Are DDD Aggregates classes or are they implicit? - domain-driven-design

I mean, is there any PersonAggregate class? I understand it doesn't exist. I only have an entity acting as aggregate root. Is it correct?

I only have an entity acting as aggregate root. Is it correct?
That's correct.
The aggregate is implicit - it's the boundary that separates two disjoint sets of state that can be modified independently of each other. Equivalently, the aggregate is a graph of business state within a model that can be modified without consulting state outside the graph, and vice versa.
The aggregate root is explicit. That's the single entity in the graph that is exposed - which is to say that it serves as the entry point through which all modifications to the graph must pass.
Hypothetically, you could implement an aggregate that has two different exposed entities that can each execute commands to modify the state; Evans introduced the notion of a single aggregate root because multiple entry points is difficult to get correct.

I have seen both solutions used in projects, but most often people do not use this suffix.
One interesting solution for this is make aggregate classes public and non-aggregate classes package(default). You'd see directly from your IDE which classes have which visibility and you can determine easily where is an aggregate. Additionally non-public class cannot be used outside package which is an original intent.

My understanding is an Aggregate Root is an Entity but an Entity might not be an Aggregate Root. Therefore, I view 'Aggregate Root' as more of a stereotype.

Not in domain-driven design. That would be exposing technological jargon, essentially implementation detail, to the domain experts

Related

What is an Aggregate Root?

No, it is not a duplication question.
I have red many sources on the subject, but still I feel like I don't fully understand it.
This is the information I have so far (from multiple sources, be it articles, videos, etc...) about what is an Aggregate and Aggregate Root:
Aggregate is a collection of multiple Value Objects\Entity references and rules.
An Aggregate is always a command model (meant to change business state).
An Aggregate represents a single unit of (database - because essentialy the changes will be persisted) work, meaning it has to be consistent.
The Aggregate Root is the interface to the external world.
An Aggregate Root must have a globally unique identifier within the system
DDD suggests to have a Repository per Aggregate Root
A simple object from an aggregate can't be changed without its AR(Aggregate Root) knowing it
So with all that in mind, lets get to the part where I get confused:
in this site it says
The Aggregate Root is the interface to the external world. All interaction with an Aggregate is via the Aggregate Root. As such, an Aggregate Root MUST have a globally unique identifier within the system. Other Entites that are present in the Aggregate but are not Aggregate Roots require only a locally unique identifier, that is, an Id that is unique within the Aggregate.
But then, in this example I can see that an Aggregate Root is implemented by a static class called Transfer that acts as an Aggregate and a static function inside called TransferedRegistered that acts as an AR.
So the questions are:
How can it be that the function is an AR, if there must be a globaly unique identifier to it, and there isn't, reason being that its a function. what does have a globaly unique identifier is the Domain Event that this function produces.
Following question - How does an Aggregate Root looks like in code? is it the event? is it the entity that is returned? is it the function of the Aggregate class itself?
In the case that the Domain Event that the function returns is the AR (As stated that it has to have that globaly unique identifier), then how can we interact with this Aggregate? the first article clearly stated that all interaction with an Aggregate is by the AR, if the AR is an event, then we can do nothing but react on it.
Is it right to say that the aggregate has two main jobs:
Apply the needed changes based on the input it received and rules it knows
Return the needed data to be persisted from AR and/or need to be raised in a Domain Event from the AR
Please correct me on any of the bullet points in the beginning if some/all of them are wrong is some way or another and feel free to add more of them if I have missed any!
Thanks for clarifying things out!
I feel like I don't fully understand it.
That's not your fault. The literature sucks.
As best I can tell, the core ideas of implementing solutions using domain driven design came out of the world of Java circa 2003. So the patterns described by Evans in chapters 5 and six of the blue book were understood to be object oriented (in the Java sense) domain modeling done right.
Chapter 6, which discusses the aggregate pattern, is specifically about life cycle management; how do you create new entities in the domain model, how does the application find the right entity to interact with, and so on.
And so we have Factories, that allow you to create instances of domain entities, and Repositories, that provide an abstraction for retrieving a reference to a domain entity.
But there's a third riddle, which is this: what happens when you have some rule in your domain that requires synchronization between two entities in the domain? If you allow applications to talk to the entities in an uncoordinated fashion, then you may end up with inconsistencies in the data.
So the aggregate pattern is an answer to that; we organize the coordinated entities into graphs. With respect to change (and storage), the graph of entities becomes a single unit that the application is allowed to interact with.
The notion of the aggregate root is that the interface between the application and the graph should be one of the members of the graph. So the application shares information with the root entity, and then the root entity shares that information with the other members of the aggregate.
The aggregate root, being the entry point into the aggregate, plays the role of a coarse grained lock, ensuring that all of the changes to the aggregate members happen together.
It's not entirely wrong to think of this as a form of encapsulation -- to the application, the aggregate looks like a single entity (the root), with the rest of the complexity of the aggregate being hidden from view.
Now, over the past 15 years, there's been some semantic drift; people trying to adapt the pattern in ways that it better fits their problems, or better fits their preferred designs. So you have to exercise some care in designing how to translate the labels that they are using.
In simple terms an aggregate root (AR) is an entity that has a life-cycle of its own. To me this is the most important point. One AR cannot contain another AR but can reference it by Id or some value object (VO) containing at least the Id of the referenced AR. I tend to prefer to have an AR contain only other VOs instead of entities (YMMV). To this end the AR is responsible for consistency and variants w.r.t. the AR. Each VO can have its own invariants such as an EMailAddress requiring a valid e-mail format. Even if one were to call contained classes entities I will call that semantics since one could get the same thing done with a VO. A repository is responsible for AR persistence.
The example implementation you linked to is not something I would do or recommend. I followed some of the comments and I too, as one commenter alluded to, would rather use a domain service to perform something like a Transfer between two accounts. The registration of the transfer is not something that may necessarily be permitted and, as such, the domain service would be required to ensure the validity of the transfer. In fact, the registration of a transfer request would probably be a Journal in an accounting sense as that is my experience. Once the journal is approved it may attempt the actual transfer.
At some point in my DDD journey I thought that there has to be something wrong since it shouldn't be so difficult to understand aggregates. There are many opinions and interpretations w.r.t. to DDD and aggregates which is why it can get confusing. The other aspect is, in IMHO, that there is a fair amount of design involved that requires some creativity and which is based on an understanding of the domain itself. Creativity cannot be taught and design falls into the realm of tacit knowledge. The popular example of tacit knowledge is learning to ride a bike. Now, we can read all we want about how to ride a bike and it may or may not help much. Once we are on the bike and we teach ourselves to balance then we can make progress. Then there are people who end up doing absolutely crazy things on a bike and even if I read how to I don't think that I'll try :)
Keep practicing and modelling until it starts to make sense or until you feel comfortable with the model. If I recall correctly Eric Evans mentions in the Blue Book that it may take a couple of designs to get the model closer to what we need.
Keep in mind that Mike Mogosanu is using a event sourcing approach but in any case (without ES) his approach is very good to avoid unwanted artifacts in mainstream OOP languages.
How can it be that the function is an AR, if there must be a globaly unique identifier to it, and there isn't, reason being that
its a function. what does have a globaly unique identifier is the
Domain Event that this function produces.
TransferNumber acts as natural unique ID; there is also a GUID to avoid the need a full Value Object in some cases.
There is no unique ID state in the computer memory because it is an argument but think about it; why you want a globaly unique ID? It is just to locate the root element and its (non unique ID) childrens for persistence purposes (find, modify or delete it).
Order A has 2 order lines (1 and 2) while Order B has 4 order lines (1,2,3,4); the unique identifier of order lines is a composition of its ID and the Order ID: A1, B3, etc. It is just like relational schemas in relational databases.
So you need that ID just for persistence and the element that goes to persistence is a domain event expressing the changes; all the changes needed to keep consistency, so if you persist the domain event using the global unique ID to find in persistence what you have to modify the system will be in a consistent state.
You could do
var newTransfer = New Transfer(TransferNumber); //newTransfer is now an AG with a global unique ID
var changes = t.RegisterTransfer(Debit debit, Credit credit)
persistence.applyChanges(changes);
but what is the point of instantiate a object to create state in the computer memory if you are not going to do more than one thing with this object? It is pointless and most of OOP detractors use this kind of bad OOP design to criticize OOP and lean to functional programming.
Following question - How does an Aggregate Root looks like in code? is it the event? is it the entity that is returned? is it the function
of the Aggregate class itself?
It is the function itself. You can read in the post:
AR is a role , and the function is the implementation.
An Aggregate represents a single unit of work, meaning it has to be consistent. You can see how the function honors this. It is a single unit of work that keeps the system in a consistent state.
In the case that the Domain Event that the function returns is the AR (As stated that it has to have that globaly unique identifier),
then how can we interact with this Aggregate? the first article
clearly stated that all interaction with an Aggregate is by the AR, if
the AR is an event, then we can do nothing but react on it.
Answered above because the domain event is not the AR.
4 Is it right to say that the aggregate has two main jobs: Apply the
needed changes based on the input it received and rules it knows
Return the needed data to be persisted from AR and/or need to be
raised in a Domain Event from the AR
Yes; again, you can see how the static function honors this.
You could try to contat Mike Mogosanu. I am sure he could explain his approach better than me.

Should I avoid aggregates (DDD) in a system without an event store?

I'm looking into the possibility of adopting the concept of (root) aggregates from domain-driven design in a system without an event store. However, the more I discover about the two, the more it feels like the one cannot exist without the other.
I haven't finished reading the blue book yet, but my understanding of a root aggregate so far is that it's a "tree" of aggregates that needs to be consistent within that root aggregate. An aggregate can only be modified through the root aggregate it belongs to. Finally, a root can basically be defined by "does it make sense to have this aggregate independent and can it exist by itself in this domain?".
Imagine a green-field project where it doesn't make sense to engineer event sourcing yet, but might benefit from it in the future. The absence of an event store would eliminate the possibility to keep track of all the domain events shaping a root aggregate at a specific point in time. The commands would have to mutate the root aggregate. In addition, the read side would be limited to react on "root aggregate {id} has updated" as there's no event replayability.
Is there any reasonable way for the concept of (root) aggregates to exist without an event store, or should one stick to the "traditional" entity modeling until it makes sense to invest in event sourcing?
I believe you are confusing things. There's no such thing as root aggregate or a tree of aggregates.
The main purpose of the aggregate tactical pattern in DDD to exist is to define the consistency boundary, which technically translates to the transactional boundary. Everything inside one aggregate can change when you handle a single command, but no more.
An aggregate can consist of several entity types. However, only one entity type serves as the aggregate root. The aggregate root id is the identity for the whole aggregate. Other entities inside the aggregate will have their ids (otherwise these aren't entities but value objects) but those entities cannot be amended or referred directly from outside of the aggregate and all operations on all entities inside one aggregate go vis the aggregate root.
The most typical example of an aggregate is the Order, where Order itself (or OrderHead if you like) is the root and OrderLine is the entity. You can have multiple order lines for one order but all operations on any line go via the root.
There's no direct and explicit connection between the aggregate pattern and event-sourcing. Event-sourcing is the implementation details. Eric Evans book doesn't even mention event-sourcing as such and it has quite a few examples of aggregates.
Event-sourcing is the way to persist data. In fact, event-sourcing is completely unrelated to DDD, although Greg Young originally proposed using event-sourcing as the way to persist aggregates by storing domain events.
When you have a pure domain model, it doesn't really matter from the domain model side what persistence mechanism you use. Many event-sourced systems have no concept of aggregate at all. For example, The New York Times has built an event-sourced content management system without any DDD tactical pattern in mind. From the other side, the majority of systems that use tactical DDD patterns do not use event-sourcing and use just state-based persistence.

DDD - Aggregates for read-only

If we are working on a sub-domain where we're only dealing with a read-only scenario, meaning that our entities and value objects will not be changed, does it make sense to create aggregates composed by roots and its children or should each entity of this context map to a single aggregate?
Imagine that we've entity A and entity B.
In a context where modifications are made, we create an aggregate composed by entity A and entity B, where A is the aggregate root (let's say that B can't live without A and there are some invariants involved).
If we move the same entities to a different context where no modifications are made, does it make sense to keep this aggregate or should we create an aggregate for entity A and a different one for entity B?
In 2019, there's fairly large support for the idea that in a read only scenario, you don't bother with the domain model at all.
Just load the data directly into whatever read only data structure makes sense to support the use case.
See also: cqrs.
The first thing is if B cant live without A and there are some invariants involved, to me A is an Aggregate root, with B being an entity that belongs to it.
Aggregate roots represent a real world concept and dont just exist for the convenience of modification. In many of our applications, we don't modify state of our aggregate roots once created - i.e. we in effect have immutable aggregate roots. These would have some logic for design by contract checks/invariant checks etc but they are in effect anaemic as there is no "Update" methods due to its immutability. Since the "blue book" was written by Eric Evans, alot of things have changed, e.g. the concept of NoSql database have become very popular, functional programming concepts have become very influential rising to more advanced DDD style architectures being recommended such as CQRS. So for example, rather than doing updates to a database I can append (i.e. insert) instead. This leads to aggregates no longer having to be "updated". This leads to leaner anaemic types but this is what we want in this context. The issue before with anaemic types was that "update logic" for a given type was put elsewhere in the codebase instead of being put into the type itself. However if you do not require "update logic" in the first place then you dont have that problem!
If for example there is an Order with many OrderItems, we would create an Order aggregate root and an OrderItem entity. Its a very important concept to distill your domain to properly identify what are aggregates, entities and value types.
Then creation of domain services, repositories etc just flows naturally. For example, aggregate roots and repositories are 1 to 1 i.e. in the example above we would have an Order repository and not have an OrderItem repository. That way your main domain concepts are spread throughout your code in a predictable and easy to understand way.
Finally, in your specific question I would not treat them as the same entities. In one context, you seem to need modification logic - in the other they you dont - they are separate domain concepts to me.
In context where modifications are made: A=agg root, B=entity.
In context without modifications: A=agg root (immutable), B=entity(immutable)

DDD - Is Aggregate root as factory ok?

Is it ok for my aggregate root to act as a factory for entities that he manages?
E.G: is it ok for my aggregate root "Question" to instantiate a entity "Answer"?
Is it ok for my aggregate root to act as a factory for entities that he manages?
Almost.
The aggregate root isn't an entity as such, but a role played by an entity. Think interface - it gives the application a restricted access to the domain model, encapsulating the actual implementation.
It's natural to have the aggregate be responsible for its own state; after all, all of the components of the aggregate are going to be drawn from the same data model (they are persisted together).
Within your entity (which is acting as the aggregate root), you want your code to align as closely as possible with the language of the domain. That will usually mean that you don't have a "factory", as in the design pattern, but instead have some entity in the model that produces the managed entities.
Udi Dahan touched on this, somewhat obliquely, when he wrote Don't Create Aggregate Roots.
Customers don’t just appear out of thin air.
The entities in your model all come from other entities in your model. Turtles all the way down.
So introducing the factory design pattern into the domain language is a bit sketch.
Because the domain model lives in memory... because its unusual for the domain model to have side effects... a lot of the usual motivations for abstracting connection points don't apply. If you find yourself, for example, wanting to inject a mock into your domain model for unit testing, then something has gone badly wrong (into domain services, yes, but not into entities).
Yes, it is, if the code is a simple new Answer (someArguments, ...).
If it is a more complicated process then you should extract this code into a AnswerFactory class.
EDIT:
The desire to create a clean code dictates this and not DDD. A rule from DDD that is relevant to your question is that Domain (so all classes from the Domain layer) should not depend on any other layers (like Infrastructure or Application).

Do we need another repo for each entity?

For example take an order entity. It's obvious that order lines don't exist without order. So we have to get them with the help of OrderRepository(throw an order entity). Ok. But what about other things that are loosely coupled with order? Should the customer info be available only from CustomerRepo and bank requisites of the seller available from BankRequisitesRepo, etc.? If it is correct, we should pass all these repositories to our Create Factory method I think.
Yes. In general, each major entity (aggregate root in domain driven design terminology) should have their own repositories. Child entities *like order lines) will generally not need one.
And yes. Define each repository as a service then inject them where needed.
You can even design things such that there is no direct coupling between Order and Customer in terms of an actual database link. This in turn allows customers and orders to live in completely independent databases. Which may or may not be useful for your applications.
You correctly understood that aggregate roots's (AR) child entities shall not have their own repository, unless they are themselves AR's. Having repositories for non-ARs would leave your invariants unprotected.
However you must also understand that entities should usually not be clustered together for convenience or just because the business states that some entity has one or many some other entity.
I strongly recommend that you read Effective Aggregate Design by Vaughn Vernon and this other blog post that Vaughn kindly wrote for a question I asked.
One of the aggregate design rule of thumb stated in Effective Aggregate Design is that you should usually reference other aggregates by identity only.
Therefore, you greatly reduce the number of AR instances needed in other AR's creationnal process since new Order(customer, ...) could become new Order(customerId, ...).
If you still find the need to query other AR's in one AR's creationnal process, then there's nothing wrong in injecting repositories as dependencies, but you should not depend on more than you need (e.g. let the client resolve the real dependencies and pass them directly rather than passing in a strategy allowing to resolve a dependency).

Resources