New type declaring functions? - haskell

I'm familiar with the newtype declaration:
newtype MyAge = Age {age :: Int} deriving (Show, Eq, Ord)
In this instance Age is an Int, however I've come across the code below and I can't understand it:
newtype Ages a = Ages {age :: String -> [(a,String)]}
This appears to be a function declaration? (takes string, returns list of tuples containing 'a' and string) - is this correct?
N.B I've just realized this is just basic record syntax to declare a function.
Additionally, I've tried to implement this type, but I must be doing something wrong:
newtype Example a = Example {ex :: Int -> Int}
myexample = Example {ex = (\x -> x + 1)}
This compiles, however I don't understand why as I haven't passed the 'a' parameter?

This appears to be a function declaration?
Yes. Specifically, String -> [(a,String)] is a function type. A newtype declaration is analogous to a simple wrapper around any given type. There's no restriction that says you can't make it based on a function type, and it works in exactly the same way.
Also remember that you can always replace newtype with data; in this case, thinking about the resulting type as a record type that has a field that is a function might be helpful; newtype is just a special, optimized case.
One other thing to mention is that your two lines also differ in that the second one is parametrized over a. This can of course be used with regular types:
newtype MyWrapper a = MyWrapper a
or a function type can be newtype-d without parametrisation
newtype MyFunction = MyFunction (Float -> Float)
You can also write the above using the record syntax that gives you the "getter" function as well.

Related

How does the :: operator syntax work in the context of bounded typeclass?

I'm learning Haskell and trying to understand the reasoning behind it's syntax design at the same time. Most of the syntax is beautiful.
But since :: normally is like a type annotation, How is it that this works:
Input: minBound::Int
Output: -2147483648
There is no separate operator: :: is a type annotation in that example. Perhaps the best way to understand this is to consider this code:
main = print (f minBound)
f :: Int -> Int
f = id
This also prints -2147483648. The use of minBound is inferred to be an Int because it is the parameter to f. Once the type has been inferred, the value for that type is known.
Now, back to:
main = print (minBound :: Int)
This works in the same way, except that minBound is known to be an Int because of the type annotation, rather than for some more complex reason. The :: isn't some binary operation; it just directs the compiler that the expression minBound has the type Int. Once again, since the type is known, the value can be determined from the type class.
:: still means "has type" in that example.
There are two ways you can use :: to write down type information. Type declarations, and inline type annotations. Presumably you've been used to seeing type declarations, as in:
plusOne :: Integer -> Integer
plusOne = (+1)
Here the plusOne :: Integer -> Integer line is a separate declaration about the identifier plusOne, informing the compiler what its type should be. It is then actually defined on the following line in another declaration.
The other way you can use :: is that you can embed type information in the middle of any expression. Any expression can be followed by :: and then a type, and it means the same thing as the expression on its own except with the additional constraint that it must have the given type. For example:
foo = ('a', 2) :: (Char, Integer)
bar = ('a', 2 :: Integer)
Note that for foo I attached the entire expression, so it is very little different from having used a separate foo :: (Char, Integer) declaration. bar is more interesting, since I gave a type annotation for just the 2 but used that within a larger expression (for the whole pair). 2 :: Integer is still an expression for the value 2; :: is not an operator that takes 2 as input and computes some result. Indeed if the 2 were already used in a context that requires it to be an Integer then the :: Integer annotation changes nothing at all. But because 2 is normally polymorphic in Haskell (it could fit into a context requiring an Integer, or a Double, or a Complex Float) the type annotation pins down that the type of this particular expression is Integer.
The use is that it avoids you having to restructure your code to have a separate declaration for the expression you want to attach a type to. To do that with my simple example would have required something like this:
two :: Integer
two = 2
baz = ('a', two)
Which adds a relatively large amount of extra code just to have something to attach :: Integer to. It also means when you're reading bar, you have to go read a whole separate definition to know what the second element of the pair is, instead of it being clearly stated right there.
So now we can answer your direct question. :: has no special or particular meaning with the Bounded type class or with minBound in particular. However it's useful with minBound (and other type class methods) because the whole point of type classes is to have overloaded names that do different things depending on the type. So selecting the type you want is useful!
minBound :: Int is just an expression using the value of minBound under the constraint that this particular time minBound is used as an Int, and so the value is -2147483648. As opposed to minBound :: Char which is '\NUL', or minBound :: Bool which is False.
None of those options mean anything different from using minBound where there was already some context requiring it to be an Int, or Char, or Bool; it's just a very quick and simple way of adding that context if there isn't one already.
It's worth being clear that both forms of :: are not operators as such. There's nothing terribly wrong with informally using the word operator for it, but be aware that "operator" has a specific meaning in Haskell; it refers to symbolic function names like +, *, &&, etc. Operators are first-class citizens of Haskell: we can bind them to variables1 and pass them around. For example I can do:
(|+|) = (+)
x = 1 |+| 2
But you cannot do this with ::. It is "hard-wired" into the language, just as the = symbol used for introducing definitions is, or the module Main ( main ) where syntax for module headers. As such there are lots of things that are true about Haskell operators that are not true about ::, so you need to be careful not to confuse yourself or others when you use the word "operator" informally to include ::.
1 Actually an operator is just a particular kind of variable name that is applied by writing it between two arguments instead of before them. The same function can be bound to operator and ordinary variables, even at the same time.
Just to add another example, with Monads you can play a little like this:
import Control.Monad
anyMonad :: (Monad m) => Int -> m Int
anyMonad x = (pure x) >>= (\x -> pure (x*x)) >>= (\x -> pure (x+2))
$> anyMonad 4 :: [Int]
=> [18]
$> anyMonad 4 :: Either a Int
=> Right 18
$> anyMonad 4 :: Maybe Int
=> Just 18
it's a generic example telling you that the functionality may change with the type, another example:

How to store arbitrary values in a recursive structure or how to build a extensible software architecture?

I'm working on a basic UI toolkit and am trying to figure out the overall architecture.
I am considering to use WAI's structure for extensibility. A reduced example of the core structure for my UI:
run :: Application -> IO ()
type Application = Event -> UI -> (Picture, UI)
type Middleware = Application -> Application
In WAI, arbitrary values for Middleware are saved in the vault. I think that this is a bad hack to save arbitary values, because it isn't transparent, but I can't think of a sufficient simple structure to replace this vault to give every Middleware a place to save arbitrary values.
I considered to recursively store tuples in tuples:
run :: (Application, x) -> IO ()
type Application = Event -> UI -> (Picture, UI)
type Middleware y x = (Application, x) -> (Application, (y,x))
Or to only use lazy lists to provide a level on which is no need to separate values (which provides more freedom, but also has more problems):
run :: Application -> IO ()
type Application = [Event -> UI -> (Picture, UI)]
type Middleware = Application -> Application
Actually, I would use a modified lazy list solution. Which other solutions might work?
Note that:
I prefer not to use lens at all.
I know UI -> (Picture, UI) could be defined as State UI Picture .
I'm not aware of a solution regarding monads, transformers or FRP. It would be great to see one.
Lenses provide a general way to reference data type fields so that you can extend or refactor your data set without breaking backwards compatibility. I'll use the lens-family and lens-family-th libraries to illustrate this, since they are lighter dependencies than lens.
Let's begin with a simple record with two fields:
{-# LANGUAGE Template Haskell #-}
import Lens.Family2
import Lens.Family2.TH
data Example = Example
{ _int :: Int
, _str :: String
}
makeLenses ''Example
-- This creates these lenses:
int :: Lens' Example Int
str :: Lens' Example String
Now you can write Stateful code that references fields of your data structure. You can use Lens.Family2.State.Strict for this purpose:
import Lens.Family2.State.Strict
-- Everything here also works for `StateT Example IO`
example :: State Example Bool
example = do
s <- use str -- Read the `String`
str .= s ++ "!" -- Set the `String`
int += 2 -- Modify the `Int`
zoom int $ do -- This sub-`do` block has type: `State Int Int`
m <- get
return (m + 1)
The key thing to note is that I can update my data type, and the above code will still compile. Add a new field to Example and everything will still work:
data Example = Example
{ _int :: Int
, _str :: String
, _char :: Char
}
makeLenses ''Example
int :: Lens' Example Int
str :: Lens' Example String
char :: Lens' Example Char
However, we can actually go a step further and completely refactor our Example type like this:
data Example = Example
{ _example2 :: Example
, _char :: Char
}
data Example2 = Example2
{ _int2 :: Int
, _str2 :: String
}
makeLenses ''Example
char :: Lens' Example Char
example2 :: Lens' Example Example2
makeLenses ''Example2
int2 :: Lens' Example2 Int
str2 :: Lens' Example2 String
Do we have to break our old code? No! All we have to do is add the following two lenses to support backwards compatibility:
int :: Lens' Example Int
int = example2 . int2
str :: Lens' Example Char
str = example2 . str2
Now all the old code still works without any changes, despite the intrusive refactoring of our Example type.
In fact, this works for more than just records. You can do the exact same thing for sum types, too (a.k.a. algebraic data types or enums). For example, suppose we have this type:
data Example3 = A String | B Int
makeTraversals ''Example3
-- This creates these `Traversals'`:
_A :: Traversal' Example3 String
_B :: Traversal' Example3 Int
Many of the things that we did with sum types can similarly be re-expressed in terms of Traversal's. There's a notable exception of pattern matching: it's actually possible to implement pattern matching with totality checking with Traversals, but it's currently verbose.
However, the same point holds: if you express all your sum type operations in terms of Traversal's, then you can greatly refactor your sum type and just update the appropriate Traversal's to preserve backwards compatibility.
Finally: note that the true analog of sum type constructors are Prisms (which let you build values using the constructors in addition to pattern matching). Those are not supported by the lens-family family of libraries, but they are provided by lens and you can implement them yourself using just a profunctors dependency if you want.
Also, if you're wondering what the lens analog of a newtype is, it's an Iso', and that also minimally requires a profunctors dependency.
Also, everything I've said works for reference multiple fields of recursive types (using Folds). Literally anything you can imagine wanting to reference in a data type in a backwards-compatible way is encompassed by the lens library.

how can I add an unboxed array to a Haskell record?

I want to do write some monte-carlo simulations. Because of the nature of simulation, I'll get much better performance if I use mutable state. I think that unboxed mutable arrays are the way to go. There's a bunch of items I'll want to keep track of, so I've created a record type to hold the state.
import Control.Monad.State
import Data.Array.ST
data Board = Board {
x :: Int
, y :: Int
,board :: STUArray (Int,Int) Int
} deriving Show
b = Board {
x = 5
,y = 5
,board = newArray ((1,1),(10,10)) 37 :: STUArray (Int,Int) Int
}
growBoard :: State Board Int
growBoard = do s <- get
let xo = x s
yo = y s in
put s{x=xo*2, y=yo*2}
return (1)
main = print $ runState growBoard b
If I leave out the "board" field from the record, everything else works fine. But with it, I get a type error:
`STUArray (Int, Int) Int' is not applied to enough type arguments
Expected kind `?', but `STUArray (Int, Int) Int' has kind `* -> *'
In the type `STUArray (Int, Int) Int'
In the definition of data constructor `Board'
In the data type declaration for `Board'
I've read through the Array page, and I can get STUArray examples working. But as soon as I try to add one to my State record, I get the error about the unexpected kind. I'm guessing I need a monad transformer of some kind, but I don't know where to start.
How should I declare an unboxed array inside a record? How should I initialize it?
I see alot of example of unboxed STArray, but they're mostly program fragments, so I feel like I'm missing context.
Also, where can I learn more about "kinds"? I know kinds are "type types" but the abstract nature of that is making it hard to grasp.
STUArray is a mutable array, designed to be used internally from within the ST monad to implement externally-pure code. Just like STRef and all the other structures used in the ST monad, STUArray takes an additional parameter representing a state thread.
The kind error you're getting is simply telling you missed an argument: at the value level, you might get an error "expected b but got a -> b" to tell you you missed an argument; at the type level, it looks like "expected ? but got * -> *", where * represents a plain, "fully-applied" type (like Int). (You can pretend ? is the same as *; it's just there to support unboxed types, which are a GHC-specific implementation detail.)
Basically, you can think of kinds as coming in two shapes:
*, representing a concrete type, like Int, Double, or [(Float, String)];
k -> l, where k and l are both kinds, representing a type constructor, like Tree, [], IO, and STUArray. Such a type constructor takes a type of kind k, and returns a type of kind l.
If you want to use ST arrays, you'll need to add a type parameter to Board:
data Board s = Board {
x :: Int
, y :: Int
,board :: STUArray s (Int,Int) Int
} deriving Show
and use StateT (Board s) (ST s) as your monad rather than just State Board.
However, I don't see any reason to use ST or mutable structures in general here, and I would instead suggest using a simple immutable array, and mutating it in the same way as the rest of your state, with the State monad:
data Board = Board {
x :: Int
, y :: Int
,board :: UArray (Int,Int) Int
} deriving Show
(using Data.Array.Unboxed.UArray)
This can be "modified" just like any other element of your record, by transforming it with the pure functions from the immutable array interface.

Haskell get type of algebraic parameter

I have a type
class IntegerAsType a where
value :: a -> Integer
data T5
instance IntegerAsType T5 where value _ = 5
newtype (IntegerAsType q) => Zq q = Zq Integer deriving (Eq)
newtype (Num a, IntegerAsType n) => PolyRing a n = PolyRing [a]
I'm trying to make a nice "show" for the PolyRing type. In particular, I want the "show" to print out the type 'a'. Is there a function that returns the type of an algebraic parameter (a 'show' for types)?
The other way I'm trying to do it is using pattern matching, but I'm running into problems with built-in types and the algebraic type.
I want a different result for each of Integer, Int and Zq q.
(toy example:)
test :: (Num a, IntegerAsType q) => a -> a
(Int x) = x+1
(Integer x) = x+2
(Zq x) = x+3
There are at least two different problems here.
1) Int and Integer are not data constructors for the 'Int' and 'Integer' types. Are there data constructors for these types/how do I pattern match with them?
2) Although not shown in my code, Zq IS an instance of Num. The problem I'm getting is:
Ambiguous constraint `IntegerAsType q'
At least one of the forall'd type variables mentioned by the constraint
must be reachable from the type after the '=>'
In the type signature for `test':
test :: (Num a, IntegerAsType q) => a -> a
I kind of see why it is complaining, but I don't know how to get around that.
Thanks
EDIT:
A better example of what I'm trying to do with the test function:
test :: (Num a) => a -> a
test (Integer x) = x+2
test (Int x) = x+1
test (Zq x) = x
Even if we ignore the fact that I can't construct Integers and Ints this way (still want to know how!) this 'test' doesn't compile because:
Could not deduce (a ~ Zq t0) from the context (Num a)
My next try at this function was with the type signature:
test :: (Num a, IntegerAsType q) => a -> a
which leads to the new error
Ambiguous constraint `IntegerAsType q'
At least one of the forall'd type variables mentioned by the constraint
must be reachable from the type after the '=>'
I hope that makes my question a little clearer....
I'm not sure what you're driving at with that test function, but you can do something like this if you like:
{-# LANGUAGE ScopedTypeVariables #-}
class NamedType a where
name :: a -> String
instance NamedType Int where
name _ = "Int"
instance NamedType Integer where
name _ = "Integer"
instance NamedType q => NamedType (Zq q) where
name _ = "Zq (" ++ name (undefined :: q) ++ ")"
I would not be doing my Stack Overflow duty if I did not follow up this answer with a warning: what you are asking for is very, very strange. You are probably doing something in a very unidiomatic way, and will be fighting the language the whole way. I strongly recommend that your next question be a much broader design question, so that we can help guide you to a more idiomatic solution.
Edit
There is another half to your question, namely, how to write a test function that "pattern matches" on the input to check whether it's an Int, an Integer, a Zq type, etc. You provide this suggestive code snippet:
test :: (Num a) => a -> a
test (Integer x) = x+2
test (Int x) = x+1
test (Zq x) = x
There are a couple of things to clear up here.
Haskell has three levels of objects: the value level, the type level, and the kind level. Some examples of things at the value level include "Hello, world!", 42, the function \a -> a, or fix (\xs -> 0:1:zipWith (+) xs (tail xs)). Some examples of things at the type level include Bool, Int, Maybe, Maybe Int, and Monad m => m (). Some examples of things at the kind level include * and (* -> *) -> *.
The levels are in order; value level objects are classified by type level objects, and type level objects are classified by kind level objects. We write the classification relationship using ::, so for example, 32 :: Int or "Hello, world!" :: [Char]. (The kind level isn't too interesting for this discussion, but * classifies types, and arrow kinds classify type constructors. For example, Int :: * and [Int] :: *, but [] :: * -> *.)
Now, one of the most basic properties of Haskell is that each level is completely isolated. You will never see a string like "Hello, world!" in a type; similarly, value-level objects don't pass around or operate on types. Moreover, there are separate namespaces for values and types. Take the example of Maybe:
data Maybe a = Nothing | Just a
This declaration creates a new name Maybe :: * -> * at the type level, and two new names Nothing :: Maybe a and Just :: a -> Maybe a at the value level. One common pattern is to use the same name for a type constructor and for its value constructor, if there's only one; for example, you might see
newtype Wrapped a = Wrapped a
which declares a new name Wrapped :: * -> * at the type level, and simultaneously declares a distinct name Wrapped :: a -> Wrapped a at the value level. Some particularly common (and confusing examples) include (), which is both a value-level object (of type ()) and a type-level object (of kind *), and [], which is both a value-level object (of type [a]) and a type-level object (of kind * -> *). Note that the fact that the value-level and type-level objects happen to be spelled the same in your source is just a coincidence! If you wanted to confuse your readers, you could perfectly well write
newtype Huey a = Louie a
newtype Louie a = Dewey a
newtype Dewey a = Huey a
where none of these three declarations are related to each other at all!
Now, we can finally tackle what goes wrong with test above: Integer and Int are not value constructors, so they can't be used in patterns. Remember -- the value level and type level are isolated, so you can't put type names in value definitions! By now, you might wish you had written test' instead:
test' :: Num a => a -> a
test' (x :: Integer) = x + 2
test' (x :: Int) = x + 1
test' (Zq x :: Zq a) = x
...but alas, it doesn't quite work like that. Value-level things aren't allowed to depend on type-level things. What you can do is to write separate functions at each of the Int, Integer, and Zq a types:
testInteger :: Integer -> Integer
testInteger x = x + 2
testInt :: Int -> Int
testInt x = x + 1
testZq :: Num a => Zq a -> Zq a
testZq (Zq x) = Zq x
Then we can call the appropriate one of these functions when we want to do a test. Since we're in a statically-typed language, exactly one of these functions is going to be applicable to any particular variable.
Now, it's a bit onerous to remember to call the right function, so Haskell offers a slight convenience: you can let the compiler choose one of these functions for you at compile time. This mechanism is the big idea behind classes. It looks like this:
class Testable a where test :: a -> a
instance Testable Integer where test = testInteger
instance Testable Int where test = testInt
instance Num a => Testable (Zq a) where test = testZq
Now, it looks like there's a single function called test which can handle any of Int, Integer, or numeric Zq's -- but in fact there are three functions, and the compiler is transparently choosing one for you. And that's an important insight. The type of test:
test :: Testable a => a -> a
...looks at first blush like it is a function that takes a value that could be any Testable type. But in fact, it's a function that can be specialized to any Testable type -- and then only takes values of that type! This difference explains yet another reason the original test function didn't work. You can't have multiple patterns with variables at different types, because the function only ever works on a single type at a time.
The ideas behind the classes NamedType and Testable above can be generalized a bit; if you do, you get the Typeable class suggested by hammar above.
I think now I've rambled more than enough, and likely confused more things than I've clarified, but leave me a comment saying which parts were unclear, and I'll do my best.
Is there a function that returns the type of an algebraic parameter (a 'show' for types)?
I think Data.Typeable may be what you're looking for.
Prelude> :m + Data.Typeable
Prelude Data.Typeable> typeOf (1 :: Int)
Int
Prelude Data.Typeable> typeOf (1 :: Integer)
Integer
Note that this will not work on any type, just those which have a Typeable instance.
Using the extension DeriveDataTypeable, you can have the compiler automatically derive these for your own types:
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Typeable
data Foo = Bar
deriving Typeable
*Main> typeOf Bar
Main.Foo
I didn't quite get what you're trying to do in the second half of your question, but hopefully this should be of some help.

When should I use record syntax for data declarations in Haskell?

Record syntax seems extremely convenient compared to having to write your own accessor functions. I've never seen anyone give any guidelines as to when it's best to use record syntax over normal data declaration syntax, so I'll just ask here.
You should use record syntax in two situations:
The type has many fields
The type declaration gives no clue about its intended layout
For instance a Point type can be simply declared as:
data Point = Point Int Int deriving (Show)
It is obvious that the first Int denotes the x coordinate and the second stands for y. But the case with the following type declaration is different (taken from Learn You a Haskell for Great Good):
data Person = Person String String Int Float String String deriving (Show)
The intended type layout is: first name, last name, age, height, phone number, and favorite ice-cream flavor. But this is not evident in the above declaration. Record syntax comes handy here:
data Person = Person { firstName :: String
, lastName :: String
, age :: Int
, height :: Float
, phoneNumber :: String
, flavor :: String
} deriving (Show)
The record syntax made the code more readable, and saved a great deal of typing by automatically defining all the accessor functions for us!
In addition to complex multi-fielded data, newtypes are often defined with record syntax. In either of these cases, there aren't really any downsides to using record syntax, but in the case of sum types, record accessors usually don't make sense. For example:
data Either a b = Left { getLeft :: a } | Right { getRight :: b }
is valid, but the accessor functions are partial – it is an error to write getLeft (Right "banana"). For that reason, such accessors are generally speaking discouraged; something like getLeft :: Either a b -> Maybe a would be more common, and that would have to be defined manually. However, note that accessors can share names:
data Item = Food { description :: String, tastiness :: Integer }
| Wand { description :: String, magic :: Integer }
Now description is total, although tastiness and magic both still aren't.

Resources