Matlab: How to run code using multi threading/parallel computing? - multithreading

I have Matlab code that simulates something called the 2-D Lid Driven Cavity Flow. In this code I have the following structure:
for i = 1:timeStep
%Lets call this Part 1
for a1 = 1:N
for b1 = 1:N
%calculates things
end
end
%Lets call this Part 2
for a2 = 1:N
for b2 = 1:N
%calculates things
end
end
%Lets call this Part 3
for a3 = 1:N
for b3 = 1:N
%calculates things
end
end
end
Since Part 1, Part 2, and Part 3 are independent pf each other I would like to compute them in parallel, or multi thread them, every time there is a timeStep (every iteration of primary for loop). Is there any way I can achieve this?
Thanks!
I include my code to to reference:
Nx = 50;
Ny = 50;
numTimesteps = 10000;
reynoldsNum = 1000;
dt = 0.0025;
numIter = 100000;
Beta = 1.5;
maxErr = 0.001;
ds = 1/(Nx + 1);
x1 = 0:ds:1;
x2 = 0:ds:1;
time = 0;
boundarySpeed = 1;
PHI = zeros(Nx+2, Ny+2);
OMEGA = zeros(Nx+2, Ny+2);
U = zeros(Nx+2, Ny+2);
V = zeros(Nx+2, Ny+2);
x2d = zeros(Nx+2, Ny+2);
y2d = zeros(Nx+2, Ny+2);
PRESSURE = zeros(Nx+2, Ny+2);
B = zeros(Nx+2, Ny+2);
pressureOLD = zeros(Nx+2, Ny+2);
W = zeros(Nx+2, Ny+2);
for i = 1:Nx+2
for j = 1:Ny+2
x2d(i,j) = x1(i);
y2d(i,j) = x2(j);
end
end
for timeStep = 1:numTimesteps
if(mod(timeStep,10000) == 0)
disp(timeStep);
end
OLDPHI = PHI;
OLDOMEGA = OMEGA;
OLDPRESSURE = PRESSURE;
parfor parJob = 1:4
switch parJob
%{
----------------------------------
STREAM FUNCTION CALCULATION
----------------------------------
%}
case 1
for iter = 1:numIter
ERRMATRIX = OLDPHI;
for i = 2:Nx+1
for j = 2:Ny+1
PHI(i,j) = (1/4) * Beta * (OLDPHI(i+1,j) + OLDPHI(i-1,j) + OLDPHI(i,j+1) + OLDPHI(i,j-1) + ...
ds * ds * OLDOMEGA(i,j)) + (1 - Beta) * OLDPHI(i,j);
end
end
Err = 0;
for i = 1:Nx+2
for j = 1:Ny+2
Err = Err + abs(ERRMATRIX(i,j) - PHI(i,j));
end
end
if (Err <= maxErr)
break;
end
OLDPHI = PHI;
end
%{
----------------------------------
BOUNDARY CONDITIONS FOR VORTICITY
----------------------------------
%}
case 2
for i = 2:Nx+1
for j = 2:Ny+1
OMEGA(i,1) = -2 * OLDPHI(i,2) / (ds * ds); % bottom wall
OMEGA(i,Ny+2) = -2 * OLDPHI(i,Ny+1) / (ds * ds) - 2 * boundarySpeed / ds; % top wall
OMEGA(1,j) = -2 * OLDPHI(2,j) / (ds * ds); % right wall
OMEGA(Nx+2,j) = -2 * OLDPHI(Nx+1,j) / (ds * ds); % left wall
end
end
%{
----------------------------------
VORTICITY CALCULATIONS
----------------------------------
%}
for i = 2:Nx+1
for j = 2:Ny+1
W(i,j) = -(1 / 4) * ((OLDPHI(i,j+1) - OLDPHI(i,j-1)) * (OLDOMEGA(i+1,j) - OLDOMEGA(i-1,j)) ...
- (OLDPHI(i+1,j) - OLDPHI(i-1,j)) * (OLDOMEGA(i,j+1) - OLDOMEGA(i,j-1))) / (ds * ds) ...
+(1 / reynoldsNum) * (OLDOMEGA(i+1,j) + OLDOMEGA(i-1,j) + OLDOMEGA(i,j+1) + ...
OLDOMEGA(i,j-1) - 4 * OLDOMEGA(i,j)) / (ds * ds);
end
end
OMEGA(2:Nx+1,2:Ny+1) = OLDOMEGA(2:Nx+1,2:Ny+1) + dt * W(2:Nx+1,2:Ny+1);
time = time + dt;
for i = 1:Nx
for j = 1:Ny
x2d(i,j) = x1(i);
y2d(i,j) = x2(j);
end
end
%{
----------------------------------
U AND V CALCULATIONS
----------------------------------
%}
case 3
for i = 2:Nx+1
for j = 2:Ny+1
U(i,j) = (OLDPHI(i,j+1) - OLDPHI(i,j)) / (2 * ds);
V(i,j) = -(OLDPHI(i+1,j) - OLDPHI(i,j)) / (2 * ds);
U(:,Ny+2) = 1;
V(Nx+2,:) = 0.0;
end
end
%{
----------------------------------
PRESSURE CALCULATIONS
----------------------------------
%}
otherwise
for i = 2:Nx+1
for j = 2:Ny+1
PRESSURE(i,j) = (1/4) * (pressureOLD(i+1,j) + pressureOLD(i-1,j) + pressureOLD(i,j+1) ...
+ pressureOLD(i,j-1)) - (1/2) * (((((OLDPHI(i-1,j) - 2 * OLDPHI(i,j) + ...
OLDPHI(i+1,j)) / (ds^2)) * ((OLDPHI(i,j-1) - 2 * OLDPHI(i,j) + OLDPHI(i,j+1)) / (ds^2))) ...
- (OLDPHI(i+1,j+1) - OLDPHI(i+1,j-1) - OLDPHI(i-1,j+1) + OLDPHI(i-1,j-1)) / (4 * (ds^2))) * ds^2);
end
pressureOLD = PRESSURE;
end
end
end

You can use parfor to run jobs in parallel.
result = cell(3, 1);
parfor k = 1:3
result{k} = ['result-' num2str(k)];
switch k
case 1
disp('do part one')
case 2
disp('do part two')
otherwise
disp('do part three')
end
end

Related

AttributeError: 'IAPWS97' object has no attribute 'rho'

I am trying to run this loop; however, I am getting a no attribute error in the second portion of my code. Below is the entire code (sorry for the length). When I run the first case (PWR) the code executes normally as expected. However, when I run the second case (BWR) I receive the error even though it is the same exact statement from case one. Is there any fix or explanation for this? Thank you.
import numpy as np
import math
from iapws import IAPWS97
import matplotlib.pyplot as plt
case = int(input('Which case [1 (PWR) or 2 (BWR)]? '))
if case == 1: # PWR
H = 3.8 # m
He = 3.8 # m
Pitch = 1.25 * 10 ** (-2) # m
Gap_t = 0.00006 # m
D_fuel = 0.0082 # m
k_gap = 0.25 # W/m-K
k_c = 21.5 # W/m-K
k_fuel = 3.6 # W/m-K
T0 = float(278 + 273.15) # K
q0_prime = float(330 * 10 ** (2)) # W/m
P0 = 15 # MPa
MF = float(3460) # kg/m^2-s
D_rod = .0095 # m
R_rod = D_rod / 2
R_fuel = D_fuel / 2
R_gap = R_fuel + Gap_t
R_clad = R_rod
Clad_t = D_rod - D_fuel - Gap_t # m
h0_enthalpy = (IAPWS97(T=T0, P=P0).h) * 10 ** (3)
T_sat0 = IAPWS97(P=P0, x=0).T
g = 9.81 # m/s
# geometry properties
heated_p = math.pi * D_rod
wetted_p = math.pi * D_rod
A_f = (Pitch ** 2) - ((1 / 4) * math.pi * (D_rod ** 2))
D_H = (4 * A_f) / heated_p
# grid setup
grid_points = 100
dz = H / grid_points
z_array = np.arange(0, H, dz)
z_arrayplots = np.arange(0, H, dz)
q_HeatFluxList = []
# defining array of q'' values in list
for z in z_array:
heat_fluxA = (q0_prime / (math.pi * D_rod)) * math.sin(math.pi * (z / He))
q_HeatFluxList.append(heat_fluxA)
q_heat_flux = np.array(q_HeatFluxList)
q_prime = np.zeros(len(z_array))
for i in range(0, len(z_array)):
q_prime[i] = q0_prime * math.sin((np.pi * z_array[i]) / He)
# defining array of h values
h_enthalpy_list = []
h_enthalpy_prefactor = ((heated_p * q0_prime * H) / (A_f * MF * (math.pi ** 2) * D_rod))
for z in z_array:
h_enthalpy = (-h_enthalpy_prefactor * math.cos(math.pi * (z / He))) + h_enthalpy_prefactor + h0_enthalpy
h_enthalpy_list.append(h_enthalpy)
h_enthalpy_array_J = np.array(h_enthalpy_list)
h_enthalpy_array = h_enthalpy_array_J * 10 ** (-3)
P_array = np.zeros(len(z_array))
P_array[0] = P0
T_sat = np.zeros(len(z_array))
T_sat[0] = T_sat0
T_f_array = np.zeros(len(z_array))
T_f_array[0] = T0
Re = np.zeros(len(z_array))
Re_f = np.zeros(len(z_array))
Pr = np.zeros(len(z_array))
k_fluid = np.zeros(len(z_array))
x_array = np.zeros(len(z_array))
xe_array = np.zeros(len(z_array))
frictional = np.zeros(len(z_array))
gravitational = np.zeros(len(z_array))
compressibility = np.zeros(len(z_array))
# Pressure Loop PWR
dp = 0.001
for i in range(0, len(z_array) - 1):
rho_f = IAPWS97(P=P_array[i], x=0).rho
vf = IAPWS97(P=P_array[i], x=0).v
vg = IAPWS97(P=P_array[i], x=1).v
hf_enthalpy = IAPWS97(P=P_array[i], x=0).h
hg_enthalpy = IAPWS97(P=P_array[i], x=1).h
muf = (IAPWS97(P=P_array[i], x=0).mu) * 10 ** (-6)
mug = (IAPWS97(P=P_array[i], x=1).mu) * 10 ** (-6)
k_fluid[i] = IAPWS97(P=P_array[i], T=T_f_array[i]).k
Pr[i] = IAPWS97(P=P_array[i], h=h_enthalpy_array[i]).Liquid.Prandt
x_array[i] = 0
xe_array[i] = (h_enthalpy_array[i] - hf_enthalpy) / (hg_enthalpy - hf_enthalpy)
rho_m = 1 / ((x_array[i] * vg) + ((1 - x_array[i]) * vf))
mu_m = 1 / ((x_array[i] / mug) + ((1 - x_array[i]) / muf))
Re[i] = (MF * D_H) / (mu_m * 10 ** 6) # convert mu to Pa/s
f = 0.079 * (Re[i] ** -0.25) * (mu_m / muf)
Tau = (1 / 2) * f * ((MF ** 2) / rho_m)
Re_f[i] = Re[i]
vf_plus_dP = IAPWS97(P=P_array[i] + dp, x=0).v
vf_minus_dP = IAPWS97(P=P_array[i] - dp, x=0).v
ddP_vf = (vf_plus_dP - vf_minus_dP) / (2 * (dp * 10 ** 6))
frictional[i] = (Tau * wetted_p) / A_f
gravitational[i] = g * rho_f
compressibility[i] = (MF ** 2) * (ddP_vf)
dPdz_num = (frictional[i] + gravitational[i]) # Pa/m
dPdz_denom = 1 + compressibility[i] # Pa/m
dPdz = -dPdz_num / dPdz_denom # Pa/m
P_array[i + 1] = P_array[i] + ((dPdz * dz) * 10 ** (-6))
T_f_array[i + 1] = IAPWS97(P=P_array[i + 1], h=h_enthalpy_array[i + 1]).T
T_sat[i + 1] = IAPWS97(P=P_array[i + 1], x=0).T
# final calc for final value of quality and void fraction because loop stops before these
hf_final = IAPWS97(P=P_array[-1], x=0).h
hg_final = IAPWS97(P=P_array[-1], x=1).h
muf_final = (IAPWS97(P=P_array[-1], x=0).mu) * 10 ** (-6)
mug_final = (IAPWS97(P=P_array[-1], x=1).mu) * 10 ** (-6)
k_fluid[-1] = IAPWS97(P=P_array[-1], T=T_f_array[-1]).k
xe_array[-1] = (h_enthalpy_array[-1] - hf_final) / (hg_final - hf_final)
# fuel and clad temps
T_C_Outer = np.zeros(len(z_array))
mu_m_final = 1 / ((x_array[-1] / mug_final) + ((1 - x_array[-1]) / muf_final))
Re_f[-1] = (MF * D_H) / (muf_final * 10 ** 6)
Pr[-1] = IAPWS97(P=P_array[i], h=h_enthalpy_array[i]).Liquid.Prandt
h_HT = 0.023 * (Re_f[0] ** 0.8) * (Pr[0] ** 0.4) * (k_fluid[0] / D_H)
T_C_Outer[0] = (q_heat_flux[0] + (h_HT * T_f_array[0])) / h_HT
for i in range(0, len(z_array) - 1):
h_HT = 0.023 * (Re_f[i + 1] ** 0.8) * (Pr[i + 1] ** 0.4) * (k_fluid[i + 1] / D_H)
T_C_Outer[i + 1] = (q_heat_flux[i + 1] + (h_HT * T_f_array[i + 1])) / h_HT
q_triple_prime = (q_prime * 4) / (np.pi * (D_fuel ** 2))
T_C_Inner = np.zeros(len(z_array))
T_F_Outer = np.zeros(len(z_array))
T_F_Center = np.zeros(len(z_array))
for i in range(0, len(z_array)):
C1 = -((q0_prime * R_clad) / (k_c * heated_p)) * np.sin(np.pi * (z_array[i] / H))
C2 = T_C_Outer[i] - (C1 * np.log(R_clad))
T_C_Inner[i] = (C1 * np.log(R_gap)) + C2
C3 = (k_c / k_gap) * C1
C4 = T_C_Inner[i] - (C3 * np.log(R_gap))
T_F_Outer[i] = (C3 * np.log(R_fuel)) + C4
C6 = T_F_Outer[i] + ((q_triple_prime[i] * (R_fuel ** 2)) / (4 * k_fuel))
T_F_Center[i] = C6
CL_max = np.amax(T_F_Center)
index = np.where(T_F_Center == CL_max)
z_CL_max = z_array[index]
Clad_max = np.amax(T_C_Inner)
index = np.where(T_C_Inner == Clad_max)
z_Clad_max = z_array[index]
plt.figure(1)
plt.plot(T_C_Outer, z_arrayplots, label='Clad Outer Surface Temp')
plt.plot(T_C_Inner, z_arrayplots, label='Clad Inner Surface Temp')
plt.legend(loc='upper left')
plt.xlabel("Temperature [K]")
plt.ylabel("Height z [m]")
plt.savefig("TempClad.png", dpi=600)
plt.figure(2)
plt.plot(T_C_Outer, z_arrayplots, label='Clad Outer Surface Temp')
plt.plot(T_C_Inner, z_arrayplots, label='Clad Inner Surface Temp')
plt.plot(T_F_Outer, z_arrayplots, label='Fuel Outer Surface Temp')
plt.plot(T_F_Center, z_arrayplots, label='Fuel Centerline Temp')
plt.legend(loc='upper left')
plt.xlabel("Temperature [K]")
plt.ylabel("Height z [m]")
plt.savefig("TempFuelAndClad.png", dpi=600)
# radial calcs
T_array_A = [T_F_Center[25], T_F_Outer[25], T_C_Inner[25], T_C_Outer[25]]
T_array_B = [T_F_Center[49], T_F_Outer[49], T_C_Inner[49], T_C_Outer[49]]
T_array_C = [T_F_Center[53], T_F_Outer[53], T_C_Inner[53], T_C_Outer[53]]
r_array = [0, R_fuel, R_gap, R_clad]
plt.figure(3)
plt.plot(r_array, T_array_A, label='z = -H/4 = -0.9 m')
plt.plot(r_array, T_array_B, label='z = 0 m')
plt.plot(r_array, T_array_C, '--', label='z = zmax = 0.108 m')
plt.legend(loc='upper left')
plt.ylabel("Temperature [K]")
plt.xlabel("Radius r [m]")
plt.savefig("TempRadial.png", dpi=600)
# critical heat flux and DNBR
P_array_DNBR = np.delete(P_array, 0)
q_heat_flux_DNBR = np.delete(q_heat_flux, 0)
z_arrayplots_DNBR = np.delete(z_arrayplots, 0)
G_Mlbs = MF * (((2.20462 * 10 ** (-6)) * 3600) / 10.7639)
q_heat_flux_MBtu = q_heat_flux[1:] * 3.41 * (1 / 1000000) * (1 / 10.7639)
P_c = 22.064 # https://nuclearstreet.com/nuclear-power-plants/w/nuclear_power_plants/features-of-pressurized-water-reactors
P_crit = P_array_DNBR / P_c
P1 = 0.5328
P2 = 0.1212
P3 = 1.6151
P4 = 1.4066
P5 = -0.3040
P6 = 0.4843
P7 = -0.3285
P8 = -2.0749
A = P1 * (P_crit ** P2) * (G_Mlbs ** (P5 + (P7 * P_crit)))
C = P3 * (P_crit ** P4) * (G_Mlbs ** (P6 + (P8 * P_crit)))
q_crit_heat_flux_MBtu = (A - xe_array[0]) / (C + ((xe_array[1:] - xe_array[0]) / q_heat_flux_MBtu))
q_crit_heat_flux = q_crit_heat_flux_MBtu * (1 / 3.41) * 1000000 * 10.7639
DNBR = q_crit_heat_flux / q_heat_flux_DNBR
plt.figure(4)
plt.plot(DNBR, z_arrayplots_DNBR)
plt.xlabel("Departure from Nucleate Boiling Ratio")
plt.ylabel("Height z [m]")
plt.savefig("DNBR.png", dpi=600)
plt.figure(5)
plt.plot(P_array, z_arrayplots)
plt.xlabel('Pressure [MPa]')
plt.ylabel('Height z [m]')
plt.savefig("Pressure.png", dpi=600)
plt.figure(6)
plt.plot(T_f_array, z_arrayplots)
plt.xlabel('Temperature [K]')
plt.ylabel('Height z [m]')
plt.savefig("TempBulk.png", dpi=600)
plt.figure(7)
plt.plot(T_F_Outer, z_arrayplots, label='Fuel Outer Surface Temp')
plt.plot(T_F_Center, z_arrayplots, label='Fuel Centerline Temp')
plt.legend(loc='upper left')
plt.xlabel("Temperature [K]")
plt.ylabel("Height z [m]")
plt.savefig("TempFuel.png", dpi=600)
tempdifference = T_C_Outer - T_f_array
print("Max clad vs bulk difference is " + str(np.amax(tempdifference)) + " K")
print("Max coolant temp is " + str(np.amax(T_f_array)) + " K")
print("Min coolant temp is " + str(np.amin(T_f_array)) + " K")
print("Max clad inner temp is " + str(np.amax(T_C_Inner)) + " K")
print("Max clad outer temp is " + str(np.amax(T_C_Outer)) + " K")
print("min clad outer temp is " + str(np.amin(T_C_Outer)) + " K")
print("Max fuel temp is " + str(np.amax(T_F_Center)) + " K")
print("Max fuel outer temp is " + str(np.amax(T_F_Outer)) + " K")
print("Min fuel outer temp is " + str(np.amin(T_F_Outer)) + " K")
print("Max centerline temp occurs at z = " + str(z_CL_max) + "m")
print("Max clad temp occurs at z = " + str(z_Clad_max) + "m")
MDNBR = np.amin(DNBR)
print("MDNBR is " + str(MDNBR))
plt.show()
if case == 2: # BWR
H = 3.8 # m
He = 3.8 # m
Pitch = 1.63 * 10 ** (-2) # m
Gap_t = 0.0001 # m
D_fuel = 0.0104 # m
k_gap = 0.25 # W/m-K
k_c = 21.5 # W/m-K
k_fuel = 3.6 # W/m-K
T0 = float(274 + 273.15) # K
q0_prime = float(410 * 10 ** (2)) # W/m
P0 = 7.5 # MPa
MF = float(2290) # kg/m^2-s
D_rod = .0123 # m
R_rod = D_rod / 2
R_fuel = D_fuel / 2
R_gap = R_fuel + Gap_t
R_clad = R_rod
Clad_t = D_rod - D_fuel - Gap_t # m
h0_enthalpy = (IAPWS97(T=T0, P=P0).h) * 10 ** (3)
T_sat0 = IAPWS97(P=P0, x=0).T
g = 9.81 # m/s
# geometry properties
heated_p = math.pi * D_rod
wetted_p = math.pi * D_rod
A_f = (Pitch ** 2) - ((1 / 4) * math.pi * (D_rod ** 2))
D_H = (4 * A_f) / heated_p
# grid setup
grid_points = 100
dz = H / grid_points
z_array = np.arange(0, H, dz)
z_arrayplots = np.arange(-H / 2, H / 2, dz)
q_HeatFluxList = []
# defining array of q'' values in list
for z in z_array:
heat_fluxA = (q0_prime / (math.pi * D_rod)) * math.sin(math.pi * (z / He))
q_HeatFluxList.append(heat_fluxA)
q_heat_flux = np.array(q_HeatFluxList)
q_prime = np.zeros(len(z_array))
for i in range(0, len(z_array)):
q_prime[i] = q0_prime * math.sin((np.pi * z_array[i]) / He)
# defining array of h values
h_enthalpy_list = []
h_enthalpy_prefactor = ((heated_p * q0_prime * H) / (A_f * MF * (math.pi ** 2) * D_rod))
for z in z_array:
h_enthalpy = (-h_enthalpy_prefactor * math.cos(math.pi * (z / He))) + h_enthalpy_prefactor + h0_enthalpy
h_enthalpy_list.append(h_enthalpy)
h_enthalpy_array_J = np.array(h_enthalpy_list)
h_enthalpy_array = h_enthalpy_array_J * 10 ** (-3)
P_array = np.zeros(len(z_array))
P_array[0] = P0
T_sat = np.zeros(len(z_array))
T_sat[0] = T_sat0
T_f_array = np.zeros(len(z_array))
T_f_array[0] = T0
Re = np.zeros(len(z_array))
Re_f = np.zeros(len(z_array))
Pr = np.zeros(len(z_array))
k_fluid = np.zeros(len(z_array))
x_array = np.zeros(len(z_array))
xe_array = np.zeros(len(z_array))
dxe_array = np.zeros(len(z_array))
frictional = np.zeros(len(z_array))
gravitational = np.zeros(len(z_array))
compressibility = np.zeros(len(z_array))
alpha_array = np.zeros(len(z_array))
# Pressure Loop BWR
dp = 0.001
for i in range(0, len(z_array) - 1):
rho_f = IAPWS97(P=P_array[i], x=0).rho
rho_m = IAPWS97(P=P_array[i], x=xe_array[i]).rho
vf = IAPWS97(P=P_array[i], x=0).v
vg = IAPWS97(P=P_array[i], x=1).v
vfg = vg - vf
hf_enthalpy = IAPWS97(P=P_array[i], x=0).h
hg_enthalpy = IAPWS97(P=P_array[i], x=1).h
hfg = hg_enthalpy - hf_enthalpy
hfg_sat = IAPWS97(P=P0, x=1).h - IAPWS97(P=P0, x=0).h
# vf = IAPWS97(P=P_array[i], x=0).v
# vg_sat = IAPWS97(P=P_array[i], x=1).v
hf_in = IAPWS97(P=P0, T=T0).h
muf = (IAPWS97(P=P_array[i], x=0).mu) * 10 ** (-6)
mum = (IAPWS97(P=P_array[i], x=xe_array[i]).mu) * 10 ** (-6)
mug = (IAPWS97(P=P_array[i], x=1).mu) * 10 ** (-6)
k_fluid[i] = IAPWS97(P=P_array[i], T=T_f_array[i]).k
Pr[i] = IAPWS97(P=P_array[i], h=h_enthalpy_array[i]).Liquid.Prandt
xe_in = (hf_in - hf_enthalpy) / (hfg)
vf_sat = IAPWS97(P=P_array[i], x=xe_array[i])
# vapor quality
if xe_array[i] <= 0: # single phase
Re1p = MF * D_rod / muf
f1p = 0.316 * Re1p ** (-.25)
dp = -(.5 * f1p * MF * 2 * heated_p / (rho_f * A_f) + g / rho_f) * dz
x_array[i] = 0
dxe_array[i] = q0_prime * np.sin(np.pi * z_array[i] / H) / (MF * A_f * hfg_sat) * dz
xe_array = xe_array[i - 1] + dxe_array[i]
# P_array[i]=P[i-1]+dp1p
elif xe_array[i] > 0 and xe_array[i] < 1: # 2 phase
Re2p = MF * D_rod / mum
f2p = 0.046 * Re2p ** (-.2) * (muf / mum ** (-.2))
dp2p = (-MF ** 2 * vfg * dxe_array[i] + .5 * f2p * MF ** 2 * heated_p / (rho_m * A_f) + g * rho_m) * dz
xe_array[i] = (h_enthalpy_array[i] - hf_enthalpy) / (hg_enthalpy - hf_enthalpy)
# Void Fraction
if xe_array[i] <= 0:
alpha_array[0]
elif xe_array[i] > 0 and xe_array[i] < 1:
x_array[i] = xe_array[i]
vfg_sat = vg - vf
rho_m = (vf_sat + vfg_sat * x_array) ** (-1)
rhof = 1 / vf
rhog = 1 / vg
void = (rho_m - rhof) / (rhog - rhof)
alpha_array[void]
print("Void fraction is " + str(np.amax(alpha_array)))
if xe_array[i] <= 0:
alpha_array[0]
elif xe_array[i] > 0 and xe_array[i] < 1:
x_array[i] = xe_array[i]
vfg_sat = vg - vf
rho_m = (vf_sat + vfg_sat * x_array) ** (-1)
rhof = 1 / vf
rhog = 1 / vg
void = (rho_m - rhof) / (rhog - rhof)
alpha_array[void]
print("Void fraction is " + str(np.amax(alpha_array)))
rho_m = 1 / ((x_array[i] * vg) + ((1 - x_array[i]) * vf))
mu_m = 1 / ((x_array[i] / mug) + ((1 - x_array[i]) / muf))
Re[i] = (MF * D_H) / (mu_m * 10 ** 6) # convert mu to Pa/s
f = 0.079 * (Re[i] ** -0.25) * (mu_m / muf)
Tau = (1 / 2) * f * ((MF ** 2) / rho_m)
Re_f[i] = Re[i]
vf_plus_dP = IAPWS97(P=P_array[i] + dp, x=xe_array[i]).v
vf_minus_dP = IAPWS97(P=P_array[i] - dp, x=xe_array[i]).v
ddP_vf = (vf_plus_dP - vf_minus_dP) / (2 * (dp * 10 ** 6))
frictional[i] = (Tau * wetted_p) / A_f
gravitational[i] = g * rho_f
compressibility[i] = (MF ** 2) * (ddP_vf)
dPdz_num = (frictional[i] + gravitational[i]) # Pa/m
dPdz_denom = 1 + compressibility[i] # Pa/m
dPdz = -dPdz_num / dPdz_denom # Pa/m
P_array[i + 1] = P_array[i] + ((dPdz * dz) * 10 ** (-6))
T_f_array[i + 1] = IAPWS97(P=P_array[i + 1], h=h_enthalpy_array[i + 1]).T
T_sat[i + 1] = IAPWS97(P=P_array[i + 1], x=0).T
# final calc for final value of quality and void fraction because loop stops before these
hf_final = IAPWS97(P=P_array[-1], x=0).h
hg_final = IAPWS97(P=P_array[-1], x=1).h
muf_final = (IAPWS97(P=P_array[-1], x=0).mu) * 10 ** (-6)
mug_final = (IAPWS97(P=P_array[-1], x=1).mu) * 10 ** (-6)
k_fluid[-1] = IAPWS97(P=P_array[-1], T=T_f_array[-1]).k
xe_array[-1] = (h_enthalpy_array[-1] - hf_final) / (hg_final - hf_final)
# fuel and clad temps
T_C_Outer = np.zeros(len(z_array))
mu_m_final = 1 / ((x_array[-1] / mug_final) + ((1 - x_array[-1]) / muf_final))
Re_f[-1] = (MF * D_H) / (muf_final * 10 ** 6)
Pr[-1] = IAPWS97(P=P_array[i], h=h_enthalpy_array[i]).Liquid.Prandt
h_HT = 0.023 * (Re_f[0] ** 0.8) * (Pr[0] ** 0.4) * (k_fluid[0] / D_H)
T_C_Outer[0] = (q_heat_flux[0] + (h_HT * T_f_array[0])) / h_HT
for i in range(0, len(z_array) - 1):
h_HT = 0.023 * (Re_f[i + 1] ** 0.8) * (Pr[i + 1] ** 0.4) * (k_fluid[i + 1] / D_H)
T_C_Outer[i + 1] = (q_heat_flux[i + 1] + (h_HT * T_f_array[i + 1])) / h_HT
q_triple_prime = (q_prime * 4) / (np.pi * (D_fuel ** 2))
T_C_Inner = np.zeros(len(z_array))
T_F_Outer = np.zeros(len(z_array))
T_F_Center = np.zeros(len(z_array))
for i in range(0, len(z_array)):
C1 = -((q0_prime * R_clad) / (k_c * heated_p)) * np.sin(np.pi * (z_array[i] / H))
C2 = T_C_Outer[i] - (C1 * np.log(R_clad))
T_C_Inner[i] = (C1 * np.log(R_gap)) + C2
C3 = (k_c / k_gap) * C1
C4 = T_C_Inner[i] - (C3 * np.log(R_gap))
T_F_Outer[i] = (C3 * np.log(R_fuel)) + C4
C6 = T_F_Outer[i] + ((q_triple_prime[i] * (R_fuel ** 2)) / (4 * k_fuel))
T_F_Center[i] = C6
CL_max = np.amax(T_F_Center)
index = np.where(T_F_Center == CL_max)
z_CL_max = z_array[index]
plt.figure(1)
plt.plot(T_C_Outer, z_arrayplots, label='Clad Outer Surface Temp')
plt.plot(T_C_Inner, z_arrayplots, label='Clad Inner Surface Temp')
plt.legend(loc='upper left')
plt.xlabel("Temperature [K]")
plt.ylabel("Height z [m]")
plt.savefig("TempCladBWR.png", dpi=600)
plt.figure(2)
plt.plot(T_C_Outer, z_arrayplots, label='Clad Outer Surface Temp')
plt.plot(T_C_Inner, z_arrayplots, label='Clad Inner Surface Temp')
plt.plot(T_F_Outer, z_arrayplots, label='Fuel Outer Surface Temp')
plt.plot(T_F_Center, z_arrayplots, label='Fuel Centerline Temp')
plt.legend(loc='upper left')
plt.xlabel("Temperature [K]")
plt.ylabel("Height z [m]")
plt.savefig("TempFuelAndCladBWR.png", dpi=600)
# radial calcs
T_array_A = [T_F_Center[25], T_F_Outer[25], T_C_Inner[25], T_C_Outer[25]]
T_array_B = [T_F_Center[49], T_F_Outer[49], T_C_Inner[49], T_C_Outer[49]]
T_array_C = [T_F_Center[53], T_F_Outer[53], T_C_Inner[53], T_C_Outer[53]]
r_array = [0, R_fuel, R_gap, R_clad]
plt.figure(3)
plt.plot(r_array, T_array_A, label='z = -H/4 = -0.9 m')
plt.plot(r_array, T_array_B, label='z = 0 m')
plt.plot(r_array, T_array_C, '--', label='z = zmax = 0.108 m')
plt.legend(loc='upper left')
plt.ylabel("Temperature [K]")
plt.xlabel("Radius r [m]")
plt.savefig("TempRadialBWR.png", dpi=600)
# critical heat flux and DNBR
P_array_DNBR = np.delete(P_array, 0)
q_heat_flux_DNBR = np.delete(q_heat_flux, 0)
z_arrayplots_DNBR = np.delete(z_arrayplots, 0)
G_Mlbs = MF * (((2.20462 * 10 ** (-6)) * 3600) / 10.7639)
q_heat_flux_MBtu = q_heat_flux[1:] * 3.41 * (1 / 1000000) * (1 / 10.7639)
P_c = 22.064 # https://nuclearstreet.com/nuclear-power-plants/w/nuclear_power_plants/features-of-pressurized-water-reactors
P_crit = P_array_DNBR / P_c
P1 = 0.5328
P2 = 0.1212
P3 = 1.6151
P4 = 1.4066
P5 = -0.3040
P6 = 0.4843
P7 = -0.3285
P8 = -2.0749
A = P1 * (P_crit ** P2) * (G_Mlbs ** (P5 + (P7 * P_crit)))
C = P3 * (P_crit ** P4) * (G_Mlbs ** (P6 + (P8 * P_crit)))
q_crit_heat_flux_MBtu = (A - xe_array[0]) / (C + ((xe_array[1:] - xe_array[0]) / q_heat_flux_MBtu))
q_crit_heat_flux = q_crit_heat_flux_MBtu * (1 / 3.41) * 1000000 * 10.7639
DNBR = q_crit_heat_flux / q_heat_flux_DNBR
plt.figure(4)
plt.plot(DNBR, z_arrayplots_DNBR)
plt.xlabel("Onset of Nucleate Boiling Ratio")
plt.ylabel("Height z [m]")
plt.title("Onset of Nucleate Boiling Ratio versus Height")
plt.savefig("ONBR.png", dpi=600)
plt.figure(5)
plt.plot(P_array, z_arrayplots)
plt.xlabel('Pressure [MPa]')
plt.ylabel('Height z [m]')
plt.title('Pressure versus Height')
plt.savefig("PressureBWR.png", dpi=600)
plt.figure(6)
plt.plot(T_f_array, z_arrayplots)
plt.xlabel('Temperature [K]')
plt.ylabel('Height z [m]')
plt.title('Coolant Temperature vs Height')
plt.savefig("TempBulkBWR.png", dpi=600)
plt.figure(7)
plt.plot(T_F_Outer, z_arrayplots, label='Fuel Outer Surface Temp')
plt.plot(T_F_Center, z_arrayplots, label='Fuel Centerline Temp')
plt.legend(loc='upper left')
plt.xlabel("Temperature [K]")
plt.ylabel("Height z [m]")
plt.savefig("TempFuelBWR.png", dpi=600)
# density
plt.figure(8)
plt.plot(Density, z_arrayplots, label='Density')
plt.legend(loc='upper left')
plt.xlabel("Pressure [mPa]")
plt.ylabel("Height z [m]")
plt.savefig("Density", dpi=600)
# quality
plt.figure(9)
plt.plot(x, z_arrayplots, label='Quality')
plt.plot(xe, z_arrayplots, label='Quality')
plt.legend(loc='upper left')
plt.xlabel("Quality")
plt.ylabel("Height z [m]")
plt.savefig("Quality", dpi=600)
# void
plt.figure(10)
plt.plot(alpha, z_arrayplots, label='Void Fraction')
plt.legend(loc='upper left')
plt.xlabel("Void Fraction")
plt.ylabel("Height z [m]")
plt.savefig("Void Fraction", dpi=600)
tempdifference = T_C_Outer - T_f_array
print("Max clad vs bulk difference is " + str(np.amax(tempdifference)) + " C")
print("Max coolant temp is " + str(np.amax(T_f_array) - 273.15) + " C")
print("Max coolant temp is " + str(np.amax(T_f_array)) + " K")
print("Max clad temp is " + str(np.amax(T_C_Inner) - 273.15) + " C")
print("Max clad temp is " + str(np.amax(T_C_Inner)) + " K")
print("Max fuel temp is " + str(np.amax(T_F_Center) - 273.15) + " C")
print("Max fuel temp is " + str(np.amax(T_F_Center)) + " K")
print("Max fuel temp is " + str(np.amax(T_F_Outer) - 273.15) + " C")
print("Max fuel temp is " + str(np.amax(T_F_Outer)) + " K")
print("Max centerline temp occurs at z = " + str(z_CL_max) + "m")
MDNBR = np.amin(DNBR)
print("MDNBR is " + str(MDNBR))

UnboundLocalError: local variable 'rmeff' referenced before assignment

Hey I'm trying to compute the concentration of a tubular reactor with two reaction, I get this error thrown each time I run the code, I tried putting the variable in the function as global still doesnt work
RmCO = (KmCO * Cb**q * Cd**p)
RmCO2 = (KmCO2 * Ca**n * Cb**m)
Phi = (Dp/6)* np.sqrt(((kp+1)/kp)*(KmCO2 * RhoParticle/DCO2eff))
eff = (np.tanh(Phi))/Phi
MR = ((RmCO2/1000)*RhoParticle*Dmean*(n+m))/(beta*Ca)
WP = ((Phi*(1/np.tanh(Phi)))-1)*3
rmpore = 1/(eff*RmCO2)
rmex = 1/(beta*Amext*(Ca-np.real(COeq)))
rmeff = 1/(rmex+rmpore)
RmCOeff = 1/(1/(0.001*RmCO))
rCO2 = - rmeff
rH2 = - ((b/a) * rmeff) - (3 * RmCOeff)
rCO = ((c/a) * rmeff) - RmCOeff
rH2O = ((d/a) * rmeff) + RmCOeff
rCH4 = RmCOeff
dCO2dz = (RhoBulk * rCO2) / Us
dH2dz = (RhoBulk * rH2) / Us
dCOdz = (RhoBulk * rCO) / Us
dH2Odz = (RhoBulk * rH2O) / Us
dCH4dz = (RhoBulk * rCH4) / Us
ReH = (Us*Dp)/Kinematic_viscosity
Cpavg= (CpCO2(T)*(a/(a+b)) + CpH2(T)*(b/(a+b))) / 4 #conversion of Kj/kg.k to j/kg.K
Pr = mue(T) * Cpavg / thermalC(T)
U = 0.504 * ((thermalC(T)/Dp) * ((ReH)**0.67) * ((Pr)**0.4) * ((Dp/Di)**0.375))
G = Rho_mix*Us
Ua = (U * (4/Do))
Tw = (950 + 273)
dTdz = ((-rmeff * DelH(T)* RhoBulk) - (Ua*(T-Tw)))/(G*Cpavg)
return [dTdz,dCO2dz,dH2dz,dCOdz,dH2Odz,dCH4dz]

How do I use multithreading on this function for a np.meshgrid of values?

The following code generates numpy 2D lists of r and E values for the specified intervals.
r = np.linspace(3, 14, 10)
E = np.linspace(0.05, 0.75, 10)
r, E = np.meshgrid(r, E)
I am then using the following nested loop to generate output from the function ionisationGamma for each r and E interval value.
for ridx in trange(len(r)):
z = []
for cidx in range(len(r[ridx])):
z.append(ionisationGamma(r[ridx][cidx], E[ridx][cidx]))
Z.append(z)
Z = np.array(Z)
This loop gives me a 2D numpy array Z, which is my output and I am using it for a 3D graph. The problem with it is: it is taking ~6 hours to generate the output for all these intervals as there are so many values due to np.meshgrid. I have just discovered multi-threading in Python and wanted to know how I can implement this by using it. Any help is appreciated.
See below code for ionisationGamma
def ionisationGamma(r, E):
I = complex(0.1, 1.0)
a_soft = 1.0
omega = 0.057
beta = 0.0
dt = 0.1
steps = 10000
Nintervals = 60
N = 3000
xmin = float(-300)
xmax = -xmin
x = [0.0]*N
dx = (xmax - xmin) / (N - 1)
L = dx * N
dk = 2 * M_PI / L
propagator = None
in_, out_, psi0 = None, None, None
in_ = [complex(0.,0.)] * N
psi0 = [complex(0.,0.)] * N
out_ = [[complex(0.,0.)]*N for i in range(steps+1)]
overlap = exp(-r) * (1 + r + (1 / 3) * pow(r, 2))
normC = 1 / (sqrt(2 * (1 + overlap)))
gammai = 0.5
qi = 0.0 + (r / 2)
pi = 0.0
gammai1 = 0.5
gammai2 = 0.5
qi1 = 0.0 - (r / 2)
qi2 = 0.0 + (r / 2)
pi1 = 0.0
pi2 = 0.0
# split initial wavepacket
for i in range(N):
x[i] = xmin + i * dx
out_[0][i] = (normC) * ((pow(gammai1 / M_PI, 1. / 4.) * exp(complex(-(gammai1 / 2.) * pow(x[i] - qi1, 2.), pi1 * (x[i] - qi1)))) + (pow(gammai2 / M_PI, 1. / 4.) * exp(complex(-(gammai2 / 2.) * pow(x[i] - qi2, 2.), pi2 * (x[i] - qi2)))))
in_[i] = (normC) * ((pow(gammai1 / M_PI, 1. / 4.) * exp(complex(-(gammai1 / 2.) * pow(x[i] - qi1, 2.), pi1 * (x[i] - qi1)))) + (pow(gammai2 / M_PI, 1. / 4.) * exp(complex(-(gammai2 / 2.) * pow(x[i] - qi2, 2.), pi2 * (x[i] - qi2)))))
psi0[i] = in_[i]
for l in range(1, steps+1):
for i in range(N):
propagator = exp(complex(0, -potential(x[i], omega, beta, a_soft, r, E, dt, l) * dt / 2.))
in_[i] = propagator * in_[i];
in_ = np.fft.fft(in_, N)
for i in range(N):
k = dk * float(i if i < N / 2 else i - N)
propagator = exp(complex(0, -dt * pow(k, 2) / (2.)))
in_[i] = propagator * in_[i]
in_ = np.fft.ifft(in_, N)
for i in range(N):
propagator = exp(complex(0, -potential(x[i], omega, beta, a_soft, r, E, dt, l) * dt / 2.))
in_[i] = propagator * in_[i]
out_[l][i] = in_[i]
initialGammaCentre = 0.0
finalGammaCentre = 0.0
for i in range(500, 2500 +1):
initialGammaCentre += pow(abs(out_[0][i]), 2) * dx
finalGammaCentre += pow(abs(out_[steps][i]), 2) * dx
ionisationGamma = finalGammaCentre / initialGammaCentre
return ionisationGamma
def potential(x, omega, beta, a_soft, r, E, dt, l):
V = (-1. / sqrt((x - (r / 2)) * (x - (r / 2)) + a_soft * a_soft)) + ((-1. / sqrt((x + (r / 2)) * (x + (r / 2)) + a_soft * a_soft))) + E * x
return V
Since the question is about how to use multiprocessing, the following code will work:
import multiprocessing as mp
if __name__ == '__main__':
with mp.Pool(processes=16) as pool:
Z = pool.starmap(ionisationGamma, arguments)
Z = np.array(Z)
Where the arguments are:
arguments = list()
for ridx in range(len(r)):
for cidx in range(len(r[ridx])):
arguments.append((r[ridx][cidx], E[ridx][cidx]))
I am using starmap instead of map, since you have multiple arguments that you want to unpack. This will divide the arguments iterable over multiple cores, using the ionisationGamma function and the final result will be ordered.
However, I do feel the need to say that the main solution is not really the multiprocessing but the original function code. In ionisationGamma you are using several times the slow python for loops. And it would benefit your code a lot if you could vectorize those operations.
A second observation is that you are using many of those loops separately and it would be nice if you could separate that one big function into multiple smaller functions. Then you can time every function individually and speed up those that are too slow.

Changing Monte Carlo calculation from VBA code to MATLAB

I am trying to convert this Clausing Factor Monte Carlo calculation code (written in Visual Basic):https://descanso.jpl.nasa.gov/SciTechBook/series1/Goebel_AppG_Clausing.pdf into MATLAB code.
When I try to run this code in Excel, it always returns a consistent value at the first time running. But when I implemented in MATLAB it returns the clausing factor randomly. Could you please help me with the MATLAB code so that it could do the same like in VBA.
The value I am talking about in the VBA code is Range("C11") = (rBottom ^ 2) * iescape / npart
Here are my MATLAB code solve for clausingFactor
thickScreen = 0.5;
thickAccel = 1;
rScreen = 0.8;
rAccel = 0.5;
gridSpace = 1;
npart = 313;
Pi = 3.14159265358979;
%assumes rTop = 1
rBottom = rScreen/rAccel;
lenBottom = (thickScreen + gridSpace)/rAccel;
lenTop = thickAccel / rAccel;
Length = lenTop + lenBottom;
iescape = 0;
maxcount = 0;
icount = 0;
nlost = 0;
vztot = 0;
vz0tot = 0;
for ipart = 1: npart
%launch form bottom
notgone = true;
r0 = rBottom * sqrt(rand());
z0 = 0;
costheta = sqrt(1 - rand());
if (costheta > 0.99999)
costheta = 0.99999;
end
Phi = 2 * Pi * rand();
sintheta = sqrt(1 - costheta);
vx = cos(Phi) * sintheta;
vy = sin(Phi) * sintheta;
vz = costheta;
rf = rBottom;
t = (vx * r0 + sqrt((vx^2 + vy^2) * rf^2 - (vy * r0)^2)) / (vx^2 + vy^2);
z = z0 + vz * t;
vz0tot = vz0tot + vz;
icount = 0;
while notgone
icount = icount +1;
if (z < lenBottom)
%hit wall of bottom cylinder and is re-emitted
r0 = rBottom;
z0 = z;
costheta = sqrt(1-rand());
if (costheta > 0.99999)
costheta = 0.99999;
end
Phi = 2 * Pi * rand();
sintheta = sqrt(1 - costheta^2);
vz = cos(Phi) * sintheta;
vy = sin(Phi) * sintheta;
vx = costheta;
rf = rBottom;
t = (vx * r0 + sqrt((vx^2 + vy^2) * rf^2 - (vy * r0)^2)) / (vx^2 + vy^2);
z = z0 + t * vz;
end %bottom cylinder re-emission
if ((z >= lenBottom) && (z0 < lenBottom))
%emitted below but going up
%find radius at lenBottom
t = (lenBottom - z0) / vz;
r = sqrt((r0 - vx * t)^2 + (vy * t)^2);
if (r <= 1)
%continuing upward
rf = 1;
t = (vx * r0 + sqrt((vx^2 + vy^2) * rf^2 - (vy * r0)^2)) / (vx^2 + vy^2);
z = z0 + vz*t;
else
% hit the upstram side of the accel grid and is
% re-emitted downward
r0 = r;
z0 = lenBottom;
costheta = sqrt(1 - rand());
if (costheta > 0.99999)
costheta = 0.99999;
end
Phi = 2 * Pi * rand();
sintheta = sqrt(1 - costheta^2);
vz = cos(Phi) * sintheta;
vy = sin(Phi) * sintheta;
vx = costheta;
rf = rBottom;
t = (vx * r0 + sqrt((vx^2 + vy^2) * rf^2 - (vy * r0)^2)) / (vx^2 + vy^2);
z = z0 + t * vz;
end
end %end upward
if ((z >= lenBottom) && (z<= Length))
%hit the upper cylinder wall and is re-emitted
r0 = 1;
z0 = z;
costheta = sqrt(1 - rand());
if (costheta > 0.99999)
costheta = 0.99999;
end
Phi = 2 * Pi * rand();
sintheta = sqrt(1 - costheta^2);
vz = cos(Phi) * sintheta;
vy = sin(Phi) * sintheta;
vx = costheta;
rf = 1;
t = (vx * r0 + sqrt((vx^2 + vy^2) * rf^2 - (vy * r0)^2)) / (vx^2 + vy^2);
z = z0 + t * vz;
if (z < lenBottom)
%find z when particle hits the bottom cylinder
rf = rBottom;
if ((vx^2 + vy^2) * rf^2 - (vy * r0)^2 < 0 )
t = (vx * r0) / (vx^2 + vy^2);
%if sqrt argument is less than 0 then set sqr term
%to 0 12 May 2004
else
t = (vx * r0 + sqrt((vx^2 + vy^2) * rf^2 - (vy * r0)^2)) / (vx^2 + vy^2);
end
z = z0 + vz * t;
end
end %end upper cylinder emission
if (z < 0)
notgone = false;
end
if (z > Length)
iescape = iescape + 1;
vztot = vztot + vz;
notgone = false;
end
if (icount > 1000)
notgone = false;
icount = 0;
nlost = nlost + 1;
end
end
if (maxcount < icount)
maxcount = icount;
end
end
clausingFactor = (rBottom^2) * iescape / npart;
vz0av = vz0tot / npart;
vzav = vztot / iescape;
DenCor = vz0av / vzav;
Thank you.

Run Time error 9:Array

I am new to VBA programming and am trying to develop a simple code for RCC design. Most of the values are assigned directly from the excel sheet. I am getting this error that says "division by zero".The line within ** ** is highlighted while debugging. it seems there is some problem with declaration or looping but i am not being able to identify. Pls help. Thanx in advance. The code is as follows:
Private Sub CommandButton1_Click()
Dim a As Double, b As Double, result As String, Mu As Double
Dim i As Integer, j As Integer, c As Integer, Xu1, Xu, es, d, f, fs As Double
Dim strain1(1 To 6) As Double, stress1(1 To 6) As Double
a = Range("E30").Value
b = Range("O30").Value
If a < b Then
result = "Under Reinforced Section"
Mu = Range("E32").Value * Range("E34").Value
ElseIf a = b Then
result = "Balanced Secction"
Mu = Range("E32").Value * Range("E34").Value
ElseIf a > b Then
result = "Over Reinforced Section"
j = 31
For i = 1 To 6
strain1(i) = Cells(j, 7)// loop to assign values in array from excel sheet
j = j + 1
Next
j = 31
For i = 1 To 6
stress1(i) = Cells(j, 8)
j = j + 1
Next
c = 1
Xu1 = Range("O30").Value
d = Range("E31").Value
Do While c = 1
Xu = Xu1
**es = 0.0035 * (d - Xu) / (Xu)**// Shows error apparently Xu is taking value zero
If Range("E22").Value = 250 Then
fs = es * Range("E23").Value
f = 0.87 * Range("E22").Value
If fs > f Then
fs = f
End If
ElseIf Range("E22").Value = 415 Then
f = 0.696 * Range("E22").Value / Range("E23").Value
If es > f Then
For i = 1 To 6
If es > strain1(i) And es < strain1(i + 1) Then// to locate es in the array and then interpolate
fs = stress1(i) + ((stress1(i + 1) - stress1(i)) / (strain1(i + 1) - strain1(i))) * (es - strain1(i))// linear interpolation formulae
End If
Next
ElseIf es < f Then
fs = es * Range("E23").Value
End If
Xu1 = Range("O29").Value * fs / (0.36 * Range("E21").Value * Range("E16").Value)
If Xu1 = Xu Then
c = 0
End If
Mu = 0.36 * Range("E21").Value * Range("E16").Value * Xu1 * Range("E34").Value
End If
Loop
End If
Range("O21").Value = Mu
MsgBox result
End Sub
strain1(1 To 6) has 6 elements 1 to 6, for i=6 you're trying to access a 7th element (strain1(i + 1)) in the highlighted row. (the same holds true for stress1 in the next line)

Resources