Polygon triangulation with collinear points? - node.js

I have a polygon with collinear points. I want to triangulate the polygon while retaining all the collinear points, since I require those vertices on the generated meshes. Currently I tried to use poly2tri, but it doesn't support collinear points. Is there a polygon triangulation algorithm which support collinear points?

Try moving the points slightly, so they are not colinear. Doing the meshing and then moving the points back.
I tried running the meshing algorithm, then perturbing all the points it missed, then running it again.
It can be quite slow but it does work.

A simple polygon with collinear vertices presents a serious problem for the "ear splitting" triangulation. The best example to see this problem - sketch yourself a 5-point star. Pick any of the points as the convex vertex for a candidate ear.
The diagonal for this ear lies completely within the polygon, and doesn't form "X" intersections with any of the other edges, so by the criteria for a "valid diagonal", it should work. But, notice that once you slice off the ear, the remaining polygon is no longer a simple polygon - because it contains two vertices where the edges meet at a straight (180 deg.) angle. That alone disqualifies the new sub-polygon as "simple", and it will crash any attempt to continue triangulation on it using ear-splitting. I will post a separate question on how best to triangulate these ill-conditioned polys.

Related

Sphere and nonuniform object intersection

I have two objects: A sphere and an object. Its an object that I created using surface reconstruction - so we do not know the equation of the object. I want to know the intersecting points on the sphere when the object and the sphere intersect. If we had a sphere and a cylinder, we could solve for the equation and figure out the area and all that but the problem here is that the object is not uniform.
Is there a way to find out the intersecting points or area on the sphere?
I'd start by finding the intersection of triangles with the sphere. First find the intersection of each triangle's plane and the sphere, which gives a circle. Then find the circle's intersection/s with the triangle edges in 2D using line/circle tests. The result will be many arcs which I guess you could approximate with lines. I'm not really sure where to go from here without knowing the end goal.
If it's surface area you're after, maybe a numerical approach would be better. I'd cover the sphere in points and count the number inside the non-uniform object. To find if a point is inside, maybe trace outwards and count the intersections with the surface (if it's odd, the point is inside). You could use the stencil buffer for this if you wanted (similar to stencil shadows).
If you want the volume of intersection a quick google search gives "carve", a mesh based CSG library.
Starting with triangles versus the sphere will give you the points of intersection.
You can take the arcs of intersection with each surface and combine them to make fences around the sphere. Ideally your reconstructed object will be in winged-edge format so you could just step from one fence segment to the next, but with reconstructed surfaces I guess you might need to apply some slightly fuzzy logic.
You can determine which side of each fence is inside the reconstructed object and which side is out by factoring in the surface normals along the fence.
You can then cut the sphere along the fences and add the internal bits to the display.
For the other side of things you could remove any triangle completely inside the sphere and cut those that intersect.

Convex hull of parallel lines

I have arbitrary many lines in 3D space which are all parallel to each other. Now I want to find the convex hull of these lines. To illustrate this, I've drawn a picture:
I know the start- and endpoints of all lines (the blue dots). The lines are not equally long. If a viewer looks in the direction of the lines (marked as the viewer direction in the pic) he sees only the dots. Now I want to find the convex hull of these dots. Hopefully its clear what I mean.
My idea was to project the start or endpoints on a plane which is perpendicular to the line's direction. After that I can apply some kind of convex hull algorithm to these points. But I have no idea how.
Your idea is exactly correct. One way to accomplish this is to define a vector v along your viewing direction, and then rotate v to the z-axis. The same rotation will convert lines to vertical lines. Then drop the z-coordinate of the endpoints to get your projected points. Then compute the convex hull. There are hull algorithms all over the web, including my own here.
Here's a suggestion based on the calculus of variations.
Consider enclosing your collection of parallel line segments in a simple closed curve minimizing the area of the curve given the constraint that it has to enclose all your segments.
Your "curve" is going to be piecewise linear, so there you might be able to use a P.W basis function in the iterations, though it's possible that you could run into some singularities when the algorithm needs to drop a segment.

Given an irregular polygon's vertex list, how to create internal triangles to build a flat 3D mesh efficiently?

I'm using Unity, but the solution should be generic.
I will get user input from mouse clicks, which define the vertex list of a closed irregular polygon.
That vertices will define the outer edges of a flat 3D mesh.
To procedurally generate a mesh in Unity, I have to specify all the vertices and how they are connected to form triangles.
So, for convex polygons it's trivial, I'd just make triangles with vertices 1,2,3 then 1,3,4 etc. forming something like a Peacock tail.
But for concave polygons it's not so simple.
Is there an efficient algorithm to find the internal triangles?
You could make use of a constrained Delaunay triangulation (which is not trivial to implement!). Good library implementations are available within Triangle and CGAL, providing efficient O(n*log(n)) implementations.
If the vertex set is small, the ear-clipping algorithm is also a possibility, although it wont necessarily give you a Delaunay triangulation (it will typically produce sub-optimal triangles) and runs in O(n^2). It is pretty easy to implement yourself though.
Since the input vertices exist on a flat plane in 3d space, you could obtain a 2d problem by projecting onto the plane, computing the triangulation in 2d and then applying the same mesh topology to your 3d vertex set.
I've implemented the ear clipping algorithm as follows:
Iterate over the vertices until a convex vertex, v is found
Check whether any point on the polygon lies within the triangle (v-1,v,v+1). If there are, then you need to partition the polygon along the vertices v, and the point which is farthest away from the line (v-1, v+1). Recursively evaluate both partitions.
If the triangle around vertex v contains no other vertices, add the triangle to your output list and remove vertex v, repeat until done.
Notes:
This is inherently a 2D operation even when working on 3D faces. To consider the problem in 2D, simply ignore the vector coordinate of the face's normal which has the largest absolute value. (This is how you "project" the 3D face into 2D coordinates). For example, if the face had normal (0,1,0), you would ignore the y coordinate and work in the x,z plane.
To determine which vertices are convex, you first need to know the polygon's winding. You can determine this by finding the leftmost (smallest x coordinate) vertex in the polygon (break ties by finding the smallest y). Such a vertex is always convex, so the winding of this vertex gives you the winding of the polygon.
You determine winding and/or convexity with the signed triangle area equation. See: http://softsurfer.com/Archive/algorithm_0101/algorithm_0101.htm. Depending on your polygon's winding, all convex triangles with either have positive area (counterclockwise winding), or negative area (clockwise winding).
The point-in-triangle formula is constructed from the signed-triangle-area formula. See: How to determine if a point is in a 2D triangle?.
In step 2 where you need to determine which vertex (v) is farthest away from the line, you can do so by forming the triangles (L0, v, L1), and checking which one has the largest area (absolute value, unless you're assuming a specific winding direction)
This algorithm is not well defined for self-intersecting polygons, and due to the nature of floating point precision, you will likely encounter such a case. Some safeguards can be implemented for stability: - A point should not be considered to be inside your triangle unless it is a concave point. (Such a case indicates self-intersection and you should not partition your set along this vertex). You may encounter a situation where a partition is entirely concave (i.e. it's wound differently to the original polygon's winding). This partition should be discarded.
Because the algorithm is cyclic and involves partitioning the sets, it is highly efficient to use a bidirectional link list structure with an array for storage. You can then partition the sets in 0(1), however the algorithm still has an average O(n^2) runtime. The best case running time is actually a set where you need to partition many times, as this rapidly reduces the number of comparisons.
There is a community script for triangulating concave polygons but I've not personally used it. The author claims it works on 3D points as well as 2D.
One hack I've used in the past if I want to constrain the problem to 2D is to use principal component analysis to find the 2 axes of greatest change in my 3D data and making these my "X" and "Y".

Convex hull of (longitude, latitude)-points on the surface of a sphere

Standard convex hull algorithms will not work with (longitude, latitude)-points, because standard algorithms assume you want the hull of a set of Cartesian points. Latitude-longitude points are not Cartesian, because longitude "wraps around" at the anti-meridian (+/- 180 degrees). I.e., two degrees east of longitude 179 is -179.
So if your set of points happens to straddle the anti-meridian, you will compute spurious hulls that stretch all the way around the world incorrectly.
Any suggestions for tricks I could apply with a standard convex hull algorithm to correct for this, or pointers to proper "geospherical" hull algorithms?
Now that I think on it, there are more interesting cases to consider than straddling the anti-merdian. Consider a "band" of points that encircle the earth -- its convex hull would have no east/west bounds. Or even further, what is the convex hull of {(0,0), (0, 90), (0, -90), (90, 0), (-90, 0), (180, 0)}? -- it would seem to contain the entire surface of the earth, so which points are on its perimeter?
Standard convex hull algorithms are not defeated by the wrapping-around of the coordinates on the surface of the Earth but by a more fundamental problem. The surface of a sphere (let's forget the not-quite-sphericity of the Earth) is not a Euclidean space so Euclidean geometry doesn't work, and convex hull routines which assume that the underlying space is Euclidean (show me one which doesn't, please) won't work.
The surface of the sphere conforms to the concepts of an elliptic geometry where lines are great circles and antipodal points are considered the same point. You've already started to experience the issues arising from trying to apply a Euclidean concept of convexity to an elliptic space.
One approach open to you would be to adopt the definitions of geodesic convexity and implement a geodesic convex hull routine. That looks quite hairy. And it may not produce results which conform to your (generally Euclidean) expectations. In many cases, for 3 arbitrary points, the convex hull turns out to be the entire surface of the sphere.
Another approach, one adopted by navigators and cartographers through the ages, would be to project part of the surface of the sphere (a part containing all your points) into Euclidean space (which is the subject of map projections and I won't bother you with references to the extensive literature thereon) and to figure out the convex hull of the projected points. Project the area you are interested in onto the plane and adjust the coordinates so that they do not wrap around; for example, if you were interested in France you might adjust all longitudes by adding 30deg so that the whole country was coordinated by +ve numbers.
While I'm writing, the idea proposed in #Li-aung Yip's answer, of using a 3D convex hull algorithm, strikes me as misguided. The 3D convex hull of the set of surface points will include points, edges and faces which lie inside the sphere. These literally do not exist on the 2D surface of the sphere and only change your difficulties from wrestling with the not-quite-right concept in 2D to quite-wrong in 3D. Further, I learned from the Wikipedia article I referenced that a closed hemisphere (ie one which includes its 'equator') is not convex in the geometry of the surface of the sphere.
Instead of considering your data as latitude-longitude data, could you instead consider it in 3D space and apply a 3D convex hull algorithm? You may be able to then find the 2D convex hull you desire by analysing the 3D convex hull.
This returns you to well-travelled algorithms for cartesian convex hulls (albeit in three dimensions) and has no issues with wrap around of the coordinates.
Alternately, there's this paper: Computing the Convex Hull of a Simple Polygon on the Sphere (1996) which seems to deal with some of the same issues that you're dealing with (coordinate wrap-around, etc.)
If all your points are within a hemisphere (that is, if you can find a cut plane through the center of the Earth that puts them all on one side), then you can do a central a.k.a. gnomic a.k.a. gnomonic projection from the center of the Earth to a plane parallel to the cut plane. Then all great circles become straight lines in the projection, and so a convex hull in the projection will map back to a correct convex hull on the Earth. You can see how wrong lat/lon points are by looking at the latitude lines in the "Gnomonic Projection" section here (notice that the longitude lines remain straight).
(Treating the Earth as a sphere still isn't quite right, but it's a good second approximation. I don't think points on a true least-distance path across a more realistic Earth (say WGS84) generally lie on a plane through the center. Maybe pretending they do gives you a better approximation than what you get with a sphere.)
FutureNerd:
You are absolutely correct. I had to solve the exact same problem as Maxy-B for my application. As a first iteration, I just treated (lng,lat) as (x,y) and ran a standard 2D algorithm. This worked fine as long as nobody looked too close, because all my data were in the contiguous U.S. As a second iteration, though, I used your approach and proved the concept.
The points MUST be in the same hemisphere. As it turns out, choosing this hemisphere is non-trivial (it's not just the points' center, as I had initially guessed.) To illustrate, consider the following four points: (0,0), (-60,0), (+60,0) along the equator, and (0,90) the north pole. However you choose to define "center", their center lies on the north pole by symmetry and all four points are in the Northern Hemisphere. However, consider replacing the fourth point with, say (-19, 64) iceland. Now their center is NOT on the north pole, but asymmetrically drawn toward iceland. However, all four points are still in the Northern Hemisphere. Further, the Northern Hemisphere, as uniquely defined by the North Pole, is the ONLY hemisphere they share. So calculating this "pole" becomes algorithmic, not algebraic.
See my repository for the Python code:
https://github.com/VictorDavis/GeoConvexHull
This question has been answered a while ago, but I would like to sum up the results of my research.
The spherical convex hull is basically defined only for non-antipodal points. Supposing all the points are on the same hemisphere, you can compute their convex hull in two main ways:
Project the points to a plane using gnomonic/central projection and apply a planar convex hull algorithm. See Lin-Lin Chen, T. C. Woo, "Computational Geometry on the Sphere With Application to Automated Machining" (1992). If the points are on a known hemisphere, you can hard-code on which plane to project the points unto.
Adapt planar convex hull algorithms to the sphere. See C. Grima and A. Marquez, "Computational Geometry on Surfaces: Performing Computational Geometry on the Cylinder, the Sphere, the Torus, and the Cone", Springer (2002). This reference seems to give a similar method to the abstract referenced by Li-aung Yip above.
For reference, in Python I am working on an implementation of my own, which currently works only for points on the Northern hemisphere.
See also this question on Math Overflow.
All edges of a spherical convex hull can be viewed/treated as great circles (seminally, all edges of a convex hull in euclidean space can be treated as lines (rather than a line segment)). Each one of these great circles cuts the sphere into two hemispheres. You could thus conceive each great circle as a constraint. A point that is within the convex hull will be on each of the hemispheres defined by each constraint.
Each edge of the original polygon is a candidate edge of the convex hull. To verify if it is indeed an edge of the convex hull, you'd simply need to verify if all nodes of the polygon are on the hemisphere defined by the great circle that goes through the two nodes of the edge in question. However, we'd still need to create new edges that surpass the concave nodes of the polygon.
But lets rather shortcut / brute-forces this:
Draw a great circle between every pair of nodes in the polygon. Do this in both directions (i.e. the great circle connecting A to B and the great circle connecting B to A). For a polygon with N nodes, you will thus end up with N^2 great circle. Each one of these great circles is a candidate constraint (i.e. a candidate edge of the convex polygon). Some of these great circles will overlap with the edges of the original polygon, but most won't. Now, remember again: each great circle is a constraint that constrains the sphere to one hemisphere. Now verify if all nodes of the original polygon satisfy the constraint (i.e. if all nodes are on the hemisphere defined by the great circle). If yes, then this great circle is an edge of the convex hull. If, however a single node of the original polygon does not satisfy the constraint, then it isn't and you can discard this great circle.
The beauty of this is that once you converted your latitudes and longitudes into cartesian vectors pointing onto the unit sphere, it really just requires dot products and cross products
- You find the great circle that passes through two points on a sphere by its cross product
- A point is on the hemisphere defined by a great circle if the dot product of the great circle and the point is greater (or equal) to 0.
So even for polygons with a large number of edges, this brute force method should work just fine.

Minimize Polygon Vertices

What is a good algorithm for reducing the number of vertices in a polygon without changing the way it looks very much?
Input: A polygon, represented as a list of points, with way too many verticies: raw input from the mouse, for example.
Output: A polygon with much fewer verticies that still looks a lot like the original: something usable for collision detection, for example (not necessarily convex).
Edit: The solution to this would be similar to finding a multi-segmented line of best fit on a graph. It's called Segmented Least Squares in my algorithms book.
Edit2: The Douglas Peucker Algorithm is what I really want.
Edit: Oh look, Simplifying Polygons
You mentioned collision detection. You could go really simple and calculate a bounding convex hull around it.
If you cared about the concave areas, you can calculate a concave hull by taking the centroid of your polygon, and choosing a point to start. From the starting point rotate around the centroid, finding each vertex you want to keep, and assigning that as the next vertex in the bounding hull. The complexity of the algorithm would come in how you determined which vertices to keep, but I'm sure you thought of that already. You can throw all your vertices into buckets based on their location relative to the centroid. When a bucket gets more than an arbitrary number of vertices full, you can split it. Then take the mean of the vertices in that bucket as the vertex to use in your bounding hull. Or, forget the buckets, and when you're moving around the centroid, only choose a point if its more than a given distance from the last point.
Actually, you could probably just use all the vertices in your polygon as "cloud of points" and calculate the concave hull around that. I'll look for an algorithm link. Worst case on this would be a completely convex polygon.
Another alternative is to start with a bounding rectangle. For each vertex on the rectangle, find the distance from the point to the polygon. For the farthest vertex, split it into two more vertices and move them in some. Repeat until some proportion of either vertices or area is met. I'd have to think about the details of this one a little more.
If you care about the polygon actually looking similar, even in the case of a self-intersecting polygon, then another approach would be required, but it doesn't sound like thats necessary since you asked about collision detection.
This post has some details about the convex hull part.
There's a lot of material out there. Just google for things like "mesh reduction", "mesh simplification", "mesh optimization", etc.

Resources