Error while submitting a spark job using spark-jobserver - apache-spark

I face following error occasionally while submitting job. This error goes away if I remove the rootdir of filedao, datadao and sqldao. That means I have to restart the job-server and re-upload my jar.
{
"status": "ERROR",
"result": {
"message": "Ask timed out on [Actor[akka://JobServer/user/context-supervisor/1995aeba-com.spmsoftware.distributed.job.TestJob#-1370794810]] after [10000 ms]. Sender[null] sent message of type \"spark.jobserver.JobManagerActor$StartJob\".",
"errorClass": "akka.pattern.AskTimeoutException",
"stack": ["akka.pattern.PromiseActorRef$$anonfun$1.apply$mcV$sp(AskSupport.scala:604)", "akka.actor.Scheduler$$anon$4.run(Scheduler.scala:126)", "scala.concurrent.Future$InternalCallbackExecutor$.unbatchedExecute(Future.scala:601)", "scala.concurrent.BatchingExecutor$class.execute(BatchingExecutor.scala:109)", "scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:599)", "akka.actor.LightArrayRevolverScheduler$TaskHolder.executeTask(LightArrayRevolverScheduler.scala:331)", "akka.actor.LightArrayRevolverScheduler$$anon$4.executeBucket$1(LightArrayRevolverScheduler.scala:282)", "akka.actor.LightArrayRevolverScheduler$$anon$4.nextTick(LightArrayRevolverScheduler.scala:286)", "akka.actor.LightArrayRevolverScheduler$$anon$4.run(LightArrayRevolverScheduler.scala:238)", "java.lang.Thread.run(Thread.java:745)"]
}
}
My config file is as follows:
# Template for a Spark Job Server configuration file
# When deployed these settings are loaded when job server starts
#
# Spark Cluster / Job Server configuration
# Spark Cluster / Job Server configuration
spark {
# spark.master will be passed to each job's JobContext
master = <spark_master>
# Default # of CPUs for jobs to use for Spark standalone cluster
job-number-cpus = 4
jobserver {
port = 8090
context-per-jvm = false
context-creation-timeout = 100 s
# Note: JobFileDAO is deprecated from v0.7.0 because of issues in
# production and will be removed in future, now defaults to H2 file.
jobdao = spark.jobserver.io.JobSqlDAO
filedao {
rootdir = /tmp/spark-jobserver/filedao/data
}
datadao {
rootdir = /tmp/spark-jobserver/upload
}
sqldao {
slick-driver = slick.driver.H2Driver
jdbc-driver = org.h2.Driver
rootdir = /tmp/spark-jobserver/sqldao/data
jdbc {
url = "jdbc:h2:file:/tmp/spark-jobserver/sqldao/data/h2-db"
user = ""
password = ""
}
dbcp {
enabled = false
maxactive = 20
maxidle = 10
initialsize = 10
}
}
result-chunk-size = 1m
short-timeout = 60 s
}
context-settings {
num-cpu-cores = 2 # Number of cores to allocate. Required.
memory-per-node = 512m # Executor memory per node, -Xmx style eg 512m, #1G, etc.
}
}
akka {
remote.netty.tcp {
# This controls the maximum message size, including job results, that can be sent
# maximum-frame-size = 200 MiB
}
}
# check the reference.conf in spray-can/src/main/resources for all defined settings
spray.can.server.parsing.max-content-length = 250m
I am using spark-2.0-preview version.

I have faced the same error before and was related with timeout, for sure is an syncronus request (sync=true) togheter you must provide the timeout (in seconds) who is a value relative with how long it takes to process your request.
This an example how the request should look like:
curl -k --basic -d '' 'http://localhost:5050/jobs?appName=app&classPath=Main&context=test-context&sync=true&timeout=40'
if your request needs more than 40 seconds maybe you also need to modify the application.conf located on
spark-jobserver-master/job-server/src/main/resources/application.conf
ànd on the spray.can.server section modify:
idle-timeout = 210 s
request-timeout = 200 s

Related

When sending the configuration to the puppet agent, I get an error

When sending the configuration to the agent, I get an error Error 500 on SERVER: Server Error: Evaluation Error: Error while evaluating a Resource Statement, Evaluation Error: Error while evaluating a Function Call, no implicit conversion of String into Integer (file:/etc/puppetlabs/code/environments/production/modules/accounts/manifests/init.pp, line: 24, column: 24) on node
init.pp
**# See README.md for details.**
class accounts(
$groups = {},
$groups_membership = undef,
$ssh_keys = {},
$users = {},
$usergroups = {},
$accounts = {},
$start_uid = undef,
$start_gid = undef,
$purge_ssh_keys = false,
$ssh_authorized_key_title = '%{ssh_key}-on-%{account}',
$shell = undef,
$managehome = true,
$forcelocal = true,
) {
include ::accounts::config
create_resources(group, $groups)
create_resources(accounts::account, $accounts)
** # Remove users marked as absent**
$absent_users = keys(absents($users))
user { $absent_users:
ensure => absent,
managehome => $managehome,
forcelocal => $forcelocal,
}
}
_______________________________________________________________________________________________
I'm new to puppet and using it together with foreman
Puppet master version 7.2.0
Puppet agent version 6.27.0
Foreman version 3.4.0
All settings were made in Foreman. Manifests, like any other changes, were not made in the console.

Sparklyr gateway did not respond while retrieving ports

I am using sparklyr in a batch setup where multiple concurrent jobs with different parameters, are arriving and are processed by same sparklyr codebase. In "certain" random situations, the code gives errors (as below). I think it is under high load.
I am seeking guidance on the best way to troubleshoot it (including understanding the architecture of different components in the call chain). Therefore, beside pointing any correction in the code used to establish connection, any pointers to study further will be appreciated.
Thanks.
Stack versions:
Spark version 2.3.2.3.1.5.6091-7
Using Scala version 2.11.12 (OpenJDK 64-Bit Server VM, Java 1.8.0_322)
SparklyR version: sparklyr-2.1-2.11.jar
Yarn Cluster: hdp-3.1.5
Error:
2022-03-03 23:00:09 | Connecting to SPARK ...
2022-03-03 23:02:19 | Couldn't connect to SPARK (Error). Error in force(code): Failed while connecting to sparklyr to port (10980) for sessionid (38361): Sparklyr gateway did not respond while retrieving ports information after 120 seconds
Path: /usr/hdp/3.1.5.6091-7/spark2/bin/spark-submit
Parameters: --driver-memory, 3G, --executor-memory, 3G, --keytab, /etc/security/keytabs/appuser.headless.keytab, --principal, appuser#myorg.com, --class, sparklyr.Shell, '/usr/lib64/R/library/sparklyr/java/sparklyr-2.1-2.11.jar', 10980, 38361
Log: /tmp/RtmpyhpKkv/file187b82097bb55_spark.log
---- Output Log ----
22/03/03 23:00:17 INFO sparklyr: Session (38361) is starting under 127.0.0.1 port 10980
22/03/03 23:00:17 INFO sparklyr: Session (38361) found port 10980 is available
22/03/03 23:00:17 INFO sparklyr: Gateway (38361) is waiting for sparklyr client to connect to port 10980
22/03/03 23:01:17 INFO sparklyr: Gateway (38361) is terminating backend since no client has connected after 60 seconds to 192.168.1.55/10980.
22/03/03 23:01:17 INFO ShutdownHookManager: Shutdown hook called
22/03/03 23:01:17 INFO ShutdownHookManager: Deleting directory /tmp/spark-4fec5364-e440-41a8-87c4-b5e94472bb2f
---- Error Log ----
Connection code:
conf <- spark_config()
conf$spark.executor.memory <- "10G"
conf$spark.executor.cores <- 6
conf$spark.executor.instances <- 6
conf$spark.driver.memory <- "10g"
conf$spark.driver.memoryOverhead <-"3g"
conf$spark.shuffle.service.enabled <- "true"
conf$spark.port.maxRetries <- 125
conf$spark.sql.hive.convertMetastoreOrc <- "true"
conf$spark.local.dir = '/var/log/myapp/sparkjobs'
conf$'sparklyr.shell.driver-memory' <- "3G"
conf$'sparklyr.shell.executor-memory' <- "3G"
conf$spark.serializer <- "org.apache.spark.serializer.KryoSerializer"
conf$hive.metastore.uris = configs$DEFAULT$HIVE_METASTORE_URL
conf$spark.sql.session.timeZone <- "UTC"
# fix as per cloudera suggestion for future timeout issue
conf$spark.sql.broadcastTimeout <- 1200
conf$sparklyr.shell.keytab = "/etc/security/keytabs/appuser.headless.keytab"
conf$sparklyr.shell.principal = "appuser#myorg.com"
conf$spark.yarn.keytab= "/etc/security/keytabs/appuser.headless.keytab"
conf$spark.yarn.principal= "appuser#myorg.com"
conf$spark.sql.catalogImplementation <- "hive"
conf$sparklyr.gateway.config.retries <- 10
conf$sparklyr.connect.timeout <- 120
conf$sparklyr.gateway.port.query.attempts <- 10
conf$sparklyr.gateway.port.query.retry.interval.seconds <- 60
conf$sparklyr.gateway.port <- 10090 + round(runif(1, 1, 1000))
tryCatch
(
{
logging(paste0("Connecting to SPARK ... "))
withTimeout({ sc <- spark_connect(master = "yarn-client", spark_home = eval(SPARK_HOME_PATH), version = "2.1.0",app_name = "myjobname", config = conf) }, timeout = 540)
if (!is.null(sc)) {
return(sc)
}
},
TimeoutException = function(ex)
{
logging(paste0("Couldn't connect to SPARK (Timed up).", ex));
stop("Timeout occured");
},
error = function(err)
{
logging(paste0("Couldn't connect to SPARK (Error). ", err));
stop("Exception occured");
}
)

StormCrawler DISCOVER and FETCH a website but nothing gets saved in docs

There is a website that I'm trying to crawl, the crawler DISCOVER and FETCH the URLs but there is nothing in docs. this is
the website https://cactussara.ir. where is the problem?!
And this is the robots.txt of this website:
User-agent: *
Disallow: /
And this is my urlfilters.json:
{
"com.digitalpebble.stormcrawler.filtering.URLFilters": [
{
"class": "com.digitalpebble.stormcrawler.filtering.basic.BasicURLFilter",
"name": "BasicURLFilter",
"params": {
"maxPathRepetition": 8,
"maxLength": 8192
}
},
{
"class": "com.digitalpebble.stormcrawler.filtering.depth.MaxDepthFilter",
"name": "MaxDepthFilter",
"params": {
"maxDepth": -1
}
},
{
"class": "com.digitalpebble.stormcrawler.filtering.basic.BasicURLNormalizer",
"name": "BasicURLNormalizer",
"params": {
"removeAnchorPart": true,
"unmangleQueryString": true,
"checkValidURI": true,
"removeHashes": false
}
},
{
"class": "com.digitalpebble.stormcrawler.filtering.host.HostURLFilter",
"name": "HostURLFilter",
"params": {
"ignoreOutsideHost": true,
"ignoreOutsideDomain": false
}
},
{
"class": "com.digitalpebble.stormcrawler.filtering.regex.RegexURLNormalizer",
"name": "RegexURLNormalizer",
"params": {
"regexNormalizerFile": "default-regex-normalizers.xml"
}
},
{
"class": "com.digitalpebble.stormcrawler.filtering.regex.RegexURLFilter",
"name": "RegexURLFilter",
"params": {
"regexFilterFile": "default-regex-filters.txt"
}
}
]
}
And this is crawler-conf.yaml:
# Default configuration for StormCrawler
# This is used to make the default values explicit and list the most common configurations.
# Do not modify this file but instead provide a custom one with the parameter -conf
# when launching your extension of ConfigurableTopology.
config:
fetcher.server.delay: 1.0
# min. delay for multi-threaded queues
fetcher.server.min.delay: 0.0
fetcher.queue.mode: "byHost"
fetcher.threads.per.queue: 1
fetcher.threads.number: 10
fetcher.max.urls.in.queues: -1
fetcher.max.queue.size: -1
# max. crawl-delay accepted in robots.txt (in seconds)
fetcher.max.crawl.delay: 30
# behavior of fetcher when the crawl-delay in the robots.txt
# is larger than fetcher.max.crawl.delay:
# (if false)
# skip URLs from this queue to avoid that any overlong
# crawl-delay throttles the crawler
# (if true)
# set the delay to fetcher.max.crawl.delay,
# making fetcher more aggressive than requested
fetcher.max.crawl.delay.force: false
# behavior of fetcher when the crawl-delay in the robots.txt
# is smaller (ev. less than one second) than the default delay:
# (if true)
# use the larger default delay (fetcher.server.delay)
# and ignore the shorter crawl-delay in the robots.txt
# (if false)
# use the delay specified in the robots.txt
fetcher.server.delay.force: false
# time bucket to use for the metrics sent by the Fetcher
fetcher.metrics.time.bucket.secs: 10
# SimpleFetcherBolt: if the delay required by the politeness
# is above this value, the tuple is sent back to the Storm queue
# for the bolt on the _throttle_ stream.
fetcher.max.throttle.sleep: -1
# alternative values are "byIP" and "byDomain"
partition.url.mode: "byHost"
# metadata to transfer to the outlinks
# used by Fetcher for redirections, sitemapparser, etc...
# these are also persisted for the parent document (see below)
# metadata.transfer:
# - customMetadataName
# lists the metadata to persist to storage
# these are not transfered to the outlinks
metadata.persist:
- _redirTo
- error.cause
- error.source
- isSitemap
- isFeed
metadata.track.path: true
metadata.track.depth: true
http.agent.name: "Anonymous Coward"
http.agent.version: "1.0"
http.agent.description: "built with StormCrawler ${version}"
http.agent.url: "http://someorganization.com/"
http.agent.email: "someone#someorganization.com"
http.accept.language: "fa-IR,fa_IR,en-us,en-gb,en;q=0.7,*;q=0.3"
http.accept: "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"
http.content.limit: -1
http.store.headers: false
http.timeout: 10000
http.skip.robots: true
# store partial fetches as trimmed content (some content has been fetched,
# but reading more data from socket failed, eg. because of a network timeout)
http.content.partial.as.trimmed: false
# for crawling through a proxy:
# http.proxy.host:
# http.proxy.port:
# okhttp only, defaults to "HTTP"
# http.proxy.type: "SOCKS"
# for crawling through a proxy with Basic authentication:
# http.proxy.user:
# http.proxy.pass:
http.robots.403.allow: true
# should the URLs be removed when a page is marked as noFollow
robots.noFollow.strict: false
# Guava caches used for the robots.txt directives
robots.cache.spec: "maximumSize=10000,expireAfterWrite=6h"
robots.error.cache.spec: "maximumSize=10000,expireAfterWrite=1h"
protocols: "http,https,file"
http.protocol.implementation: "com.digitalpebble.stormcrawler.protocol.httpclient.HttpProtocol"
https.protocol.implementation: "com.digitalpebble.stormcrawler.protocol.httpclient.HttpProtocol"
file.protocol.implementation: "com.digitalpebble.stormcrawler.protocol.file.FileProtocol"
# navigationfilters.config.file: "navigationfilters.json"
# selenium.addresses: "http://localhost:9515"
selenium.implicitlyWait: 0
selenium.pageLoadTimeout: -1
selenium.setScriptTimeout: 0
selenium.instances.num: 1
selenium.capabilities:
takesScreenshot: false
loadImages: false
javascriptEnabled: true
# illustrates the use of the variable for user agent
# phantomjs.page.settings.userAgent: "$userAgent"
# ChromeDriver config
# goog:chromeOptions:
# args:
# - "--headless"
# - "--disable-gpu"
# - "--mute-audio"
# DelegatorRemoteDriverProtocol
selenium.delegated.protocol: "com.digitalpebble.stormcrawler.protocol.httpclient.HttpProtocol"
# no url or parsefilters by default
parsefilters.config.file: "parsefilters.json"
urlfilters.config.file: "urlfilters.json"
# JSoupParserBolt
jsoup.treat.non.html.as.error: false
parser.emitOutlinks: true
parser.emitOutlinks.max.per.page: -1
track.anchors: true
detect.mimetype: true
detect.charset.maxlength: 10000
# filters URLs in sitemaps based on their modified Date (if any)
sitemap.filter.hours.since.modified: -1
# staggered scheduling of sitemaps
sitemap.schedule.delay: -1
# whether to add any sitemaps found in the robots.txt to the status stream
# used by fetcher bolts
sitemap.discovery: false
# Default implementation of Scheduler
scheduler.class: "com.digitalpebble.stormcrawler.persistence.DefaultScheduler"
# revisit a page daily (value in minutes)
# set it to -1 to never refetch a page
fetchInterval.default: 1440
# revisit a page with a fetch error after 2 hours (value in minutes)
# set it to -1 to never refetch a page
fetchInterval.fetch.error: 120
# never revisit a page with an error (or set a value in minutes)
fetchInterval.error: -1
# custom fetch interval to be used when a document has the key/value in its metadata
# and has been fetched succesfully (value in minutes)
# fetchInterval.FETCH_ERROR.isFeed=true
# fetchInterval.isFeed=true: 10
# max number of successive fetch errors before changing status to ERROR
max.fetch.errors: 3
# Guava cache use by AbstractStatusUpdaterBolt for DISCOVERED URLs
status.updater.use.cache: true
status.updater.cache.spec: "maximumSize=10000,expireAfterAccess=1h"
# Can also take "MINUTE" or "HOUR"
status.updater.unit.round.date: "SECOND"
# configuration for the classes extending AbstractIndexerBolt
# indexer.md.filter: "someKey=aValue"
indexer.url.fieldname: "url"
indexer.text.fieldname: "content"
indexer.text.maxlength: -1
indexer.canonical.name: "canonical"
indexer.md.mapping:
- parse.title=title
- parse.keywords=keywords
- parse.description=description
Thanks in advance.
The pages contain
<meta name="robots" content="noindex,follow"/>
which are found by the parser and causes the indexer bolt to skip the page.
This should be confirmed in the metrics where Filtered should be the same number as the pages fetched.
http.skip.robots does not apply to the directives set in the page itself.

Error when running job that queries against Cassandra via Spark SQL through Spark Jobserver

So I'm trying to run job that simply runs a query against cassandra using spark-sql, the job is submitted fine and the job starts fine. This code works when it is not being run through spark jobserver (when simply using spark submit). Could someone tell my what is wrong with my job code or configuration files that is causing the error below?
{
"status": "ERROR",
"ERROR": {
"errorClass": "java.util.concurrent.ExecutionException",
"cause": "Failed to open native connection to Cassandra at {127.0.1.1}:9042",
"stack": ["com.datastax.spark.connector.cql.CassandraConnector$.com$datastax$spark$connector$cql$CassandraConnector$$createSes
sion(CassandraConnector.scala:155)", "com.datastax.spark.connector.cql.CassandraConnector$$anonfun$2.apply(CassandraConnector.scal
a:141)", "com.datastax.spark.connector.cql.CassandraConnector$$anonfun$2.apply(CassandraConnector.scala:141)", "com.datastax.spark
.connector.cql.RefCountedCache.createNewValueAndKeys(RefCountedCache.scala:31)", "com.datastax.spark.connector.cql.RefCountedCache
.acquire(RefCountedCache.scala:56)", "com.datastax.spark.connector.cql.CassandraConnector.openSession(CassandraConnector.scala:73)
", "com.datastax.spark.connector.cql.CassandraConnector.withSessionDo(CassandraConnector.scala:101)", "com.datastax.spark.connecto
r.cql.CassandraConnector.withClusterDo(CassandraConnector.scala:112)", "com.datastax.spark.connector.cql.Schema$.fromCassandra(Sch
ema.scala:243)", "org.apache.spark.sql.cassandra.CassandraCatalog$$anon$1.load(CassandraCatalog.scala:22)", "org.apache.spark.sql.
cassandra.CassandraCatalog$$anon$1.load(CassandraCatalog.scala:19)", "com.google.common.cache.LocalCache$LoadingValueReference.loa
dFuture(LocalCache.java:3599)", "com.google.common.cache.LocalCache$Segment.loadSync(LocalCache.java:2379)", "com.google.common.ca
che.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2342)", "com.google.common.cache.LocalCache$Segment.get(LocalCache.java:225
7)", "com.google.common.cache.LocalCache.get(LocalCache.java:4000)", "com.google.common.cache.LocalCache.getOrLoad(LocalCache.java
:4004)", "com.google.common.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4874)", "org.apache.spark.sql.cassandra.Cassand
raCatalog.lookupRelation(CassandraCatalog.scala:28)", "org.apache.spark.sql.cassandra.CassandraSQLContext$$anon$2.org$apache$spark
$sql$catalyst$analysis$OverrideCatalog$$super$lookupRelation(CassandraSQLContext.scala:218)", "org.apache.spark.sql.catalyst.analy
sis.OverrideCatalog$$anonfun$lookupRelation$3.apply(Catalog.scala:161)", "org.apache.spark.sql.catalyst.analysis.OverrideCatalog$$
anonfun$lookupRelation$3.apply(Catalog.scala:161)", "scala.Option.getOrElse(Option.scala:120)", "org.apache.spark.sql.catalyst.ana
lysis.OverrideCatalog$class.lookupRelation(Catalog.scala:161)", "org.apache.spark.sql.cassandra.CassandraSQLContext$$anon$2.lookup
Relation(CassandraSQLContext.scala:218)", "org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.sca
la:174)", "org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$6.applyOrElse(Analyzer.scala:186)", "or
g.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$6.applyOrElse(Analyzer.scala:181)", "org.apache.spar
k.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:188)", "org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.appl
y(TreeNode.scala:188)", "org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51)", "org.apache.spark.sql.
catalyst.trees.TreeNode.transformDown(TreeNode.scala:187)", "org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNod
e.scala:208)", "scala.collection.Iterator$$anon$11.next(Iterator.scala:328)", "scala.collection.Iterator$class.foreach(Iterator.sc
ala:727)", "scala.collection.AbstractIterator.foreach(Iterator.scala:1157)", "scala.collection.generic.Growable$class.$plus$plus$e
q(Growable.scala:48)", "scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)", "scala.collection.mutable.Arra
yBuffer.$plus$plus$eq(ArrayBuffer.scala:47)", "scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)", "scala.colle
ction.AbstractIterator.to(Iterator.scala:1157)", "scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)", "sc
ala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)", "scala.collection.TraversableOnce$class.toArray(TraversableOnce.sc
ala:252)", "scala.collection.AbstractIterator.toArray(Iterator.scala:1157)", "org.apache.spark.sql.catalyst.trees.TreeNode.transfo
rmChildrenDown(TreeNode.scala:238)", "org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:193)", "org.apache
.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:178)", "org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelatio
ns$.apply(Analyzer.scala:181)", "org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:171)", "or
g.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:61)", "org.apache.spark.
sql.catalyst.rules.RuleExecutor$$anonfun$apply$1$$anonfun$apply$2.apply(RuleExecutor.scala:59)", "scala.collection.LinearSeqOptimi
zed$class.foldLeft(LinearSeqOptimized.scala:111)", "scala.collection.immutable.List.foldLeft(List.scala:84)", "org.apache.spark.sq
l.catalyst.rules.RuleExecutor$$anonfun$apply$1.apply(RuleExecutor.scala:59)", "org.apache.spark.sql.catalyst.rules.RuleExecutor$$a
nonfun$apply$1.apply(RuleExecutor.scala:51)", "scala.collection.immutable.List.foreach(List.scala:318)", "org.apache.spark.sql.cat
alyst.rules.RuleExecutor.apply(RuleExecutor.scala:51)", "org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLCon
text.scala:1082)", "org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:1082)", "org.apache.spark.sql.SQLCont
ext$QueryExecution.assertAnalyzed(SQLContext.scala:1080)", "org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133)", "org.apac
he.spark.sql.cassandra.CassandraSQLContext.cassandraSql(CassandraSQLContext.scala:211)", "org.apache.spark.sql.cassandra.Cassandra
SQLContext.sql(CassandraSQLContext.scala:214)", "CassSparkTest$.runJob(CassSparkTest.scala:23)", "CassSparkTest$.runJob(CassSparkT
est.scala:9)", "spark.jobserver.JobManagerActor$$anonfun$spark$jobserver$JobManagerActor$$getJobFuture$4.apply(JobManagerActor.sca
la:235)", "scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)", "scala.concurrent.impl.Future$P
romiseCompletingRunnable.run(Future.scala:24)", "java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)",
"java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)", "java.lang.Thread.run(Thread.java:745)"],
"causingClass": "java.io.IOException",
"message": "java.io.IOException: Failed to open native connection to Cassandra at {127.0.1.1}:9042"
}
}
Here is the job I am running:
import org.apache.spark.{SparkContext, SparkConf}
import com.datastax.spark.connector._
import org.apache.spark.sql.cassandra.CassandraSQLContext
import org.apache.spark.sql._
import spark.jobserver._
import com.typesafe.config.Config
import com.typesafe.config.ConfigFactory
object CassSparkTest extends SparkJob {
def main(args: Array[String]) {
val sc = new SparkContext("spark://192.168.10.11:7077", "test")
val config = ConfigFactory.parseString("")
val results = runJob(sc, config)
println("Results:" + results)
}
override def validate(sc:SparkContext, config: Config): SparkJobValidation = {
SparkJobValid
}
override def runJob(sc:SparkContext, config: Config): Any = {
val sqlC = new CassandraSQLContext(sc)
val df = sqlC.sql(config.getString("input.sql"))
df.collect()
}
}
and here is my configuration file for spark-jobserver
# Template for a Spark Job Server configuration file
# When deployed these settings are loaded when job server starts
#
# Spark Cluster / Job Server configuration
spark {
# spark.master will be passed to each job's JobContext
master = "spark://192.168.10.11:7077"
# master = "mesos://vm28-hulk-pub:5050"
# master = "yarn-client"
# Default # of CPUs for jobs to use for Spark standalone cluster
job-number-cpus = 1
jobserver {
port = 2020
jar-store-rootdir = /tmp/jobserver/jars
jobdao = spark.jobserver.io.JobFileDAO
filedao {
rootdir = /tmp/spark-job-server/filedao/data
}
}
# predefined Spark contexts
# contexts {
# my-low-latency-context {
# num-cpu-cores = 1 # Number of cores to allocate. Required.
# memory-per-node = 512m # Executor memory per node, -Xmx style eg 512m, 1G, etc.
# }
# # define additional contexts here
# }
# universal context configuration. These settings can be overridden, see README.md
context-settings {
num-cpu-cores = 1 # Number of cores to allocate. Required.
memory-per-node = 512m # Executor memory per node, -Xmx style eg 512m, #1G, etc.
# in case spark distribution should be accessed from HDFS (as opposed to being installed on every mesos slave)
# spark.executor.uri = "hdfs://namenode:8020/apps/spark/spark.tgz"
spark-cassandra-connection-host="127.0.0.1"
# uris of jars to be loaded into the classpath for this context. Uris is a string list, or a string separated by commas ','
# dependent-jar-uris = ["file:///some/path/present/in/each/mesos/slave/somepackage.jar"]
dependent-jar-uris = ["file:///home/vagrant/lib/spark-cassandra-connector-assembly-1.3.0-M2-SNAPSHOT.jar"]
# If you wish to pass any settings directly to the sparkConf as-is, add them here in passthrough,
# such as hadoop connection settings that don't use the "spark." prefix
passthrough {
#es.nodes = "192.1.1.1"
}
}
# This needs to match SPARK_HOME for cluster SparkContexts to be created successfully
# home = "/home/spark/spark"
}
# Note that you can use this file to define settings not only for job server,
# but for your Spark jobs as well. Spark job configuration merges with this configuration file as defaults.
#vicg, first you need spark.cassandra.connection.host -- periods not dashes. Also note in the error how the IP is "127.0.1.1", not the one in the config. You can also pass the IP when you create a context, like:
curl -X POST 'localhost:8090/contexts/my-context?spark.cassandra.connection.host=127.0.0.1'
If the above don't work, try the following PR:
https://github.com/spark-jobserver/spark-jobserver/pull/164

Yarn support on Ooyala Spark JobServer

Just started experimenting with the JobServer and would like to use it in our production environment.
We usually run spark jobs individually in yarn-client mode and would like to shift towards the paradigm offered by the Ooyala Spark JobServer.
I am able to run the WordCount examples shown in the official page.
I tried running submitting our custom spark job to the Spark JobServer and I got this error:
{
"status": "ERROR",
"result": {
"message": "null",
"errorClass": "scala.MatchError",
"stack": ["spark.jobserver.JobManagerActor$$anonfun$spark$jobserver$JobManagerActor$$getJobFuture$4.apply(JobManagerActor.scala:220)",
"scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)",
"scala.concurrent.impl.Future $PromiseCompletingRunnable.run(Future.scala:24)",
"akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:41)",
"akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)",
"scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)",
"scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java 1339)",
"scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)",
"scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)"]
}
I had made the necessary code modifications like extending SparkJob and implementing the runJob() method.
This is the dev.conf file that I used:
# Spark Cluster / Job Server configuration
spark {
# spark.master will be passed to each job's JobContext
master = "yarn-client"
# Default # of CPUs for jobs to use for Spark standalone cluster
job-number-cpus = 4
jobserver {
port = 8090
jar-store-rootdir = /tmp/jobserver/jars
jobdao = spark.jobserver.io.JobFileDAO
filedao {
rootdir = /tmp/spark-job-server/filedao/data
}
context-creation-timeout = "60 s"
}
contexts {
my-low-latency-context {
num-cpu-cores = 1
memory-per-node = 512m
}
}
context-settings {
num-cpu-cores = 2
memory-per-node = 512m
}
home = "/data/softwares/spark-1.2.0.2.2.0.0-82-bin-2.6.0.2.2.0.0-2041"
}
spray.can.server {
parsing.max-content-length = 200m
}
spark.driver.allowMultipleContexts = true
YARN_CONF_DIR=/home/spark/conf/
Also how can I give run-time parameters for the spark job, such as --files, --jars ?
For example, I usually run our custom spark job like this:
./spark-1.2.0.2.2.0.0-82-bin-2.6.0.2.2.0.0-2041/bin/spark-submit --class com.demo.SparkDriver --master yarn-cluster --num-executors 3 --jars /tmp/api/myUtil.jar --files /tmp/myConfFile.conf,/tmp/mySchema.txt /tmp/mySparkJob.jar
Number of executors and extra jars are passed in a different way, through the config file (see dependent-jar-uris config setting).
YARN_CONF_DIR should be set in the environment and not in the .conf file.
As for other issues, the google group is the right place to ask. You may want to search it for yarn-client issues, as several other folks have figured out how to get it to work.

Resources