Related
I am doing some numerical analysis exercise where I need calculate solution of linear system using a specific algorithm. My answer differs from the answer of the book by some decimal places which I believe is due to rounding errors. Is there a way where I can automatically set arithmetic to round eight decimal places after each arithmetic operation? The following is my python code.
import numpy as np
A1 = [4, -1, 0, 0, -1, 4, -1, 0,\
0, -1, 4, -1, 0, 0, -1, 4]
A1 = np.array(A1).reshape([4,4])
I = -np.identity(4)
O = np.zeros([4,4])
A = np.block([[A1, I, O, O],
[I, A1, I, O],
[O, I, A1, I],
[O, O, I, A1]])
b = np.array([1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6])
def conj_solve(A, b, pre=False):
n = len(A)
C = np.identity(n)
if pre == True:
for i in range(n):
C[i, i] = np.sqrt(A[i, i])
Ci = np.linalg.inv(C)
Ct = np.transpose(Ci)
x = np.zeros(n)
r = b - np.matmul(A, x)
w = np.matmul(Ci, r)
v = np.matmul(Ct, w)
alpha = np.dot(w, w)
for i in range(MAX_ITER):
if np.linalg.norm(v, np.infty) < TOL:
print(i+1, "steps")
print(x)
print(r)
return
u = np.matmul(A, v)
t = alpha/np.dot(v, u)
x = x + t*v
r = r - t*u
w = np.matmul(Ci, r)
beta = np.dot(w, w)
if np.abs(beta) < TOL:
if np.linalg.norm(r, np.infty) < TOL:
print(i+1, "steps")
print(x)
print(r)
return
s = beta/alpha
v = np.matmul(Ct, w) + s*v
alpha = beta
print("Max iteration exceeded")
return x
MAX_ITER = 1000
TOL = 0.05
sol = conj_solve(A, b, pre=True)
Using this, I get 2.55516527 as first element of array which should be 2.55613420.
OR, is there a language/program where I can specify the precision of arithmetic?
Precision/rounding during the calculation is unlikely to be the issue.
To test this I ran the calculation with precisions that bracket the precision you are aiming for: once with np.float64, and once with np.float32. Here is a table of the printed results, their approximate decimal precision, and the result of the calculation (ie, the first printed array value).
numpy type decimal places result
-------------------------------------------------
np.float64 15 2.55516527
np.float32 6 2.5551653
Given that these are so much in agreement, I doubt an intermediate precision of 8 decimal places is going to give an answer that's not between these two results (ie, 2.55613420 that's off in the 4th digit).
This isn't part isn't part of my answer, but is a comment on using mpmath. The questioner suggested it in the comments, and it was my first thought too, so I ran a quick test to see if it behaved how I expected with low precision calculations. It didn't, so I abandoned it (but I'm not an expert with it).
Here's my test function, basically multiplying 1/N by N and 1/N repeatedly to emphasise the error in 1/N.
def precision_test(dps=100, N=19, t=mpmath.mpf):
with mpmath.workdps(dps):
x = t(1)/t(N)
print(x)
y = x
for i in range(10000):
y *= x
y *= N
print(y)
This works as expected with, eg, np.float32:
precision_test(dps=2, N=3, t=np.float32)
# 0.33333334
# 0.3334327041164994
Note that the error has propagated into more significant digits, as expected.
But with mpmath, I could never get that to happen (testing with a range of dps and a various prime N values):
precision_test(dps=2, N=3)
# 0.33
# 0.33
Because of this test, I decided mpmath is not going to give normal results for low precision calculations.
TL;DR:
mpmath didn't behave how I expected at low precision so I abandoned it.
I have been working on recursion and tried to solve the Knapsack problem [https://en.wikipedia.org/wiki/Knapsack_problem]. I came up with the algorithm below which works just fine:
cost_array = [2,3,4,5,9]
value_array = [3,4,8,8,10]
def KP(Weight, C, V):
if Weight < 2:
return 0
q = 0
for i in range(len(C)):
q = max(q, (KP(Weight-C[i], [x for j,x in enumerate(C) if j!=i], \
[x for j,x in enumerate(V) if j!=i]) + V[i]*(Weight-C[i] >= 0)))
return q
print(KP(25,cost_array,value_array))
However when I change the value of q to q < 0 and call print(KP(25,cost_array,value_array)) the result I get is 33 - q. With 33 being the max value the knapsack can have.
What is weird here is that I only get this behavior if I call the initial function with a Weight > 23 and here 23=2+3+4+5+9.
I can't figure out at what point the negative q gets added to my result for me this line never performs such an operation, can you guys enlighten me ?
q = max(q, (KP(W-C[i], [x for j,x in enumerate(C) if j!=i], [x for j,x in enumerate(V) if j!=i]) + V[i]*(W-C[i] >= 0)))
Thanks,
d_darric
Suppose q=-2 (a negative value)
Therefore you are filling your base cases with -2 . That is -2 is returned for base cases of your function which is then getting added to the answer on each step in recursion. Try a bottom up approach with a 2D array. You can look at that here https://www.youtube.com/watch?v=8LusJS5-AGo . In your case you are filling matrix base cases with -2.
def knapSack(W, wt, val, n):
K = [[0 for x in range(W+1)] for x in range(n+1)]
q=-2 #Make it zero for correct answer
# Build table K[][] in bottom up manner
for i in range(n+1):
for w in range(W+1):
if i==0 or w==0:
K[i][w] = q #Here you are assigning negative value
elif wt[i-1] <= w:
K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w])
else:
K[i][w] = K[i-1][w]
return K[n][W]
# Driver program to test above function
value_array = [3,4,8,8,10]
cost_array = [2,3,4,5,9]
Weight = 25
n = len(val)
print(knapSack(Weight, cost_array, value_array, n))
Here's the Problem Statement:
Given an array nums of n integers,
are there elements a, b, c in nums such that a + b + c = 0?
Find all unique triplets in the array which gives the sum of zero.
Note:
The solution set must not contain duplicate triplets.
Example:
Given array nums = [-1, 0, 1, 2, -1, -4],
A solution set is:
[[-1, 0, 1],[-1, -1, 2]]
I'm solving Leetcode 3Sum problem right now and getting Time Limit Exceeded error for the below Code:
class Solution:
def threeSum(self, nums):
triplets=[]
nums.sort()
for i in range(len(nums)-1):
l=i+1
r=len(nums)-1
while l<r:
sum=nums[i]+nums[l]+nums[r]
if sum==0:
if not [nums[i],nums[l],nums[r]] in triplets:
triplets+=[[nums[i],nums[l],nums[r]]]
if sum<0:
l+=1
else:
r-=1
return triplets
Can anyone tell me where can I optimize this code?
Your algorithm looks optimal in general (slightly better complexity exists but approach perhaps is too complex for practical purposes).
But seems that searching of sublist in list is rather slow operation (probably linear for unsorted)
Use dictionary instead and extract triplets at the end.
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
nums.sort()
result = []
N = len(nums)
for i in range(N):
if i > 0 and nums[i] == nums[i-1]:
continue
target = -nums[i]
l = i + 1
r = N - 1
while l < r:
if nums[l] + nums[r] == target:
result.append([nums[l],nums[r],nums[i]])
l = l + 1
while l <= r and nums[l] == nums[l - 1]:
l = l + 1
elif nums[l] + nums[r] > target:
r = r - 1
else:
l = l + 1
return result
I have a list of characters, say x in number, denoted by b[1], b[2], b[3] ... b[x]. After x,
b[x+1] is the concatenation of b[1],b[2].... b[x] in that order. Similarly,
b[x+2] is the concatenation of b[2],b[3]....b[x],b[x+1].
So, basically, b[n] will be concatenation of last x terms of b[i], taken left from right.
Given parameters as p and q as queries, how can I find out which character among b[1], b[2], b[3]..... b[x] does the qth character of b[p] corresponds to?
Note: x and b[1], b[2], b[3]..... b[x] is fixed for all queries.
I tried brute-forcing but the string length increases exponentially for large x.(x<=100).
Example:
When x=3,
b[] = a, b, c, a b c, b c abc, c abc bcabc, abc bcabc cabcbcabc, //....
//Spaces for clarity, only commas separate array elements
So for a query where p=7, q=5, answer returned would be 3(corresponding to character 'c').
I am just having difficulty figuring out the maths behind it. Language is no issue
I wrote this answer as I figured it out, so please bear with me.
As you mentioned, it is much easier to find out where the character at b[p][q] comes from among the original x characters than to generate b[p] for large p. To do so, we will use a loop to find where the current b[p][q] came from, thereby reducing p until it is between 1 and x, and q until it is 1.
Let's look at an example for x=3 to see if we can get a formula:
p N(p) b[p]
- ---- ----
1 1 a
2 1 b
3 1 c
4 3 a b c
5 5 b c abc
6 9 c abc bcabc
7 17 abc bcabc cabcbcabc
8 31 bcabc cabcbcabc abcbcabccabcbcabc
9 57 cabcbcabc abcbcabccabcbcabc bcabccabcbcabcabcbcabccabcbcabc
The sequence is clear: N(p) = N(p-1) + N(p-2) + N(p-3), where N(p) is the number of characters in the pth element of b. Given p and x, you can just brute-force compute all the N for the range [1, p]. This will allow you to figure out which prior element of b b[p][q] came from.
To illustrate, say x=3, p=9 and q=45.
The chart above gives N(6)=9, N(7)=17 and N(8)=31. Since 45>9+17, you know that b[9][45] comes from b[8][45-(9+17)] = b[8][19].
Continuing iteratively/recursively, 19>9+5, so b[8][19] = b[7][19-(9+5)] = b[7][5].
Now 5>N(4) but 5<N(4)+N(5), so b[7][5] = b[5][5-3] = b[5][2].
b[5][2] = b[3][2-1] = b[3][1]
Since 3 <= x, we have our termination condition, and b[9][45] is c from b[3].
Something like this can very easily be computed either recursively or iteratively given starting p, q, x and b up to x. My method requires p array elements to compute N(p) for the entire sequence. This can be allocated in an array or on the stack if working recursively.
Here is a reference implementation in vanilla Python (no external imports, although numpy would probably help streamline this):
def so38509640(b, p, q):
"""
p, q are integers. b is a char sequence of length x.
list, string, or tuple are all valid choices for b.
"""
x = len(b)
# Trivial case
if p <= x:
if q != 1:
raise ValueError('q={} out of bounds for p={}'.format(q, p))
return p, b[p - 1]
# Construct list of counts
N = [1] * p
for i in range(x, p):
N[i] = sum(N[i - x:i])
print('N =', N)
# Error check
if q > N[-1]:
raise ValueError('q={} out of bounds for p={}'.format(q, p))
print('b[{}][{}]'.format(p, q), end='')
# Reduce p, q until it is p < x
while p > x:
# Find which previous element character q comes from
offset = 0
for i in range(p - x - 1, p):
if i == p - 1:
raise ValueError('q={} out of bounds for p={}'.format(q, p))
if offset + N[i] >= q:
q -= offset
p = i + 1
print(' = b[{}][{}]'.format(p, q), end='')
break
offset += N[i]
print()
return p, b[p - 1]
Calling so38509640('abc', 9, 45) produces
N = [1, 1, 1, 3, 5, 9, 17, 31, 57]
b[9][45] = b[8][19] = b[7][5] = b[5][2] = b[3][1]
(3, 'c') # <-- Final answer
Similarly, for the example in the question, so38509640('abc', 7, 5) produces the expected result:
N = [1, 1, 1, 3, 5, 9, 17]
b[7][5] = b[5][2] = b[3][1]
(3, 'c') # <-- Final answer
Sorry I couldn't come up with a better function name :) This is simple enough code that it should work equally well in Py2 and 3, despite differences in the range function/class.
I would be very curious to see if there is a non-iterative solution for this problem. Perhaps there is a way of doing this using modular arithmetic or something...
I am trying to sort 4 integers input by the user into numerical order using only the min() and max() functions in python. I can get the highest and lowest number easily, but cannot work out a combination to order the two middle numbers? Does anyone have an idea?
So I'm guessing your input is something like this?
string = input('Type your numbers, separated by a space')
Then I'd do:
numbers = [int(i) for i in string.strip().split(' ')]
amount_of_numbers = len(numbers)
sorted = []
for i in range(amount_of_numbers):
x = max(numbers)
numbers.remove(x)
sorted.append(x)
print(sorted)
This will sort them using max, but min can also be used.
If you didn't have to use min and max:
string = input('Type your numbers, separated by a space')
numbers = [int(i) for i in string.strip().split(' ')]
numbers.sort() #an optional reverse argument possible
print(numbers)
LITERALLY just min and max? Odd, but, why not. I'm about to crash, but I think the following would work:
# Easy
arr[0] = max(a,b,c,d)
# Take the smallest element from each pair.
#
# You will never take the largest element from the set, but since one of the
# pairs will be (largest, second_largest) you will at some point take the
# second largest. Take the maximum value of the selected items - which
# will be the maximum of the items ignoring the largest value.
arr[1] = max(min(a,b)
min(a,c)
min(a,d)
min(b,c)
min(b,d)
min(c,d))
# Similar logic, but reversed, to take the smallest of the largest of each
# pair - again omitting the smallest number, then taking the smallest.
arr[2] = min(max(a,b)
max(a,c)
max(a,d)
max(b,c)
max(b,d)
max(c,d))
# Easy
arr[3] = min(a,b,c,d)
For Tankerbuzz's result for the following:
first_integer = 9
second_integer = 19
third_integer = 1
fourth_integer = 15
I get 1, 15, 9, 19 as the ascending values.
The following is one of the forms that gives symbolic form of the ascending values (using i1-i4 instead of first_integer, etc...):
Min(i1, i2, i3, i4)
Max(Min(i4, Max(Min(i1, i2), Min(i3, Max(i1, i2))), Max(i1, i2, i3)), Min(i1, i2, i3, Max(i1, i2)))
Max(Min(i1, i2), Min(i3, Max(i1, i2)), Min(i4, Max(i1, i2, i3)))
Max(i1, i2, i3, i4)
It was generated by a 'bubble sort' using the Min and Max functions of SymPy (a python CAS):
def minmaxsort(v):
"""return a sorted list of the elements in v using the
Min and Max functions.
Examples
========
>>> minmaxsort(3, 2, 1)
[1, 2, 3]
>>> minmaxsort(1, x, y)
[Min(1, x, y), Max(Min(1, x), Min(y, Max(1, x))), Max(1, x, y)]
>>> minmaxsort(1, y, x)
[Min(1, x, y), Max(Min(1, y), Min(x, Max(1, y))), Max(1, x, y)]
"""
from sympy import Min, Max
v = list(v)
v0 = Min(*v)
for j in range(len(v)):
for i in range(len(v) - j - 1):
w = v[i:i + 2]
v[i:i + 2] = [Min(*w), Max(*w)]
v[0] = v0
return v
I have worked it out.
min_integer = min(first_integer, second_integer, third_integer, fourth_integer)
mid_low_integer = min(max(first_integer, second_integer), max(third_integer, fourth_integer))
mid_high_integer = max(min(first_integer, second_integer), min(third_integer, fourth_integer))
max_integer = max(first_integer, second_integer, third_integer, fourth_integer)