfo>
#include <QList>
#include <iostream>
#include <QString>
#include <QDebug>
#include <QSerialPort>
#include "serialcontrol.h"
using namespace std;
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
int AvailablePorts=QSerialPortInfo::availablePorts().count();
QList<QSerialPortInfo> SerialObject=QSerialPortInfo::availablePorts();
cout << "There are total: " << SerialObject.count() << " available ports " << endl << endl;
QString description;
for (int i=0;i<AvailablePorts;i++)
{
cout << "The " << i+1 << " com port is :";
qDebug() << SerialObject[i].portName();
qDebug() << "Description : " << SerialObject[i].description();
qDebug() << "Manufacturer: " << SerialObject[i].manufacturer();
cout << endl;
}
SerialControlThread *RunThread=new SerialControlThread(SerialObject[0].portName(),&a);
cout << RunThread->openSerialPort() << endl;
RunThread->StarttoRun();
cout << "I am out of here" << endl;
delete RunThread;
return a.exec();
}
I wish to close the thread( back to the main function) when the buffer has received more than 4 data, but it doesn't.
It is my output
There are total: 1 available ports
The 1 com port is :"COM8"
Description : "MSP430 Application UART"
Manufacturer: "Texas Instruments"
1
0
1
2
3
I am bigger than 4
4
I am bigger than 4
5
I am bigger than 4
6
I am bigger than 4
7
I am bigger than 4
8
I am bigger than 4
9
I am bigger than 4
Apparently, the program gets stuck in a loop. I have tried some solutions, but none of these worked.
StartToRun calls QThread::exec in the wrong thread: you call it in the main thread, but it's supposed to be called in the thread itself - from within run().
Alas, SerialControlThread doesn't have to be a thread. Making it a thread forces it to be used in a dedicated thread - that should be a choice left to its user. Perhaps the thread would be shared among other serial controllers, or perhaps it'll do just fine in the main thread. Thus, it should be an object that handles serial data, that has a thread-safe interface so that you can move it to another thread if you wish - but would still work fine in the main thread, and thus has to handle data asynchronously without blocking.
Considering whether one needs to control the worker thread's run status so tightly: an idle thread consumes no resources - its event loop is blocked waiting on new events, its stack eventually gets paged out if there's memory pressure. If one intends to "wake" the thread for each operation, there's no need to be explicit about it: the event loop in the thread behaves that way be default and by design: it wakes when there are new events, such as incoming data, otherwise it sleeps. One shouldn't be stopping the thread then.
The example below shows a very minimal implementation. On the whole it's not very useful other than to demonstrate brevity as a contrast to the length of code in the question - in spite of identical limited functionality. Presumably you have a more complex communications protocol that you wish to handle. You may wish to consider the use of QDataStream read transactions to make the reader code more expressive, and using a state machine to represent the protocol.
// https://github.com/KubaO/stackoverflown/tree/master/questions/serial-galore-42241570
#include <QtWidgets>
#include <QtSerialPort>
// See https://stackoverflow.com/q/40382820/1329652
template <typename Fun> void safe(QObject * obj, Fun && fun) {
Q_ASSERT(obj->thread() || qApp && qApp->thread() == QThread::currentThread());
if (Q_LIKELY(obj->thread() == QThread::currentThread() || !obj->thread()))
return fun();
struct Event : public QEvent {
using F = typename std::decay<Fun>::type;
F fun;
Event(F && fun) : QEvent(QEvent::None), fun(std::move(fun)) {}
Event(const F & fun) : QEvent(QEvent::None), fun(fun) {}
~Event() { fun(); }
};
QCoreApplication::postEvent(
obj->thread() ? obj : qApp, new Event(std::forward<Fun>(fun)));
}
class SerialController : public QObject {
Q_OBJECT
QSerialPort m_port{this};
QByteArray m_rxData;
void onError(QSerialPort::SerialPortError error) {
Q_UNUSED(error);
}
void onData(const QByteArray & data) {
m_rxData.append(data);
qDebug() << "Got" << m_rxData.toHex() << "(" << m_rxData.size() << ") - done.";
emit hasReply(m_rxData);
}
void onData() {
if (m_port.bytesAvailable() >= 4)
onData(m_port.readAll());
}
public:
explicit SerialController(const QString & port, QObject * parent = nullptr) :
QObject{parent}
{
m_port.setPortName(port);
connect(&m_port, static_cast<void(QSerialPort::*)(QSerialPort::SerialPortError)>(&QSerialPort::error),
this, &SerialController::onError);
}
~SerialController() { qDebug() << __FUNCTION__; }
bool open() {
m_port.setBaudRate(QSerialPort::Baud9600);
m_port.setDataBits(QSerialPort::Data8);
m_port.setParity(QSerialPort::NoParity);
m_port.setStopBits(QSerialPort::OneStop);
m_port.setFlowControl(QSerialPort::NoFlowControl);
return m_port.open(QIODevice::ReadWrite);
}
/// This method is thread-safe.
void start() {
safe(this, [=]{
m_port.write("S");
qDebug() << "Sent data";
});
}
Q_SIGNAL void hasReply(const QByteArray &);
void injectData(const QByteArray & data) {
onData(data);
}
};
QDebug operator<<(QDebug dbg, const QSerialPortInfo & info) {
dbg << info.portName();
if (!info.description().isEmpty())
dbg << " Description: " << info.description();
if (!info.manufacturer().isEmpty())
dbg << " Manufacturer: " << info.manufacturer();
return dbg;
}
// A thread that starts on construction, and is always safe to destruct.
class RunningThread : public QThread {
Q_OBJECT
using QThread::run; // final
public:
RunningThread(QObject * parent = nullptr) : QThread(parent) { start(); }
~RunningThread() { qDebug() << __FUNCTION__; quit(); wait(); }
};
int main(int argc, char *argv[])
{
QCoreApplication app(argc, argv);
auto const ports = QSerialPortInfo::availablePorts();
if (ports.isEmpty())
qFatal("No serial ports");
int n{};
qDebug() << "Available ports:";
for (auto & port : ports)
qDebug() << "port[" << n++ << "]: " << port;
SerialController ctl{ports.at(5).portName()};
if (!ctl.open())
qFatal("Open Failed");
// Optional: the controller will work fine in the main thread.
if (true) ctl.moveToThread(new RunningThread{&ctl}); // Owns its thread
// Let's pretend we got a reply;
QTimer::singleShot(1000, &ctl, [&ctl]{
ctl.injectData("ABCD");
});
QObject::connect(&ctl, &SerialController::hasReply, ctl.thread(), &QThread::quit);
QObject::connect(&ctl, &SerialController::hasReply, [&]{
qDebug() << "The controller is done, quitting.";
app.quit();
});
ctl.start();
return app.exec();
}
#include "main.moc"
I've been stuck for a whole night but can't figure out the problem.
I'm writing a server that accepts connections for a chatroom application. The idea is that the server gives the connected sockets to chat_manager, chat_manager puts them in a waitlist and starts a thread to constantly check if somebody is still in the waitlist. If somebody is in the waitlist, the chat_manager tries to read from the client to determine which room the client wants to join.
main.cpp looks like this :
boost::asio::io_service io_service;
chat_server server(io_service, 8091);
io_service.run();
Chat server code :
chat_server::chat_server(boost::asio::io_service& io_service, int port) : io_service_(io_service),
acceptor_(io_service, tcp::endpoint(tcp::v4(), port)) {
start_accept();
}
void chat_server::start_accept() {
chat_session_ptr new_session(new chat_session(io_service_));
acceptor_.async_accept(new_session->socket(), boost::bind(&chat_server::handle_accept, this, new_session,
boost::asio::placeholders::error));
}
void chat_server::handle_accept(chat_session_ptr s, const boost::system::error_code& error) {
if (!error) { // successfully connected
chat_manager::Instance().chat_session_join(s);
}
start_accept();
}
chat_manager is simply
chat_manager() { // constructor
waitlist_.resize(0);
manager_thread_ = boost::thread(&chat_manager::run, this);
}
int chat_session_join(chat_session_ptr chat_session) {
mutex_.lock();
waitlist_.push_back(chat_session);
mutex_.unlock();
return 1;
}
void run() {
while (1) {
mutex_.lock();
for (auto &s : waitlist_) {
std::string roomname;
if (s->wait_for_join(roomname)) {
...
}
break;
}
mutex_.unlock();
boost::this_thread::sleep( boost::posix_time::milliseconds(10) );
}
}
And session.cpp :
jsoncons::json chat_session::receive_request(boost::system::error_code& error) {
buffer_.consume(buffer_.size());
size_t bytes_transferred;
boost::system::error_code ec = boost::asio::error::would_block;
boost::asio::async_read_until(socket_, buffer_, "\n",
boost::bind(&chat_session::handle_read, shared_from_this(), _1, _2, &ec, &bytes_transferred ));
deadline_.expires_from_now(boost::posix_time::seconds(2));
deadline_.async_wait(boost::bind(&chat_session::check_deadline, shared_from_this()));
do pio_service_->run_one(); while (ec == boost::asio::error::would_block);
std::cout << "got it" << std::endl;
if ( ec || !socket_.is_open() ) {
std::cout << ec.message() << std::endl;
return jsoncons::json();
}
std::istream is(&buffer_);
return jsoncons::json::parse(is);
}
int chat_session::wait_for_join(std::string &roomname) {
boost::system::error_code error;
jsoncons::json request = receive_request(error);
...
}
void chat_session::handle_read(const boost::system::error_code& error, size_t bytes_transferred,
boost::system::error_code* out_error, size_t* out_bytes_transferred) {
deadline_.expires_at(boost::posix_time::pos_infin);
*out_error = error;
*out_bytes_transferred = bytes_transferred;
if (!error) {
} else {
std::cout << "handle_read error:" << error.message() << std::endl;
}
}
What happens is,
1. when the client connects and doesn't send anything, the connection is closed by the server after 2 seconds. which is correct. but
2. if the client sends one string before the connection expires, the server worked its way into handle_read but never gets past pio_service->run_one();
3. if the client send another string, wait_for_join will finish and the run() procedure starts to loop.
To me it seems that the use of io_services here is fine because check_deadline and handle_read worked, but if that really worked it would modify ec != would_block, and the do-while loop should return. What's happening here? I'm really confused.
I am using boost 1.52.0 32 bit libraries with OpenSSL 32 bit libraries with unmanaged Visual C++ 2008 for a new client I am writing to communicate with an existing server. My test machine uses Windows 8. I am using synchronous reads and writes. The code is built into a DLL that is accessed from C#, but all asio calls are done on unmanaged threads created with boost::thread_group.
What I have discovered is that when a synchronous read is waiting for data, then a synchronous write taking place in another thread appears to be blocked and will not go out - at least with the way I have things coded. So my question is - should a synchronous write be able to be completely executed while a synchronous read is waiting for data in another thread?
I have verified that I can write data out successfully when there is no pending read in another thread. I did this by freezing the thread the read was on right before it was about to read. The thread for writing then wrote a message out. I then thawed the read thread and it was able to successfully read the response back from the server about the message that was sent.
The following method is called by the create_thread method to handle reading messages off the wire from the server:
void SSLSocket::ProcessServerRequests()
{
// This method is responsible for processing requests from a server.
Byte *pByte;
int ByteCount;
size_t BytesTransferred;
boost::system::error_code Err;
Byte* pReqBuf;
string s;
stringstream ss;
//
try
{
ss << "ProcessServerRequests: Worker thread: " << Logger::NumberToString(boost::this_thread::get_id()) << " started.\n";
Log.LogString(ss.str(), LogInfo);
// Enable the handlers for the handshaking.
IOService->run();
// Wait for the handshake to be sucessfully completed.
do
{
Sleep(50);
} while (!HandShakeReady);
//
sClientIp = pSocket->lowest_layer().remote_endpoint().address().to_string();
uiClientPort = pSocket->lowest_layer().remote_endpoint().port();
ReqAlive = true;
// If the thread that handles sending msgs to all servers has not been created yet, then create that one.
// This thread is created just once to handle all outbound msgs to all servers.
WorkerThreads.create_thread(boost::bind(&SSLSocket::SendWorkerThread));
// Loop until the user quits, or an error is detected. The read method should wait until there is something to read.
do
{
pReqBuf = BufMang.GetPtr(MsgLenBytes);
boost::asio::read(*pSocket, boost::asio::buffer(pReqBuf, MsgLenBytes), boost::asio::transfer_exactly(MsgLenBytes), Err);
if (Err)
{
s = Err.message();
if ((s.find("short r")) == string::npos)
{
ss.str("");
ss << "SSLSocket::ProcessServerRequests: read(1) error = " << Err.message() << "\n. Terminating.\n\n";
Log.LogString(ss.str(), LogError);
}
Terminate();
// Notify the client that an error has been encountered and the program needs to shut down. TBD.
}
else
{
// Get the number of bytes in the message.
pByte = pReqBuf;
B2I.B.B1 = *pByte++;
B2I.B.B2 = *pByte++;
B2I.B.B3 = *pByte++;
B2I.B.B4 = *pByte;
ByteCount = B2I.IntVal;
pReqBuf = BufMang.GetPtr(ByteCount);
// Do a synchronous read which will hang until the entire message is read off the wire.
BytesTransferred = boost::asio::read(*pSocket, boost::asio::buffer(pReqBuf, ByteCount), boost::asio::transfer_exactly(ByteCount), Err);
ss.str("");
ss << "SSLSocket::ProcessServerRequests: # bytes rcvd = " << Logger::NumberToString(BytesTransferred).c_str() << " from ";
ss << sClientIp.c_str() << " : " << Logger::NumberToString(uiClientPort) << "\n";
Log.LogString(ss.str(), LogDebug2);
Log.LogBuf(pReqBuf, (int)BytesTransferred, DisplayInHex, LogDebug3);
if ((Err) || (ByteCount != BytesTransferred))
{
if (Err)
{
ss.str("");
ss << "ProcessServerRequests:read(2) error = " << Err.message() << "\n. Terminating.\n\n";
}
else
{
ss.str("");
ss << "ProcessServerRequests:read(3) error - BytesTransferred (" << Logger::NumberToString(BytesTransferred).c_str() <<
") != ByteCount (" << Logger::NumberToString(ByteCount).c_str() << "). Terminating.\n\n";
}
Log.LogString(ss.str(), LogError);
Terminate();
// Notify the client that an error has been encountered and the program needs to shut down. TBD.
break;
}
// Call the C# callback method that will handle the message.
Log.LogString("SSLSocket::ProcessServerRequests: sending msg to the C# client.\n\n", LogDebug2);
CallbackFunction(this, BytesTransferred, (void*)pReqBuf);
}
} while (ReqAlive);
Log.LogString("SSLSocket::ProcessServerRequests: worker thread done.\n", LogInfo);
}
catch (std::exception& e)
{
stringstream ss;
ss << "SSLSocket::ProcessServerRequests: threw an error - " << e.what() << ".\n";
Log.LogString(ss.str(), LogError);
}
}
The following method is called by the create_thread method to handle sending messages to the server:
void SSLSocket::SendWorkerThread()
{
// This method handles sending msgs to the server. It is called upon 1st time class initialization.
//
DWORD WaitResult;
Log.LogString("SSLSocket::SendWorkerThread: Worker thread " + Logger::NumberToString(boost::this_thread::get_id()) + " started.\n", LogInfo);
// Loop until the user quits, or an error of some sort is thrown.
try
{
do
{
// If there are one or more msgs that need to be sent to a server, then send them out.
if (SendMsgQ.Count() > 0)
{
Message* pMsg = SendMsgQ.Pop();
// Byte* pBuf = pMsg->pBuf;
const Byte* pBuf = pMsg->pBuf;
SSLSocket* pSSL = pMsg->pSSL;
int BytesInMsg = pMsg->BytesInMsg;
boost::system::error_code Error;
unsigned int BytesTransferred = boost::asio::write(*pSSL->pSocket, boost::asio::buffer(pBuf, BytesInMsg), Error);
string s = "SSLSocket::SendWorkerThread: # bytes sent = ";
s += Logger::NumberToString(BytesInMsg).c_str();
s += "\n";
Log.LogString(s, LogDebug2);
Log.LogBuf(pBuf, BytesInMsg, DisplayInHex, LogDebug3);
if (Error)
{
Log.LogString("SSLSocket::SendWorkerThread: error sending message - " + Error.message() + "\n", LogError);
}
}
else
{
// Nothing to send, so go into a wait state.
WaitResult = WaitForSingleObject(hEvent, INFINITE);
if (WaitResult != 0L)
{
Log.LogString("SSLSocket::SendWorkerThread: WaitForSingleObject event error. Code = " + Logger::NumberToString(GetLastError()) + ". \n", LogError);
}
}
} while (ReqAlive);
Log.LogString("SSLSocket::SendWorkerThread: Worker thread " + Logger::NumberToString(boost::this_thread::get_id()) + " done.\n", LogInfo);
}
catch (std::exception& e)
{
stringstream ss;
ss << "SSLSocket::SendWorkerThread: threw an error - " << e.what() << ".\n";
Log.LogString(ss.str(), LogError);
}
}
So, if a synchronous write should be able to be executed while a synchronous read is pending in another thread, then can someone please tell me what my code is doing wrong.
Asio socket is not thread-safe, so you may not access it from different threads.
Use async_read and async_write instead.