How to get a prediction from Tensorflow - python-3.x

I took the dynamic RNN example from aymericdamian: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py
and modified it a little to fit my data. The data is a list of 7500 data sets of 60 entries.
There are 5 labels as output data.
The code runs perfect and I get an accuracy of 75%.
Now I want to feed the model with a data set and get a predicted label back, but I get the following error:
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_2' with dtype int32
The code is listed below and the two last lines is where I want to get the prediction back.
What am I doing wrong?
# ==========
# MODEL
# ==========
# Parameters
learning_rate = 0.01
training_iters = 1000000
batch_size = 128
display_step = 10
# Network Parameters
seq_max_len = 60 # Sequence max length
n_hidden = 64 # hidden layer num of features
n_classes = 5 # large rise, small rise, almost equal, small drop, large drop
trainset = ToySequenceData(n_samples=7500, max_seq_len=seq_max_len)
testset = copy.copy(trainset)
# take 50% of total data to use for training
trainpart = int(0.2 * trainset.data.__len__())
pred_data = testset.data[testset.data.__len__() - 2:testset.labels.__len__() - 1][:]
pred_label = testset.labels[testset.labels.__len__() - 1:][:]
trainset.data = trainset.data[:trainpart][:]
testset.data = testset.data[trainpart:testset.data.__len__() - 2][:]
trainset.labels = trainset.labels[:trainpart][:]
testset.labels = testset.labels[trainpart:testset.labels.__len__() - 2][:]
trainset.seqlen = trainset.seqlen[:trainpart][:]
testset.seqlen = testset.seqlen[trainpart:testset.seqlen.__len__() - 2]
# tf Graph input
x = tf.placeholder("float", [None, seq_max_len, 1])
y = tf.placeholder("float", [None, n_classes])
# A placeholder for indicating each sequence length
seqlen = tf.placeholder(tf.int32, [None])
# Define weights
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def dynamic_rnn(x, seqlen, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, 1])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(0, seq_max_len, x)
# Define a lstm cell with tensorflow
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden)
# Get lstm cell output, providing 'sequence_length' will perform dynamic
# calculation.
outputs, states = tf.nn.rnn(lstm_cell, x, dtype=tf.float32,
sequence_length=seqlen)
# When performing dynamic calculation, we must retrieve the last
# dynamically computed output, i.e., if a sequence length is 10, we need
# to retrieve the 10th output.
# However TensorFlow doesn't support advanced indexing yet, so we build
# a custom op that for each sample in batch size, get its length and
# get the corresponding relevant output.
# 'outputs' is a list of output at every timestep, we pack them in a Tensor
# and change back dimension to [batch_size, n_step, n_input]
outputs = tf.pack(outputs)
outputs = tf.transpose(outputs, [1, 0, 2])
# Hack to build the indexing and retrieve the right output.
batch_size = tf.shape(outputs)[0]
# Start indices for each sample
index = tf.range(0, batch_size) * seq_max_len + (seqlen - 1)
# Indexing
outputs = tf.gather(tf.reshape(outputs, [-1, n_hidden]), index)
# Linear activation, using outputs computed above
return tf.matmul(outputs, weights['out']) + biases['out']
pred = dynamic_rnn(x, seqlen, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y, batch_seqlen = trainset.next(batch_size)
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
seqlen: batch_seqlen})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y,
seqlen: batch_seqlen})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y,
seqlen: batch_seqlen})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " +
"{:.6f}".format(loss) + ", Training Accuracy= " +
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
# Calculate accuracy
test_data = testset.data
test_label = testset.labels
test_seqlen = testset.seqlen
print("Testing Accuracy:",
sess.run(accuracy, feed_dict={x: test_data, y: test_label,
seqlen: test_seqlen}))
print(pred.eval(feed_dict={x: pred_data}))
print(pred_label)

In TensorFlow, when you do not provide a name to tf.placeholder, it assumes the default name "Placeholder". The next placeholder created is named "Placeholder_1" and the third one is called "Placeholder_2".
This is done to uniquely identify each placeholder. Now in your last line, you are trying to get the value of pred.eval(). Looking at your dynamic_rnn code, it seems like you need a value in the seq_len placeholder, which is the third placeholder defined (that's why "Placeholder_2". Simply add the following key-value to your feed_dict,
print(pred.eval(feed_dict={x: pred_data, seqlen: pred_seqlen}))
Of course, you will need to define pred_seqlen properly like you defined the other two seq_len variables.

Related

3-layer feedfoward neural network not predicting regression values accurately

I'm pretty new to Tensorflow. Currently, I'm doing a 3-layer network, with 10 neurons in the hidden layer with ReLU, mini-batch gradient descent size of 8, L2 regularisation weight decay parameter (beta) of 0.001. The Tensorflow version I'm using is 1.14 and I'm on Python 3.6.
The issue that boggles my mind is that my predicted values and testing errors are absolutely off the charts.
For example, I plotted out the test errors and the predicted vs target values for a sample size of 50, and this is what came out.
As you can see, both plots are way off, and I haven't had the slightest clue as to why.
Here's how the dataset roughly looks like. The first column is discarded as it is just a counter value, and the last column is the target.
My code:
NUM_FEATURES = 7
num_neuron = 10
batch_size = 8
beta = 0.001
learning_rate = 0.001
epochs = 4000
seed = 10
np.random.seed(seed)
# read and divide data into test and train sets
total_dataset= np.genfromtxt('dataset_excel.csv', delimiter=',')
X_data, Y_data = total_dataset[1:, 1:8], total_dataset[1:, -1]
Y_data = Y_data.reshape(Y_data.shape[0], 1)
# shuffle input, ensure both are shuffled with the same order
shufflestate = np.random.get_state()
np.random.shuffle(X_data)
np.random.set_state(shufflestate)
np.random.shuffle(Y_data)
# 70% used for training, 30% used for testing
trainX = X_data[:280]
trainY = Y_data[:280]
testX = X_data[280:]
testY = Y_data[280:]
trainX = (trainX - np.mean(trainX, axis=0)) / np.std(trainX, axis=0)
# Create the model
x = tf.placeholder(tf.float32, [None, NUM_FEATURES])
y_ = tf.placeholder(tf.float32, [None, 1])
# get 50 samples for plotting of predicted vs target values
limited50testX = testX[:50]
limited50testY = testY[:50]
# Hidden
with tf.name_scope('hidden'):
weight1 = tf.Variable(tf.truncated_normal([NUM_FEATURES, num_neuron],stddev=1.0,name='weight1'))
bias1 = tf.Variable(tf.zeros([num_neuron]),name='bias1')
hidden = tf.nn.relu(tf.matmul(x, weight1) + bias1)
# output
with tf.name_scope('linear'):
weight2 = tf.Variable(tf.truncated_normal([num_neuron, 1],stddev=1.0 / np.sqrt(float(num_neuron))),name='weight2')
bias2 = tf.Variable(tf.zeros([1]),name='bias2')
logits = tf.matmul(hidden, weight2) + bias2
ridgeLoss = tf.square(y_ - logits)
regularisation = tf.nn.l2_loss(weight1) + tf.nn.l2_loss(weight2)
loss = tf.reduce_mean(ridgeLoss + beta * regularisation)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss)
error = tf.reduce_mean(tf.square(y_ - logits))
N = len(trainX)
idx = np.arange(N)
predicted=[]
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_err = []
test_err_ = []
for i in range(epochs):
for batchStart, batchEnd in zip(range(0, trainX.shape[0], batch_size),range(batch_size, trainX.shape[0], batch_size)):
train_op.run(feed_dict={x: trainX[batchStart:batchEnd], y_: trainY[batchStart:batchEnd]})
err = error.eval(feed_dict={x: trainX, y_: trainY})
train_err.append(err)
if i % 100 == 0:
print('iter %d: train error %g' % (i, train_err[i]))
test_err = error.eval(feed_dict={x: testX, y_: testY})
test_err_.append(test_err)
predicted = sess.run(logits, feed_dict={x:limited50testX})
print("predicted values: ", predicted)
print("size of predicted values is", len(predicted))
print("targets: ", limited50testY)
print("size of target values is", len(limited50testY))
#plot predictions vs targets
numberList=np.arange(0, 50, 1).tolist()
predplot = plt.figure(1)
plt.plot(numberList, predicted, label='Predictions')
plt.plot(numberList, limited50testY, label='Targets')
plt.xlabel('50 samples')
plt.ylabel('Value')
plt.legend(loc='lower right')
predplot.show()
# plot training error
trainplot = plt.figure(2)
plt.plot(range(epochs), train_err)
plt.xlabel(str(epochs) + ' iterations')
plt.ylabel('Train Error')
trainplot.show()
#plot testing error
testplot = plt.figure(3)
plt.plot(range(epochs), test_err_)
plt.xlabel(str(epochs) + ' iterations')
plt.ylabel('Test Error')
testplot.show()
Not sure if that's it, but trainX is normalized whereas testX is not. You might want to use the same normalization on testX before predicting.

TF | How to predict from CNN after training is done

Trying to work with the framework provided in the course Stanford cs231n, given the code below.
I can see the accuracy getting better and the net is trained however after the training process and checking the results on the validation set, how would I go to input one image into the model and see its prediction?
I have searched around and couldn't find some built in predict function in tensorflow as there is in keras.
Initializing the net and its parameters
# clear old variables
tf.reset_default_graph()
# setup input (e.g. the data that changes every batch)
# The first dim is None, and gets sets automatically based on batch size fed in
X = tf.placeholder(tf.float32, [None, 30, 30, 1])
y = tf.placeholder(tf.int64, [None])
is_training = tf.placeholder(tf.bool)
def simple_model(X,y):
# define our weights (e.g. init_two_layer_convnet)
# setup variables
Wconv1 = tf.get_variable("Wconv1", shape=[7, 7, 1, 32]) # Filter of size 7x7 with depth of 3. No. of filters is 32
bconv1 = tf.get_variable("bconv1", shape=[32])
W1 = tf.get_variable("W1", shape=[4608, 360]) # 5408 is 13x13x32 where 13x13 is the output of 7x7 filter on 32x32 image with padding of 2.
b1 = tf.get_variable("b1", shape=[360])
# define our graph (e.g. two_layer_convnet)
a1 = tf.nn.conv2d(X, Wconv1, strides=[1,2,2,1], padding='VALID') + bconv1
h1 = tf.nn.relu(a1)
h1_flat = tf.reshape(h1,[-1,4608])
y_out = tf.matmul(h1_flat,W1) + b1
return y_out
y_out = simple_model(X,y)
# define our loss
total_loss = tf.losses.hinge_loss(tf.one_hot(y,360),logits=y_out)
mean_loss = tf.reduce_mean(total_loss)
# define our optimizer
optimizer = tf.train.AdamOptimizer(5e-4) # select optimizer and set learning rate
train_step = optimizer.minimize(mean_loss)
Function for evaluating the model whether for training or validation and plots the results:
def run_model(session, predict, loss_val, Xd, yd,
epochs=1, batch_size=64, print_every=100,
training=None, plot_losses=False):
# Have tensorflow compute accuracy
correct_prediction = tf.equal(tf.argmax(predict,1), y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# shuffle indicies
train_indicies = np.arange(Xd.shape[0])
np.random.shuffle(train_indicies)
training_now = training is not None
# setting up variables we want to compute and optimize
# if we have a training function, add that to things we compute
variables = [mean_loss,correct_prediction,accuracy]
if training_now:
variables[-1] = training
# counter
iter_cnt = 0
for e in range(epochs):
# keep track of losses and accuracy
correct = 0
losses = []
# make sure we iterate over the dataset once
for i in range(int(math.ceil(Xd.shape[0]/batch_size))):
# generate indicies for the batch
start_idx = (i*batch_size)%Xd.shape[0]
idx = train_indicies[start_idx:start_idx+batch_size]
# create a feed dictionary for this batch
feed_dict = {X: Xd[idx,:],
y: yd[idx],
is_training: training_now }
# get batch size
actual_batch_size = yd[idx].shape[0]
# have tensorflow compute loss and correct predictions
# and (if given) perform a training step
loss, corr, _ = session.run(variables,feed_dict=feed_dict)
# aggregate performance stats
losses.append(loss*actual_batch_size)
correct += np.sum(corr)
# print every now and then
if training_now and (iter_cnt % print_every) == 0:
print("Iteration {0}: with minibatch training loss = {1:.3g} and accuracy of {2:.2g}"\
.format(iter_cnt,loss,np.sum(corr)/actual_batch_size))
iter_cnt += 1
total_correct = correct/Xd.shape[0]
total_loss = np.sum(losses)/Xd.shape[0]
print("Epoch {2}, Overall loss = {0:.3g} and accuracy of {1:.3g}"\
.format(total_loss,total_correct,e+1))
if plot_losses:
plt.plot(losses)
plt.grid(True)
plt.title('Epoch {} Loss'.format(e+1))
plt.xlabel('minibatch number')
plt.ylabel('minibatch loss')
plt.show()
return total_loss,total_correct
The functions calls that trains the model
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print('Training')
run_model(sess,y_out,mean_loss,x_train,y_train,1,64,100,train_step,True)
print('Validation')
run_model(sess,y_out,mean_loss,x_val,y_val,1,64)
You do not need to go far, you simply pass your new (test) feature matrix X_test into your network and perform a forward pass - the output layer is the prediction. So the code is something like this
session.run(y_out, feed_dict={X: X_test})

How do I obtain predictions and probabilities from new data input to a CNN in Tensorflow

I'll preface this by saying this is my first posted question on SO. I've just recently started working with Tensorflow, and have been attempting to apply a convolutional-neural network model approach for classification of .csv records in a file representing images from scans of microarray data. (FYI: Microarrays are a grid of spotted DNA on a glass slide, representing specific DNA target sequences for determining the presence of those DNA targets in a sample. The individual pixels represent fluorescence intensity value from 0-1). The file has ~200,000 records in total. Each record (image) has 10816 pixels that represent DNA sequences from known viruses, and one index label which identifies the virus species. The pixels create a pattern which is unique to each of the different viruses. There are 2165 different viruses in total represented within the 200,000 records. I have trained the network on images of labeled microarray datasets, but when I try to pass a new dataset through to classify it/them as one of the 2165 different viruses and determine predicted values and probabilities, I don't seem to be having much luck. This is the code that I am currently using for this:
import tensorflow as tf
import numpy as np
import csv
def extract_data(filename):
print("extracting data...")
NUM_LABELS = 2165
NUM_FEATURES = 10816
labels = []
fvecs = []
rowCount = 0
#iterate over the rows, split the label from the features
#convert the labels to integers and features to floats
for line in open(filename):
rowCount = rowCount + 1
row = line.split(',')
labels.append(row[3])#(int(row[7])) #<<<IT ALWAYS PREDICTS THIS VALUE!
for x in row [4:10820]:
fvecs.append(float(x))
#convert the array of float arrasy into a numpy float matrix
fvecs_np = np.matrix(fvecs).astype(np.float32)
#convert the array of int lables inta a numpy array
labels_np = np.array(labels).astype(dtype=np.uint8)
#convert the int numpy array into a one-hot matrix
labels_onehot = (np.arange(NUM_LABELS) == labels_np[:, None]).astype(np.float32)
print("arrays converted")
return fvecs_np, labels_onehot
def TestModels():
fvecs_np, labels_onehot = extract_data("MicroarrayTestData.csv")
print('RESTORING NN MODEL')
weights = {}
biases = {}
sess=tf.Session()
init = tf.global_variables_initializer()
#Load meta graph and restore weights
ModelID = "MicroarrayCNN_Data-1000.meta"
print("RESTORING:::", ModelID)
saver = tf.train.import_meta_graph(ModelID)
saver.restore(sess,tf.train.latest_checkpoint('./'))
graph = tf.get_default_graph()
x = graph.get_tensor_by_name("x:0")
y = graph.get_tensor_by_name("y:0")
keep_prob = tf.placeholder(tf.float32)
y_ = tf.placeholder("float", shape=[None, 2165])
wc1 = graph.get_tensor_by_name("wc1:0")
wc2 = graph.get_tensor_by_name("wc2:0")
wd1 = graph.get_tensor_by_name("wd1:0")
Wout = graph.get_tensor_by_name("Wout:0")
bc1 = graph.get_tensor_by_name("bc1:0")
bc2 = graph.get_tensor_by_name("bc2:0")
bd1 = graph.get_tensor_by_name("bd1:0")
Bout = graph.get_tensor_by_name("Bout:0")
weights = {wc1, wc2, wd1, Wout}
biases = {bc1, bc2, bd1, Bout}
print("NEXTArgmax")
prediction=tf.argmax(y,1)
probabilities = y
predY = prediction.eval(feed_dict={x: fvecs_np, y: labels_onehot}, session=sess)
probY = probabilities.eval(feed_dict={x: fvecs_np, y: labels_onehot}, session=sess)
accuracy = tf.reduce_mean(tf.cast(prediction, "float"))
print(sess.run(accuracy, feed_dict={x: fvecs_np, y: labels_onehot}))
print("%%%%%%%%%%%%%%%%%%%%%%%%%%")
print("Predicted::: ", predY, accuracy)
print("%%%%%%%%%%%%%%%%%%%%%%%%%%")
feed_dictTEST = {y: labels_onehot}
probabilities=probY
print("probabilities", probabilities.eval(feed_dict={x: fvecs_np}, session=sess))
########## Run Analysis ###########
TestModels()
So, when I run this code I get the correct prediction for the test set, although I am not sure I believe it, because it appears that whatever value I append in line 14 (see below) is the output it predicts:
labels.append(row[3])#<<<IT ALWAYS PREDICTS THIS VALUE!
I don't understand this, and it makes me suspicious that I've set up the CNN incorrectly, as I would have expected it to ignore my input label and determine a bast match from the trained network based on the trained patterns. The only thing I can figure is that when I pass the value through for the prediction; it is instead training the model on this data as well, and then predicting itself. Is this a correct assumption, or am I misinterpreting how Tensorflow works?
The other issue is that when I try to use code that (based on other tutorials) which is supposed to output the probabilities of all of the 2165 possible outputs, I get the error:
InvalidArgumentError (see above for traceback): Shape [-1,2165] has negative dimensions
[[Node: y = Placeholder[dtype=DT_FLOAT, shape=[?,2165], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
To me, it looks like it is the correct layer based on the 2165 value in the Tensor shape, but I don't understand the -1 value. So, to wrap up the summary, my questions are:
Based on the fact that I get the value that I have in the label of the input data, is this the correct method to make a classification using this model?
Am I missing a layer or have I configured the model incorrectly in order to extract the probabilities of all of the possible output classes, or am I using the wrong code to extract the information? I try to print out the accuracy to see if that would work, but instead it outputs the description of a tensor, so clearly that is incorrect as well.
(ADDITIONAL INFORMATION)
As requested, I'm also including the original code that was used to train the model, which is now below. You can see I do sort of a piece meal training of a limited number of related records at a time by their taxonomic relationships as I iterate through the file. This is mostly because the Mac that I'm training on (Mac Pro w/ 64GB ram) tends to give me the "Killed -9" error due to overuse of resources if I don't do it this way. There may be a better way to do it, but this seems to work.
Original Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
from __future__ import print_function
import tensorflow as tf
import numpy as np
import csv
import random
# Parameters
num_epochs = 2
train_size = 1609
learning_rate = 0.001 #(larger >speed, lower >accuracy)
training_iters = 5000 # How much do you want to train (more = better trained)
batch_size = 32 #How many samples to train on, size of the training batch
display_step = 10 # How often to diplay what is going on during training
# Network Parameters
n_input = 10816 # MNIST data input (img shape: 28*28)...in my case 104x104 = 10816(rough array size)
n_classes = 2165 #3280 #2307 #787# Switched to 100 taxa/training set, dynamic was too wonky.
dropout = 0.75 # Dropout, probability to keep units. Jeffery Hinton's group developed it, that prevents overfitting to find new paths. More generalized model.
# Functions
def extract_data(filename):
print("extracting data...")
# arrays to hold the labels and feature vectors.
NUM_LABELS = 2165
NUM_FEATURES = 10826
taxCount = 0
taxCurrent = 0
labels = []
fvecs = []
rowCount = 0
#iterate over the rows, split the label from the features
#convert the labels to integers and features to floats
print("entering CNN loop")
for line in open(filename):
rowCount = rowCount + 1
row = line.split(',')
taxCurrent = row[3]
print("profile:", row[0:12])
labels.append(int(row[3]))
fvecs.append([float(x) for x in row [4:10820]])
#convert the array of float arrasy into a numpy float matrix
fvecs_np = np.matrix(fvecs).astype(np.float32)
#convert the array of int lables inta a numpy array
labels_np = np.array(labels).astype(dtype=np.uint8)
#convert the int numpy array into a one-hot matrix
labels_onehot = (np.arange(NUM_LABELS) == labels_np[:, None]).astype(np.float32)
print("arrays converted")
return fvecs_np, labels_onehot
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1): #Layer 1 : Convolutional layer
# Conv2D wrapper, with bias and relu activation
print("conv2d")
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME') # Strides are the tensors...list of integers. Tensors=data
x = tf.nn.bias_add(x, b) #bias is the tuning knob
return tf.nn.relu(x) #rectified linear unit (activation function)
def maxpool2d(x, k=2): #Layer 2 : Takes samples from the image. (This is a 4D tensor)
print("maxpool2d")
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
# Create model
def conv_net(x, weights, biases, dropout):
print("conv_net setup")
# Reshape input picture
x = tf.reshape(x, shape=[-1, 104, 104, 1]) #-->52x52 , -->26x26x64
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1']) #defined above already
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
print(conv1.get_shape)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2']) #wc2 and bc2 are just placeholders...could actually skip this layer...maybe
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
print(conv2.get_shape)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1) #activation function for the NN
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['Wout']), biases['Bout'])
return out
def Train_Network(Txid_IN, Sess_File_Name):
import tensorflow as tf
tf.reset_default_graph()
x,y = 0,0
weights = {}
biases = {}
# tf Graph input
print("setting placeholders")
x = tf.placeholder(tf.float32, [None, n_input], name="x") #Gateway for data (images)
y = tf.placeholder(tf.float32, [None, n_classes], name="y") # Gateway for data (labels)
keep_prob = tf.placeholder(tf.float32) #dropout # Gateway for dropout(keep probability)
# Store layers weight & bias
#CREATE weights
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32]),name="wc1"), #
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64]),name="wc2"),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([26*26*64, 1024]),name="wd1"),
# 1024 inputs, 10 outputs (class prediction)
'Wout': tf.Variable(tf.random_normal([1024, n_classes]),name="Wout")
}
biases = {
'bc1': tf.Variable(tf.random_normal([32]), name="bc1"),
'bc2': tf.Variable(tf.random_normal([64]), name="bc2"),
'bd1': tf.Variable(tf.random_normal([1024]), name="bd1"),
'Bout': tf.Variable(tf.random_normal([n_classes]), name="Bout")
}
# Construct model
print("constructing model")
pred = conv_net(x, weights, biases, keep_prob)
print(pred)
# Define loss(cost) and optimizer
#cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) Deprecated version of the statement
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pred, labels=y)) #added reduce_mean 6/27
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
print("%%%%%%%%%%%%%%%%%%%%")
print ("%% ", correct_pred)
print ("%% ", accuracy)
print("%%%%%%%%%%%%%%%%%%%%")
# Initializing the variables
#init = tf.initialize_all_variables()
init = tf.global_variables_initializer()
saver = tf.train.Saver()
fvecs_np, labels_onehot = extract_data("MicroarrayDataOUT.csv") #CHAGE TO PICORNAVIRUS!!!!!AHHHHHH!!!
print("starting session")
# Launch the graph
FitStep = 0
with tf.Session() as sess: #graph is encapsulated by its session
sess.run(init)
step = 1
# Keep training until reach max iterations (training_iters)
while step * batch_size < training_iters:
if FitStep >= 5:
break
else:
#iterate and train
print(step)
print(fvecs_np, labels_onehot)
for step in range(num_epochs * train_size // batch_size):
sess.run(optimizer, feed_dict={x: fvecs_np, y: labels_onehot, keep_prob:dropout}) #no dropout???...added Keep_prob:dropout
if FitStep >= 5:
break
#else:
###batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop)
###sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
### keep_prob: dropout}) <<<<SOMETHING IS WRONG IN HERE?!!!
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: fvecs_np,
y: labels_onehot,
keep_prob: 1.})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(np.mean(loss)) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
TrainAcc = float("{:.5f}".format(acc))
#print("******", TrainAcc)
if TrainAcc >= .99: #Changed from .95 temporarily
print(FitStep)
FitStep = FitStep+1
saver.save(sess, Sess_File_Name, global_step=1000) #
print("Saved Session:", Sess_File_Name)
step += 1
print("Optimization Finished!")
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: fvecs_np[:256],
y: labels_onehot[:256],
keep_prob: 1.}))
#feed_dictTEST = {x: fvecs_np[50]}
#prediction=tf.argmax(y,1)
#print(prediction)
#best = sess.run([prediction],feed_dictTEST)
#print(best)
print("DONE")
sess.close()
def Tax_Iterator(CSV_inFile, CSV_outFile): #Deprecate
#Need to copy *.csv file to MySQL for sorting
resultFileINIT = open(CSV_outFile,'w')
resultFileINIT.close()
TaxCount = 0
TaxThreshold = 2165
ThresholdStep = 2165
PrevTax = 0
linecounter = 0
#Open all GenBank profile list
for line in open(CSV_inFile):
linecounter = linecounter+1
print(linecounter)
resultFile = open(CSV_outFile,'a')
wr = csv.writer(resultFile, dialect='excel')
# Check for new TXID
row = line.split(',')
print(row[7], "===", PrevTax)
if row[7] != PrevTax:
print("X1")
TaxCount = TaxCount+1
PrevTax = row[7]
#Check it current Tax count is < or > threshold
# < threshold
print(TaxCount,"=+=", TaxThreshold)
if TaxCount<=3300:
print("X2")
CurrentTax= row[7]
CurrTxCount = CurrentTax
print("TaxCount=", TaxCount)
print( "Add to CSV")
print("row:", CurrentTax, "***", row[0:15])
wr.writerow(row[0:-1])
# is > threshold
else:
print("X3")
# but same TXID....
print(row[7], "=-=", CurrentTax)
if row[7]==CurrentTax:
print("X4")
CurrentTax= row[7]
print("TaxCount=", TaxCount)
print( "Add to CSV")
print("row:", CurrentTax, "***", row[0:15])
wr.writerow(row[0:-1])
# but different TXID...
else:
print(row[7], "=*=", CurrentTax)
if row[7]>CurrentTax:
print("X5")
TaxThreshold=TaxThreshold+ThresholdStep
resultFile.close()
Sess_File_Name = "CNN_VirusIDvSPECIES_XXALL"+ str(TaxThreshold-ThresholdStep)
print("<<<< Start Training >>>>"
print("Training on :: ", CurrTxCount, "Taxa", TaxCount, "data points.")
Train_Network(CurrTxCount, Sess_File_Name)
print("Training complete")
resultFileINIT = open(CSV_outFile,'w')
resultFileINIT.close()
CurrentTax= row[7]
#reset tax count
CurrTxCount = 0
TaxCount = 0
resultFile.close()
Sess_File_Name = "MicroarrayCNN_Data"+ str(TaxThreshold+ThresholdStep)
print("<<<< Start Training >>>>")
print("Training on :: ", CurrTxCount, "Taxa", TaxCount, "data points.")
Train_Network(CurrTxCount, Sess_File_Name)
resultFileINIT = open(CSV_outFile,'w')
resultFileINIT.close()
CurrentTax= row[7]
Tax_Iterator("MicroarrayInput.csv", "MicroarrayOutput.csv")
You defined prediction as prediction=tf.argmax(y,1). And in both feed_dict, you feed labels_onehot for y. Consequently, your "prediction" is always equal to the labels.
As you didn't post the code you used to train your network, I can't tell you what exactly you need to change.
Edit: I have isses understanding the underlying problem you're trying to solve - based on your code, you're trying to train a neural network with 2165 different classes using 1609 training examples. How is this even possible? If each example had a different class, there would still be some classes without any training example. Or does one image belong to many classes? From your statement at the beginning of your question, I had assumed you're trying to output a real-valued number between 0-1.
I'm actually surprised that the code actually worked as it looks like you're adding only a single number to your labels list, but your model expects a list with length 2165 for each training example.

tensorflow-for-onehot-classification , cost is always 0

This follows on from this post (not mine): TensorFlow for binary classification
I had a similar issue and converted my data to use one hot encoding. However I'm still getting a cost of 0. Interestingly the accuracy is correct (90%) when I feed my training data back into it.
Code below:
# Set parameters
learning_rate = 0.02
training_iteration = 2
batch_size = int(np.size(y_vals)/300)
display_step = 1
numOfFeatures = 20 # 784 if MNIST
numOfClasses = 2 #10 if MNIST dataset
# TF graph input
x = tf.placeholder("float", [None, numOfFeatures])
y = tf.placeholder("float", [None, numOfClasses])
# Create a model
# Set model weights to random numbers: https://www.tensorflow.org/api_docs/python/tf/random_normal
W = tf.Variable(tf.random_normal(shape=[numOfFeatures,1])) # Weight vector
b = tf.Variable(tf.random_normal(shape=[1,1])) # Constant
# Construct a linear model
model = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
# Minimize error using cross entropy
# Cross entropy
cost_function = -tf.reduce_sum(y*tf.log(model))
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for iteration in range(training_iteration):
avg_cost = 0.
total_batch = int(len(x_vals)/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs = x_vals[i*batch_size:(i*batch_size)+batch_size]
batch_ys = y_vals_onehot[i*batch_size:(i*batch_size)+batch_size]
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
# Compute average loss
avg_cost += sess.run(cost_function, feed_dict={x: batch_xs, y: batch_ys})/total_batch
# Display logs per eiteration step
if iteration % display_step == 0:
print ("Iteration:", '%04d' % (iteration + 1), "cost=", "{:.9f}".format(avg_cost))
print ("Tuning completed!")
# Evaluation function
correct_prediction = tf.equal(tf.argmax(model, 1), tf.argmax(y, 1))
#correct_prediction = tf.equal(model, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# Test the model
print ("Accuracy:", accuracy.eval({x: x_vals_test, y: y_vals_test_onehot}))
Your output for cost is using:
"{:.9f}".format(avg_cost)
Therefore, maybe you can replace 9 with bigger number.
Ok here is what I found in the end.
Replace:
b = tf.Variable(tf.random_normal(shape=[1,1]))
with:
b = tf.Variable(tf.zeros([1]))

TensorFlow cannot feed value error

I am implementing a logistic regression function. It is quite simple and work properly up until I get to the part where I want to calculate its accuracy. Here is my logistic regression...
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# tf Graph Input
x = tf.get_variable("input_image", shape=[100,784], dtype=tf.float32)
x_placeholder = tf.placeholder(tf.float32, shape=[100, 784])
assign_x_op = x.assign(x_placeholder).op
y = tf.placeholder(shape=[100,10], name='input_label', dtype=tf.float32) # 0-9 digits recognition => 10 classes
# set model weights
W = tf.get_variable("weights", shape=[784, 10], dtype=tf.float32, initializer=tf.random_normal_initializer())
b = tf.get_variable("biases", shape=[1, 10], dtype=tf.float32, initializer=tf.zeros_initializer())
# construct model
logits = tf.matmul(x, W) + b
pred = tf.nn.softmax(logits) # Softmax
# minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=1))
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(cost)
# initializing the variables
init = tf.global_variables_initializer()
saver = tf.train.Saver()
# launch the graph
with tf.Session() as sess:
sess.run(init)
# training cycle
for epoch in range(FLAGS.training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples/FLAGS.batch_size)
# loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size)
# Assign the contents of `batch_xs` to variable `x`.
sess.run(assign_x_op, feed_dict={x_placeholder: batch_xs})
_, c = sess.run([optimizer, cost], feed_dict={y: batch_ys})
# compute average loss
avg_cost += c / total_batch
# display logs per epoch step
if (epoch + 1) % FLAGS.display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
save_path = saver.save(sess, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
print("Optimization Finished!")
As you can see it is a basic logistic regression and function and it works perfectly.
It is important to not that batch_size is 100.
Now, after the code snipped above, I try the following...
# list of booleans to determine the correct predictions
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
print(correct_prediction.eval({x_placeholder:mnist.test.images, y:mnist.test.labels}))
# calculate total accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
However the code fails on correct_prediction. I get the following error...
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (10000, 784) for Tensor 'Placeholder:0', which has shape '(100, 784)'
I believe I get this error because of the value I am trying to assign the placeholder for x. How can I fix this? Do I need to reshape the array?
In
x_placeholder = tf.placeholder(tf.float32, shape=[100, 784])
y = tf.placeholder(shape=[100,10], name='input_label', dtype=tf.float32) # 0-9
avoid fixing the first dimension as 100, since it prohibits you from using any other batch size (so if the number of images in mnist.test.images is different from 100, you'll get an error). Instead specify them as None:
x_placeholder = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(shape=[None,10], name='input_label', dtype=tf.float32) #
Then you can use any batch size

Resources