I am trying to subscribe to a Kafka topic through pyspark with the following code:
spark = SparkSession.builder.appName("Spark Structured Streaming from Kafka").getOrCreate()
lines = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("kafka.partition.assignment.strategy","range").option("subscribe", "test-events").load()
words = lines.select(explode(split(lines.value, " ")).alias("word"))
wordCounts = words.groupBy("word").count()
query = wordCounts.writeStream.outputMode("complete").format("console").start()
query.awaitTermination()
and using the following command:
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.0 test_events.py
and versions for spark, kafka, java and scala:
spark=2.4.0
kafka=2.12-2.3.0
scala=2.11.12
openJDK=1.8.0_221
I keep getting the following errors:
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
Aggregate [word#26], [word#26, count(1) AS count#30L]
+- Project [word#26]
+- Generate explode(split(cast(value#8 as string), )), false, [word#26]
+- StreamingExecutionRelation KafkaV2[Subscribe[test-events]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:295)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: org.apache.kafka.common.KafkaException: Failed to construct kafka consumer
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:827)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:629)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:610)
at org.apache.spark.sql.kafka010.SubscribeStrategy.createConsumer(ConsumerStrategy.scala:62)
at org.apache.spark.sql.kafka010.KafkaOffsetReader.consumer(KafkaOffsetReader.scala:85)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$fetchLatestOffsets$1$$anonfun$apply$9.apply(KafkaOffsetReader.scala:199)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$fetchLatestOffsets$1$$anonfun$apply$9.apply(KafkaOffsetReader.scala:197)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$org$apache$spark$sql$kafka010$KafkaOffsetReader$$withRetriesWithoutInterrupt$1.apply$mcV$sp(KafkaOffsetReader.scala:288)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$org$apache$spark$sql$kafka010$KafkaOffsetReader$$withRetriesWithoutInterrupt$1.apply(KafkaOffsetReader.scala:287)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$org$apache$spark$sql$kafka010$KafkaOffsetReader$$withRetriesWithoutInterrupt$1.apply(KafkaOffsetReader.scala:287)
at org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)
at org.apache.spark.sql.kafka010.KafkaOffsetReader.org$apache$spark$sql$kafka010$KafkaOffsetReader$$withRetriesWithoutInterrupt(KafkaOffsetReader.scala:286)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$fetchLatestOffsets$1.apply(KafkaOffsetReader.scala:197)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$fetchLatestOffsets$1.apply(KafkaOffsetReader.scala:197)
at org.apache.spark.sql.kafka010.KafkaOffsetReader.runUninterruptibly(KafkaOffsetReader.scala:255)
at org.apache.spark.sql.kafka010.KafkaOffsetReader.fetchLatestOffsets(KafkaOffsetReader.scala:196)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader$$anonfun$getOrCreateInitialPartitionOffsets$1.apply(KafkaMicroBatchReader.scala:195)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader$$anonfun$getOrCreateInitialPartitionOffsets$1.apply(KafkaMicroBatchReader.scala:190)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader.getOrCreateInitialPartitionOffsets(KafkaMicroBatchReader.scala:190)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader.org$apache$spark$sql$kafka010$KafkaMicroBatchReader$$initialPartitionOffsets$lzycompute(KafkaMicroBatchReader.scala:83)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader.org$apache$spark$sql$kafka010$KafkaMicroBatchReader$$initialPartitionOffsets(KafkaMicroBatchReader.scala:83)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader.setOffsetRange(KafkaMicroBatchReader.scala:87)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5$$anonfun$apply$2.apply$mcV$sp(MicroBatchExecution.scala:353)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5$$anonfun$apply$2.apply(MicroBatchExecution.scala:353)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5$$anonfun$apply$2.apply(MicroBatchExecution.scala:353)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5.apply(MicroBatchExecution.scala:349)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5.apply(MicroBatchExecution.scala:341)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.AbstractTraversable.map(Traversable.scala:104)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1.apply$mcZ$sp(MicroBatchExecution.scala:341)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1.apply(MicroBatchExecution.scala:337)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1.apply(MicroBatchExecution.scala:337)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.withProgressLocked(MicroBatchExecution.scala:554)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch(MicroBatchExecution.scala:337)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:183)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:166)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:160)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
... 1 more
Caused by: org.apache.kafka.common.KafkaException: range ClassNotFoundException exception occurred
at org.apache.kafka.common.config.AbstractConfig.getConfiguredInstances(AbstractConfig.java:425)
at org.apache.kafka.common.config.AbstractConfig.getConfiguredInstances(AbstractConfig.java:400)
at org.apache.kafka.common.config.AbstractConfig.getConfiguredInstances(AbstractConfig.java:387)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:772)
... 50 more
Caused by: java.lang.ClassNotFoundException: range
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.kafka.common.utils.Utils.loadClass(Utils.java:348)
at org.apache.kafka.common.utils.Utils.newInstance(Utils.java:337)
at org.apache.kafka.common.config.AbstractConfig.getConfiguredInstances(AbstractConfig.java:423)
... 53 more
During handling of the above exception, another exception occurred:
pyspark.sql.utils.StreamingQueryException: 'Failed to construct kafka consumer\n=== Streaming Query ===\nIdentifier: [id = 671c0c25-2f29-49f9-8698-c59a89626da7, runId = 37b4d397-4338-4416-a521-384c8853e99b]\nCurrent Committed Offsets: {}\nCurrent Available Offsets: {}\n\nCurrent State: ACTIVE\nThread State: RUNNABLE\n\nLogical Plan:\nAggregate [word#26], [word#26, count(1) AS count#30L]\n+- Project [word#26]\n +- Generate explode(split(cast(value#8 as string), )), false, [word#26]\n +- StreamingExecutionRelation KafkaV2[Subscribe[test-events]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]\n'
2020-02-07 10:03:38 INFO SparkContext:54 - Invoking stop() from shutdown hoo
There are multiple similar questions online but no answer has worked for me so far.
I have also tried the above with spark 2.4.4 with the following:
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.4 test_events.py
but I keep getting the same errors.
Try changing the kafka.partition.assignment.strategy to roundrobin from range and see if it works.
lines = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("kafka.partition.assignment.strategy","roundrobin").option("subscribe", "test-events").load()
If it doesnt works even after that then try adding kafka-clients-0.10.0.1.jar while submitting the spark job.
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.0 --jars local:///root/sources/jars/kafka-clients-0.10.0.1.jar --driver-class-path local:///root/sources/jars/kafka-clients-0.10.0.1.jar test_events.py
Solved with the following:
kafka version 2.12-2.2.0
spark 2.4.0-bin-hadoop2.7
scala 2.11.12
java.lang.ClassNotFoundException: range
Unless you explicitly need the assignment strategy, then remove the option.
Otherwise, it must be the fully qualified Java class name
This error can also be drawn when you provide a faulty value for kafka.bootstrap.servers. This could be a non-existent broker/port, or even a broker list in list form, as opposed to string form. Meaning, ["broker1:9092", "broker2:9092"] instead of "broker1:9092,broker2:9092".
Depending on where you are running the code, the true cause of the error can be hidden, as well.
Here's the error in Jupyter
StreamingQueryException: Failed to construct kafka consumer
=== Streaming Query ===
Identifier: [id = 39eb0e9d-9487-4838-9d15-241645a04cb6, runId = 763acdcb-bc05-4428-87e1-7b56ae736423]
Current Committed Offsets: {KafkaV2[Subscribe[fd]]: {"fd":{"2":4088,"1":4219,"0":4225}}}
Current Available Offsets: {KafkaV2[Subscribe[fd]]: {"fd":{"2":4088,"1":4219,"0":4225}}}
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
WriteToMicroBatchDataSource org.apache.spark.sql.kafka010.KafkaStreamingWrite#457e8cfa
+- StreamingDataSourceV2Relation [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13], org.apache.spark.sql.kafka010.KafkaSourceProvider$KafkaScan#2b34a4 79, KafkaV2[Subscribe[fd]]
No mention of any problems with the broker list... Now here's the same error via spark-submit:
2021-08-13 20:30:44,377 WARN kafka010.KafkaOffsetReaderConsumer: Error in attempt 3 getting Kafka offsets:
org.apache.kafka.common.KafkaException: Failed to construct kafka consumer
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:823)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:632)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:613)
at org.apache.spark.sql.kafka010.SubscribeStrategy.createConsumer(ConsumerStrategy.scala:107)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.consumer(KafkaOffsetReaderConsumer.scala:82)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.$anonfun$partitionsAssignedToConsumer$2(KafkaOffsetReaderConsumer.scala:533)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.$anonfun$withRetriesWithoutInterrupt$1(KafkaOffsetReaderConsumer.scala:578)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.withRetriesWithoutInterrupt(KafkaOffsetReaderConsumer.scala:577)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.$anonfun$partitionsAssignedToConsumer$1(KafkaOffsetReaderConsumer.scala:531)
at org.apache.spark.util.UninterruptibleThreadRunner.runUninterruptibly(UninterruptibleThreadRunner.scala:48)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.partitionsAssignedToConsumer(KafkaOffsetReaderConsumer.scala:531)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.fetchLatestOffsets(KafkaOffsetReaderConsumer.scala:311)
at org.apache.spark.sql.kafka010.KafkaMicroBatchStream.latestOffset(KafkaMicroBatchStream.scala:87)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$constructNextBatch$3(MicroBatchExecution.scala:394)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:357)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:355)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:68)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$constructNextBatch$2(MicroBatchExecution.scala:385)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.immutable.Map$Map1.foreach(Map.scala:128)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$constructNextBatch$1(MicroBatchExecution.scala:382)
at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.withProgressLocked(MicroBatchExecution.scala:613)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.constructNextBatch(MicroBatchExecution.scala:378)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$2(MicroBatchExecution.scala:211)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:357)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:355)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:68)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$1(MicroBatchExecution.scala:194)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:57)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:188)
at org.apache.spark.sql.execution.streaming.StreamExecution.$anonfun$runStream$1(StreamExecution.scala:334)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:317)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:244)
Important part!
Caused by: org.apache.kafka.common.config.ConfigException: Invalid url in bootstrap.servers: ['192.168.1.162:9092'
at org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:59)
at org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:48)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:734)
... 41 more
Change kafka.bootstrap.servers from ["192.168.1.162:9092","192.168.1.161:9092","192.168.1.160:9092"] to "192.168.1.162:9092,192.168.1.161:9092,192.168.1.160:9092" and all is well.
Confirm by using kafkacat to ensure that your broker is where you are saying it is.
e.g. kafkacat -C -b 192.168.1.162:9092,192.168.1.161:9092 -t fd
Version Info:
Spark 3.1.2
PySpark 3.1.1
Key .jars:
sparkSesh = SparkSession.builder.config("spark.driver.extraClassPath", "/home/username/jars/spark-sql-kafka-0-10_2.12-3.1.2.jar,/home/username/jars/commons-pool2-2.11.0.jar")\ .appName("Kafka to Stream") \ .master("local[*]").getOrCreate()
I am running into a weird issue with spark 2.0, using the sparksession to load a text file. Currently my spark config looks like:
val sparkConf = new SparkConf().setAppName("name-here")
sparkConf.registerKryoClasses(Array(Class.forName("org.apache.hadoop.io.LongWritable"), Class.forName("org.apache.hadoop.io.Text")))
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val spark = SparkSession.builder()
.config(sparkConf)
.getOrCreate()
spark.sparkContext.hadoopConfiguration.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
spark.sparkContext.hadoopConfiguration.set("fs.s3a.enableServerSideEncryption", "true")
spark.sparkContext.hadoopConfiguration.set("mapreduce.fileoutputcommitter.algorithm.version", "2")
If I load an s3a file through an rdd, it works fine. However, if I try to use something like:
val blah = SparkConfig.spark.read.text("s3a://bucket-name/*/*.txt")
.select(input_file_name, col("value"))
.drop("value")
.distinct()
val x = blah.collect()
println(blah.head().get(0))
println(x.size)
I get an exception that says: java.net.URISyntaxException: Expected scheme-specific part at index 3: s3:
Do I need to add some addition s3a configuration for the sqlcontext or sparksession? I haven't found any question or online resource that specifies this. What is weird is that it seems like the job runs for 10 minutes, but then fails with this exception. Again, using the same bucket and everything, a regular load of an rdd has no issues.
The other weird thing is that it is complaining about s3 and not s3a. I have triple checked my prefix, and it always says s3a.
Edit: Checked both s3a and s3, both throw the same exception.
17/04/06 21:29:14 ERROR ApplicationMaster: User class threw exception:
java.lang.IllegalArgumentException: java.net.URISyntaxException:
Expected scheme-specific part at index 3: s3:
java.lang.IllegalArgumentException: java.net.URISyntaxException:
Expected scheme-specific part at index 3: s3:
at org.apache.hadoop.fs.Path.initialize(Path.java:205)
at org.apache.hadoop.fs.Path.<init>(Path.java:171)
at org.apache.hadoop.fs.Path.<init>(Path.java:93)
at org.apache.hadoop.fs.Globber.glob(Globber.java:240)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1732)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1713)
at org.apache.spark.deploy.SparkHadoopUtil.globPath(SparkHadoopUtil.scala:237)
at org.apache.spark.deploy.SparkHadoopUtil.globPathIfNecessary(SparkHadoopUtil.scala:243)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$14.apply(DataSource.scala:374)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$14.apply(DataSource.scala:370)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.immutable.List.flatMap(List.scala:344)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:370)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:152)
at org.apache.spark.sql.DataFrameReader.text(DataFrameReader.scala:506)
at org.apache.spark.sql.DataFrameReader.text(DataFrameReader.scala:486)
at com.omitted.omitted.jobs.Omitted$.doThings(Omitted.scala:18)
at com.omitted.omitted.jobs.Omitted$.main(Omitted.scala:93)
at com.omitted.omitted.jobs.Omitted.main(Omitted.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:637)
Caused by: java.net.URISyntaxException: Expected scheme-specific part
at index 3: s3:
at java.net.URI$Parser.fail(URI.java:2848)
at java.net.URI$Parser.failExpecting(URI.java:2854)
at java.net.URI$Parser.parse(URI.java:3057)
at java.net.URI.<init>(URI.java:746)
at org.apache.hadoop.fs.Path.initialize(Path.java:202)
... 26 more
17/04/06 21:29:14 INFO ApplicationMaster: Final app status: FAILED,
exitCode: 15, (reason: User class threw exception:
java.lang.IllegalArgumentException: java.net.URISyntaxException:
Expected scheme-specific part at index 3: s3:)
This should work.
get the right JARs on your CP (Spark with Hadoop 2.7, matching hadoop-aws JAR, aws-java-sdk-1.7.4.jar (exactly this version) and joda-time-2.9.3.jar (or a later vesion)
you shouldn't need to set the fs.s3a.impl value, as that's done in the hadoop default settings. If you do find yourself doing that, it's a sign of a problem.
What's the full stack trace?
Getting the error below when using jdbc to write a dataframe to a hive table. Hiveserver2 is running and I can connect to it using beeline. Hive logs show the same error message below and I do not see any additional information on the log.
***Table was create in advance using ****
CREATE TABLE btiflag_htbl (
`clfentid` CHAR(15),
`clfcust` CHAR(15),
`clfflag` CHAR(2),
`clfcrtdat` CHAR(10),
`clfdtaid` INT,
`indgencod` CHAR(6),
`age` INT,
`indmarsts` CHAR(6),
`indnatcod` CHAR(6),
`quarter` CHAR(8),
`year` INT,
`month` INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS PARQUET
*Write Dataframe to Hive *
val prop = new Properties()
prop.put("user", "user1")
prop.put("password", "pwd12")
prop.put("driver", "org.apache.hive.jdbc.HiveDriver")
val dfWriter = btiflagDF.write.mode(SaveMode.Overwrite)
dfWriter.jdbc("jdbc:hive2://192.168.0.10:10000/database_hive", "btiflag_htbl", prop)
**** Error ****
Exception in thread "main" org.apache.hive.service.cli.HiveSQLException: Error while compiling statement: FAILED: ParseException line 1:36 cannot recognize input near 'INTEGER' ',' 'CLFCUST' in column type
at org.apache.hive.jdbc.Utils.verifySuccess(Utils.java:264)
at org.apache.hive.jdbc.Utils.verifySuccessWithInfo(Utils.java:250)
at org.apache.hive.jdbc.HiveStatement.runAsyncOnServer(HiveStatement.java:309)
at org.apache.hive.jdbc.HiveStatement.execute(HiveStatement.java:250)
at org.apache.hive.jdbc.HiveStatement.executeUpdate(HiveStatement.java:448)
at org.apache.spark.sql.DataFrameWriter.jdbc(DataFrameWriter.scala:302)
at com.efx.btiflag_analytics$.main(btiflag_analytics.scala:81)
at com.efx.btiflag_analytics.main(btiflag_analytics.scala)
Caused by: org.apache.hive.service.cli.HiveSQLException: Error while compiling statement: FAILED: ParseException line 1:36 cannot recognize input near 'INTEGER' ',' 'CLFCUST' in column type
at org.apache.hive.service.cli.operation.Operation.toSQLException(Operation.java:315)
at org.apache.hive.service.cli.operation.SQLOperation.prepare(SQLOperation.java:112)
at org.apache.hive.service.cli.operation.SQLOperation.runInternal(SQLOperation.java:181)
at org.apache.hive.service.cli.operation.Operation.run(Operation.java:257)
at org.apache.hive.service.cli.session.HiveSessionImpl.executeStatementInternal(HiveSessionImpl.java:388)
at org.apache.hive.service.cli.session.HiveSessionImpl.executeStatementAsync(HiveSessionImpl.java:375)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:483)
at org.apache.hive.service.cli.session.HiveSessionProxy.invoke(HiveSessionProxy.java:78)
at org.apache.hive.service.cli.session.HiveSessionProxy.access$000(HiveSessionProxy.java:36)
at org.apache.hive.service.cli.session.HiveSessionProxy$1.run(HiveSessionProxy.java:63)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.hive.service.cli.session.HiveSessionProxy.invoke(HiveSessionProxy.java:59)
at com.sun.proxy.$Proxy20.executeStatementAsync(Unknown Source)
at org.apache.hive.service.cli.CLIService.executeStatementAsync(CLIService.java:274)
at org.apache.hive.service.cli.thrift.ThriftCLIService.ExecuteStatement(ThriftCLIService.java:486)
at org.apache.hive.service.cli.thrift.TCLIService$Processor$ExecuteStatement.getResult(TCLIService.java:1313)
at org.apache.hive.service.cli.thrift.TCLIService$Processor$ExecuteStatement.getResult(TCLIService.java:1298)
at org.apache.thrift.ProcessFunction.process(ProcessFunction.java:39)
at org.apache.thrift.TBaseProcessor.process(TBaseProcessor.java:39)
at org.apache.hive.service.auth.TSetIpAddressProcessor.process(TSetIpAddressProcessor.java:56)
at org.apache.thrift.server.TThreadPoolServer$WorkerProcess.run(TThreadPoolServer.java:285)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:744)
Caused by: java.lang.RuntimeException: org.apache.hadoop.hive.ql.parse.ParseException:line 1:36 cannot recognize input near 'INTEGER' ',' 'CLFCUST' in column type
at org.apache.hadoop.hive.ql.parse.ParseDriver.parse(ParseDriver.java:205)
at org.apache.hadoop.hive.ql.parse.ParseDriver.parse(ParseDriver.java:166)
at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:396)
at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:308)
at org.apache.hadoop.hive.ql.Driver.compileInternal(Driver.java:1122)
at org.apache.hadoop.hive.ql.Driver.compileAndRespond(Driver.java:1116)
at org.apache.hive.service.cli.operation.SQLOperation.prepare(SQLOperation.java:110)
... 27 more
Any help will be appreciated
I am running a script on spark 1.5.2 in standalone mode (using 8 cores), and at the end of the script I attempt to serialize a very large dataframe to disk, using the spark-csv package. The code snippet that throws the exception is:
numfileparts = 16
data = data.repartition(numfileparts)
# Save the files as a bunch of csv files
datadir = "~/tempdatadir.csv/"
try:
(data
.write
.format('com.databricks.spark.csv')
.save(datadir,
mode="overwrite",
codec="org.apache.hadoop.io.compress.GzipCodec"))
except:
sys.exit("Could not save files.")
where data is a spark dataframe. At execution time, I get the following stracktrace:
16/04/19 20:16:24 WARN QueuedThreadPool: 8 threads could not be stopped
16/04/19 20:16:24 ERROR TaskSchedulerImpl: Exception in statusUpdate
java.util.concurrent.RejectedExecutionException: Task org.apache.spark.scheduler.TaskResultGetter$$anon$2#70617ec1 rejected from java.util.concurrent.ThreadPoolExecutor#1bf5370e[Shutting d\
own, pool size = 3, active threads = 3, queued tasks = 0, completed tasks = 2859]
at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)
at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)
at org.apache.spark.scheduler.TaskResultGetter.enqueueSuccessfulTask(TaskResultGetter.scala:49)
at org.apache.spark.scheduler.TaskSchedulerImpl.liftedTree2$1(TaskSchedulerImpl.scala:347)
at org.apache.spark.scheduler.TaskSchedulerImpl.statusUpdate(TaskSchedulerImpl.scala:330)
at org.apache.spark.scheduler.local.LocalEndpoint$$anonfun$receive$1.applyOrElse(LocalBackend.scala:65)
at org.apache.spark.rpc.akka.AkkaRpcEnv.org$apache$spark$rpc$akka$AkkaRpcEnv$$processMessage(AkkaRpcEnv.scala:177)
at org.apache.spark.rpc.akka.AkkaRpcEnv$$anonfun$actorRef$lzycompute$1$1$$anon$1$$anonfun$receiveWithLogging$1$$anonfun$applyOrElse$4.apply$mcV$sp(AkkaRpcEnv.scala:126)
at org.apache.spark.rpc.akka.AkkaRpcEnv.org$apache$spark$rpc$akka$AkkaRpcEnv$$safelyCall(AkkaRpcEnv.scala:197)
at org.apache.spark.rpc.akka.AkkaRpcEnv$$anonfun$actorRef$lzycompute$1$1$$anon$1$$anonfun$receiveWithLogging$1.applyOrElse(AkkaRpcEnv.scala:125)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply$mcVL$sp(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:33)
at scala.runtime.AbstractPartialFunction$mcVL$sp.apply(AbstractPartialFunction.scala:25)
at org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:59)
at org.apache.spark.util.ActorLogReceive$$anon$1.apply(ActorLogReceive.scala:42)
at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:118)
at org.apache.spark.util.ActorLogReceive$$anon$1.applyOrElse(ActorLogReceive.scala:42)
at akka.actor.Actor$class.aroundReceive(Actor.scala:467)
at org.apache.spark.rpc.akka.AkkaRpcEnv$$anonfun$actorRef$lzycompute$1$1$$anon$1.aroundReceive(AkkaRpcEnv.scala:92)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
at akka.dispatch.Mailbox.run(Mailbox.scala:220)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:397)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
This leads to a bunch of these:
16/04/19 20:16:24 ERROR DiskBlockObjectWriter: Uncaught exception while reverting partial writes to file /tmp/blockmgr-84d7d0a6-a3e5-4f48-bde0-0f6610e44e16/38/temp_shuffle_b9886819-be46-4e\
28-b57f-e592ea37ab95
java.io.FileNotFoundException: /tmp/blockmgr-84d7d0a6-a3e5-4f48-bde0-0f6610e44e16/38/temp_shuffle_b9886819-be46-4e28-b57f-e592ea37ab95 (No such file or directory)
at java.io.FileOutputStream.open0(Native Method)
at java.io.FileOutputStream.open(FileOutputStream.java:270)
at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
at org.apache.spark.storage.DiskBlockObjectWriter.revertPartialWritesAndClose(DiskBlockObjectWriter.scala:160)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.stop(BypassMergeSortShuffleWriter.java:174)
at org.apache.spark.shuffle.sort.SortShuffleWriter.stop(SortShuffleWriter.scala:104)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/04/19 20:16:24 ERROR BypassMergeSortShuffleWriter: Error while deleting file for block temp_shuffle_b9886819-be46-4e28-b57f-e592ea37ab95
16/04/19 20:16:24 ERROR DiskBlockObjectWriter: Uncaught exception while reverting partial writes to file /tmp/blockmgr-84d7d0a6-a3e5-4f48-bde0-0f6610e44e16/29/temp_shuffle_e474bcb1-5ead-4d\
7c-a58f-5398f32892f2
java.io.FileNotFoundException: /tmp/blockmgr-84d7d0a6-a3e5-4f48-bde0-0f6610e44e16/29/temp_shuffle_e474bcb1-5ead-4d7c-a58f-5398f32892f2 (No such file or directory)
at java.io.FileOutputStream.open0(Native Method)
...and so on (I have intentionally left out some of the last lines.)
I do understand (roughly) what is happening, but am very uncertain of what to do about it - is it a memory issue?
I seek advice on what to do - is there some setting I can change, add, etc.?
i want to run 'select count(*) from test' on 'hive on spark' through beeline, but it crashed.
INFO client.SparkClientUtilities: Added jar[file:/home/.../hive/lib/zookeeper-3.4.6.jar] to classpath
INFO client.RemoteDriver: Failed to run job 41dc814c-deb7-4743-9b6a-b6cace2eae19
com.esotericsoftware.kryo.KryoException: java.lang.ArrayIndexOutOfBoundsException: 1
Serialization trace:
dummyOps (org.apache.hadoop.hive.ql.plan.ReduceWork) left (org.apache.commons.lang3.tuple.ImmutablePair) edgeProperties (org.apache.hadoop.hive.ql.plan.SparkWork)
at com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(FieldSerializer.java:626)
at com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:221)
at com.esotericsoftware.kryo.Kryo.readObject(Kryo.java:648)
at com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(FieldSerializer.java:605)
at com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:221)
at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:729)
at com.esotericsoftware.kryo.serializers.MapSerializer.read(MapSerializer.java:126)
at com.esotericsoftware.kryo.serializers.MapSerializer.read(MapSerializer.java:17)
at com.esotericsoftware.kryo.Kryo.readObject(Kryo.java:648)
at com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(FieldSerializer.java:605)
at com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:221)
at com.esotericsoftware.kryo.Kryo.readObject(Kryo.java:626)
at org.apache.hadoop.hive.ql.exec.spark.KryoSerializer.deserialize(KryoSerializer.java:49)
at org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient$JobStatusJob.call(RemoteHiveSparkClient.java:235)
at org.apache.hive.spark.client.RemoteDriver$JobWrapper.call(RemoteDriver.java:366)
at org.apache.hive.spark.client.RemoteDriver$JobWrapper.call(RemoteDriver.java:335)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.ArrayIndexOutOfBoundsException: 1
at com.esotericsoftware.kryo.serializers.MapSerializer.setGenerics(MapSerializer.java:53)
at com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(FieldSerializer.java:604)
... 19 more
hive on spark configuration is:
set spark.home=/home/.../spark;
set hive.execution.engine=spark;
set spark.master=yarn;
set spark.eventLog.enabled=true;
set spark.eventLog.dir=hdfs://...:9000/user/.../spark-history-server-records;
set spark.executor.memory=1024m;
set spark.serializer=org.apache.spark.serializer.KryoSerializer;
and what's worse, when i change KryoSerializer to JavaSerializer, this issue still exists.
Thanks.