I am able to open a 3DS file in MeshLab and when I export to Collada DAE format the textures are visible but they are not being projected onto the mesh in the same way as the preview in MeshLab. For example, the front/back faces of a cube would have the proper texture (suppose it's a polka dot) but the top and bottom have a striped look. How can I apply a single texture and have it appear as intended on all faces, like the imported model before I convert it?
This problem is a result of the end software being used to view the DAE file. It's not a problem with MeshLab.
For example, if loading the file into Away3D be sure to handle the texture materials using the TextureMaterial class instead of the simpler SinglePassMaterialBase such as what you might find in their example code. Here is what I use now, and it displays texture properly:
var material:TextureMaterial = cast(asset, TextureMaterial);
material.ambientColor = 0xffffff;
material.lightPicker = _lightPicker;
material.shadowMethod = new FilteredShadowMapMethod(_light);
material.lightPicker = _lightPicker;
material.gloss = 30;
material.specular = 1;
material.ambient = 1;
material.repeat = true;
I'm trying to implement the Gaussian blur filter on Graphics object, but I can't find function for get pixel information or transform Graphics object to byte array (with RGB data).
That isn't supported since hardware accelerated surfaces might not provide that information.
However, you can do something else. Just paint the current form onto a mutable image and then just get the RGB of the mutable image which you can then use to create a new Image from an RGB e.g. something close to this:
Display d = Display.getInstance();
Image img = Image.createImage(d.getDisplayWidth(), d.getDisplayHeight());
Graphics g = img.getGraphics();
d.getCurrent().paintBackgrounds(g);
d.getCurrent().paintComponent(g, false);
int[] bufferArray = img.getRGB();
// blur...
Image blurredImage = Image.createImage(bufferArray, img.getWidth(), img.getHeight());
I have written a code which plots multiple 3d points as spheres. I want to add some text near each sphere in 3D to mention some info about each point. But I have vtkPoints to store points positions which doesn't have GetOutputPort which I need in labelMApper (and also used glyph3d to make spheres)
vtkSmartPointer<vtkLabeledDataMapper> labelMapper = vtkSmartPointer<vtkLabeledDataMapper>::New();
labelMapper->SetInputConnection( vtkpoints->GetOutputPort() ); // No GetOutputPort()
vtkSmartPointer<vtkActor2D> labelActor = vtkSmartPointer<vtkActor2D>::New();
labelActor->SetMapper(labelMapper);
renderer->AddActor(labelActor);
You should construct a vtkPolyData from the points and set it as Input to the label mapper.
Something like this:
vtkNew<vtkPolyData> labelPolyData;
labelPolyData->SetPoints(labelPoints);
labelMapper->SetInput(labelPolyData); // Note: If you're using VTK from master (6.x), this is SetInputData(...)
renderer->AddActor2D(labelActor);
I have a KML file with placemarkers, each of which has polygon coordinates. I'd like to change the fill color of the polygons on the fly, depending on values I read in from a json file. My understanding is that Google caches kml files, so you can't easily change the fill color of polygons on the fly.
So I'm trying to convert my kml polygons into svg paths so that I can use Raphael to place my polygons on my Google map. Then I can change fill colors with javascript.
But how do I convert polygon coordinates to svg paths, does anyone know?
A sample set of coordinates would be:
<Polygon><outerBoundaryIs><LinearRing><coordinates>-80.098181,40.42127 -80.096479,40.421262 -80.096464,40.421409 -80.096448,40.421551 -80.096444,40.421583 -80.096434,40.421666 -80.096406,40.421931 -80.096389,40.422087 -80.096353,40.422423 -80.09583,40.426101 -80.095525,40.428234 -80.095315,40.429714 -80.095276,40.429989 -80.092585,40.428593 -80.092273,40.428431 -80.09069,40.430519 -80.090384,40.430924 -80.08989,40.430618 -80.089699,40.4305 -80.089499,40.430359 -80.088738,40.429886 -80.088418,40.429688 -80.088254,40.429585 -80.087931,40.429384 -80.087086,40.428859 -80.086867,40.428722 -80.086658,40.428592 -80.086493,40.42849 -80.08617,40.428282 -80.086177,40.428265 -80.08621,40.428188 -80.0864,40.427742 -80.086397,40.42749 -80.086394,40.427125 -80.08631,40.426427 -80.086335,40.425887 -80.086235,40.425409 -80.085776,40.425327 -80.085442,40.42527 -80.084993,40.424585 -80.085076,40.42448 -80.085542,40.423842 -80.085679,40.423125 -80.085659,40.423011 -80.085626,40.422827 -80.085191,40.421758 -80.08467,40.420859 -80.084258,40.420336 -80.083828,40.4201 -80.083078,40.420005 -80.082504,40.420072 -80.081444,40.420196 -80.080888,40.420181 -80.080775,40.420178 -80.080604,40.420173 -80.080122,40.420161 -80.079753,40.420151 -80.07947,40.420144 -80.079287,40.420139 -80.078239,40.420296 -80.077661,40.420418 -80.076213,40.420726 -80.075673,40.420766 -80.075298,40.420719 -80.075127,40.420625 -80.074909,40.420307 -80.075028,40.419779 -80.07539,40.419028 -80.07583,40.41836 -80.076065,40.418108 -80.076528,40.417616 -80.077217,40.417124 -80.077503,40.417002 -80.077725,40.416907 -80.078391,40.416622 -80.078614,40.416528 -80.078657,40.41651 -80.078693,40.416491 -80.078755,40.416457 -80.079174,40.416233 -80.079205,40.416217 -80.079292,40.416128 -80.079439,40.415977 -80.079456,40.41596 -80.079614,40.415473 -80.079604,40.415377 -80.079584,40.415179 -80.07958,40.415168 -80.079539,40.415042 -80.079499,40.414915 -80.079407,40.414785 -80.079742,40.414965 -80.08086,40.415568 -80.081458,40.415889 -80.081535,40.41593 -80.082292,40.416343 -80.08238,40.416392 -80.082597,40.41651 -80.082624,40.416525 -80.082787,40.416614 -80.083508,40.417007 -80.083934,40.417239 -80.084422,40.417505 -80.084622,40.417432 -80.084852,40.417348 -80.085329,40.417179 -80.085419,40.417141 -80.085948,40.41695 -80.086252,40.417184 -80.088463,40.418885 -80.088964,40.418631 -80.089036,40.418595 -80.089145,40.418539 -80.089173,40.418525 -80.089346,40.418438 -80.089376,40.418457 -80.089398,40.418471 -80.089964,40.418827 -80.090299,40.419055 -80.091306,40.419739 -80.091642,40.419967 -80.091803,40.420088 -80.091966,40.420043 -80.092445,40.419915 -80.092561,40.419885 -80.096792,40.418748 -80.098853,40.41815 -80.098868,40.418242 -80.09943,40.421273 -80.098181,40.42127</coordinates></LinearRing></outerBoundaryIs></Polygon>
Disclaimer: I'm a bit rusty on geodetics, but think your #1 problem here is the coordinate system - lat, lng are projection-dependent data points, whereas your screen is a flat pixel one. What you need to do is convert these to northing and easting points first.
There is a projection conversion library out there called proj.4 - use this to convert your coordinates. If needed, there is a javascript port of it that you can easily adapt for your use at https://trac.osgeo.org/proj/
Generic conversion process would go like this (LAT, LNG are actual coordinates.)
var source = new Proj4js.Proj('WGS84');
var dest = new Proj4js.Proj('GOOGLE');
var p = new Proj4js.Point( LATITUDE, LONGITUDE ); // replace with actual coords!
var pdest = Proj4js.transform(source, dest, p);
At this point, pdest.x and pdest.y will contain your SVG-compatible coordinates.
After your coordinates are converted to pixel units, simply plot them - and mind the range and units. Northing and easting coordinates will be in 800,000 range, so you will likely be applying some transformations, such as translation and scaling.
End result should look like this (being rusty, I may have messed up and flipped lat/lng around, etc.)
Here's a working jsfiddle with a conversion and plot: http://jsfiddle.net/LPzKV/1/
I have a 16x16 bitmap and want to create an SVG that contains 16x16 squares with the colors of the pixels of the image. Is there an easy way to achieve this?
My current thoughts go into the direction of using Python and PIL to read the bitmap image and dynamically create an SVG image file with the corresponding objects. But this feels a little clumsy and like reinventing the wheel.
Is there a better way to do this?
If you don't need the output to be SVG, I would suggest using an HTML5 Canvas where you can sample the pixels of the image client-side (using getImageData() on the context) and then draw your own up-scaled image. Or, if you need SVG, you could still use Canvas for the image sampling and then use procedurally-created <rect/> elements in SVG for each pixel.
I've written an example using just HTML Canvas so you can see how to do this. In short:
function drawPixelated(img,context,zoom,x,y){
if (!zoom) zoom=4; if (!x) x=0; if (!y) y=0;
if (!img.id) img.id = "__img"+(drawPixelated.lastImageId++);
var idata = drawPixelated.idataById[img.id];
if (!idata){
var ctx = document.createElement('canvas').getContext('2d');
ctx.width = img.width;
ctx.height = img.height;
ctx.drawImage(img,0,0);
idata = drawPixelated.idataById[img.id] = ctx.getImageData(0,0,img.width,img.height).data;
}
for (var x2=0;x2<img.width;++x2){
for (var y2=0;y2<img.height;++y2){
var i=(y2*img.width+x2)*4;
var r=idata[i ];
var g=idata[i+1];
var b=idata[i+2];
var a=idata[i+3];
context.fillStyle = "rgba("+r+","+g+","+b+","+(a/255)+")";
context.fillRect(x+x2*zoom, y+y2*zoom, zoom, zoom);
}
}
};
drawPixelated.idataById={};
drawPixelated.lastImageId=0;
If you really need SVG involved, I'd be happy to write an example that dynamically generated that.
Edit: OK, I've created an SVG version just for fun and practice. :)
As an aside (from an initial misreading of your question) this demo file from ASVG3 their old SVG Examples Page shows how to use some complex compositing of many different effects to create pixelation on arbitrary vector data. Unfortunately the demo does not load in Chrome, having been hardwired to require the (now-discontinued) Adobe SVG Viewer.