i want to convert my Hive Sql to Spark Sql to test the performance of query. Here is my Hive Sql. Can anyone suggests me how to convert the Hive Sql to Spark Sql.
SELECT split(DTD.TRAN_RMKS,'/')[0] AS TRAB_RMK1,
split(DTD.TRAN_RMKS,'/')[1] AS ATM_ID,
DTD.ACID,
G.FORACID,
DTD.REF_NUM,
DTD.TRAN_ID,
DTD.TRAN_DATE,
DTD.VALUE_DATE,
DTD.TRAN_PARTICULAR,
DTD.TRAN_RMKS,
DTD.TRAN_AMT,
SYSDATE_ORA(),
DTD.PSTD_DATE,
DTD.PSTD_FLG,
G.CUSTID,
NULL AS PROC_FLG,
DTD.PSTD_USER_ID,
DTD.ENTRY_USER_ID,
G.schemecode as SCODE
FROM DAILY_TRAN_DETAIL_TABLE2 DTD
JOIN ods_gam G
ON DTD.ACID = G.ACID
where substr(DTD.TRAN_PARTICULAR,1,3) rlike '(PUR|POS).*'
AND DTD.PART_TRAN_TYPE = 'D'
AND DTD.DEL_FLG <> 'Y'
AND DTD.PSTD_FLG = 'Y'
AND G.schemecode IN ('SBPRV','SBPRS','WSSTF','BGFRN','NREPV','NROPV','BSNRE','BSNRO')
AND (SUBSTR(split(DTD.TRAN_RMKS,'/')[0],1,6) IN ('405997','406228','406229','415527','415528','417917','417918','418210','421539','421572','432198','435736','450502','450503','450504','468805','469190','469191','469192','474856','478286','478287','486292','490222','490223','490254','512932','512932','514833','522346','522352','524458','526106','526701','527114','527479','529608','529615','529616','532731','532734','533102','534680','536132','536610','536621','539149','539158','549751','557654','607118','607407','607445','607529','652189','652190','652157') OR SUBSTR(split(DTD.TRAN_RMKS,'/')[0],1,8) IN ('53270200','53270201','53270202','60757401','60757402') )
limit 50;
Query is lengthy to write code for above, I won't attempt to write code here, But I would offer DataFrames approach.
which has flexibility to implement above query Using DataFrame , Column operations
like filter,withColumn(if you want to convert/apply hive UDF to scala function/udf) , cast for casting datatypes etc..
Recently I've done this and its performant.
Below is the psuedo code in Scala
val df1 = hivecontext.sql ("select * from ods_gam").as("G")
val df2 = hivecontext.sql("select * from DAILY_TRAN_DETAIL_TABLE2).as("DTD")
Now, join using your dataframes
val joinedDF = df1.join(df2 , df1("G.ACID") = df2("DTD.ACID"), "inner")
// now apply your string functions here...
joinedDF.withColumn or filter ,When otherwise ... blah.. blah here
Note : I think in your case udfs are not required, simple string functions would suffice.
Also have a look at DataFrameJoinSuite.scala which could be very useful for you...
Further details refer docs
Spark 1.5 :
DataFrame.html
All the dataframe column operations Column.html
If you are looking for sample code of UDF below is code snippet.
Construct Dummy Data
import util.Random
import org.apache.spark.sql.Row
implicit class Crossable[X](xs: Traversable[X]) {
def cross[Y](ys: Traversable[Y]) = for { x <- xs; y <- ys } yield (x, y)
}
val students = Seq("John", "Mike","Matt")
val subjects = Seq("Math", "Sci", "Geography", "History")
val random = new Random(1)
val data =(students cross subjects).map{x => Row(x._1, x._2,random.nextInt(100))}.toSeq
// Create Schema Object
import org.apache.spark.sql.types.{StructType, StructField, IntegerType, StringType}
val schema = StructType(Array(
StructField("student", StringType, nullable=false),
StructField("subject", StringType, nullable=false),
StructField("score", IntegerType, nullable=false)
))
// Create DataFrame
import org.apache.spark.sql.hive.HiveContext
val rdd = sc.parallelize(data)
val df = sqlContext.createDataFrame(rdd, schema)
// Define udf
import org.apache.spark.sql.functions.udf
def udfScoreToCategory=udf((score: Int) => {
score match {
case t if t >= 80 => "A"
case t if t >= 60 => "B"
case t if t >= 35 => "C"
case _ => "D"
}})
df.withColumn("category", udfScoreToCategory(df("score"))).show(10)
Just try to use it as it is, you should benefit from this right away if you run this query with Hive on MapReduce before that, from there if you still would need to get better results you can analyze Query plan and optimize it further like using partitioning for example. Spark uses memory more heavily and beyond simple transformations is generally faster than MapReduce, Spark sql also uses Catalyst Optimizer, your query benefit from that too.
Considering your comment about "using spark functions like Map, Filter etc", map() just transforms data, but you just have string functions I don't think you will gain anything by rewriting them using .map(...), spark will do transformations for you, filter() if you can filter the input data, you can just rewrite query using sub queries and other sql capabilities.
Related
Can anyone please explain the transform() and filter() in Spark Sql 2.4 with some advanced real-world use-case examples ?
In a sql query, is this only to be used with array columns or it can also be applied to any column type in general. It would be great if anyone could demonstrate with a sql query for an advanced application.
Thanks in advance.
Not going down the .filter road as I cannot see the focus there.
For .transform
dataframe transform at DF-level
transform on an array of a DF in v 2.4
transform on an array of a DF in v 3
The following:
dataframe transform
From the official docs https://kb.databricks.com/data/chained-transformations.html transform on DF can end up like spaghetti. Opinion can differ here.
This they say is messy:
...
def inc(i: Int) = i + 1
val tmp0 = func0(inc, 3)(testDf)
val tmp1 = func1(1)(tmp0)
val tmp2 = func2(2)(tmp1)
val res = tmp2.withColumn("col3", expr("col2 + 3"))
compared to:
val res = testDf.transform(func0(inc, 4))
.transform(func1(1))
.transform(func2(2))
.withColumn("col3", expr("col2 + 3"))
transform with lambda function on an array of a DF in v 2.4 which needs the select and expr combination
import org.apache.spark.sql.functions._
val df = Seq(Seq(Array(1,999),Array(2,9999)),
Seq(Array(10,888),Array(20,8888))).toDF("c1")
val df2 = df.select(expr("transform(c1, x -> x[1])").as("last_vals"))
transform with lambda function new array function on a DF in v 3 using withColumn
import org.apache.spark.sql.functions._
import org.apache.spark.sql._
val df = Seq(
(Array("New York", "Seattle")),
(Array("Barcelona", "Bangalore"))
).toDF("cities")
val df2 = df.withColumn("fun_cities", transform(col("cities"),
(col: Column) => concat(col, lit(" is fun!"))))
Try them.
Final note and excellent point raised (from https://mungingdata.com/spark-3/array-exists-forall-transform-aggregate-zip_with/):
transform works similar to the map function in Scala. I’m not sure why
they chose to name this function transform… I think array_map would
have been a better name, especially because the Dataset#transform
function is commonly used to chain DataFrame transformations.
Update
If wanting to use %sql or display approach for Higher Order Functions, then consult this: https://docs.databricks.com/delta/data-transformation/higher-order-lambda-functions.html
I recently read an article that described how to custom partition a dataframe
[ https://dataninjago.com/2019/06/01/create-custom-partitioner-for-spark-dataframe/ ] in which the author illustrated the technique in Python. I use Scala, and the technique looked like a good way to address issues of skew, so I tried something similar, and what I found was that when one does the following:
- create 2 data frames, D1, D2
- convert D1, D2 to 2 Pair RDDs R1,R2
(where the key is the key you want to join on)
- repartition R1,R2 with a custom partitioner 'C'
where 'C' has 2 partitions (p-0,p-1) and
stuffs everything in P-1, except keys == 'a'
- join R1,R2 as R3
- OBSERVE that:
- partitioner for R3 is 'C' (same for R1,R2)
- when printing the contents of each partition of R3 all entries
except the one keyed by 'a' is in p-1
- set D1' <- R1.toDF
- set D2' <- R2.toDF
We note the following results:
0) The join of D1' and D2' produce expected results (good)
1) The partitioners for D1' and D2' are None -- not Some(C),
as was the case with RDD's R1/R2 (bad)
2) The contents of the glom'd underlying RDDs of D1' and D2' did
not have everything (except key 'a') piled up
in partition 1 as expected.(bad)
So, I came away with the following conclusion... which will work for me practically... But it really irks me that I could not get the behavior in the article which used Python:
When one needs to use custom partitioning with Dataframes in Scala one must
drop into RDD's do the join or whatever operation on the RDD, then convert back
to dataframe. You can't apply the custom partitioner, then convert back to
dataframe, do your operations, and expect the custom partitioning to work.
Now...I am hoping I am wrong ! Perhaps someone with more expertise in Spark internals can guide me here. I have written a little program (below) to illustrate the results. Thanks in advance if you can set me straight.
UPDATE
In addition to the Spark code which illustrates the problem I also tried a simplified version of what the original article presented in Python. The conversions below create a dataframe, extract its underlying RDD and repartition it, then recover the dataframe and verify that the partitioner is lost.
Python snippet illustrating problem
from pyspark.sql.types import IntegerType
mylist = [1, 2, 3, 4]
df = spark.createDataFrame(mylist, IntegerType())
def travelGroupPartitioner(key):
return 0
dfRDD = df.rdd.map(lambda x: (x[0],x))
dfRDD2 = dfRDD .partitionBy(8, travelGroupPartitioner)
# this line uses approach of original article and maps to only the value
# but map doesn't guarantee preserving pratitioner, so i tried without the
# map below...
df2 = spark.createDataFrame(dfRDD2 .map(lambda x: x[1]))
print ( df2.rdd.partitioner ) # prints None
# create dataframe from partitioned RDD _without_ the map,
# and we _still_ lose partitioner
df3 = spark.createDataFrame(dfRDD2)
print ( df3.rdd.partitioner ) # prints None
Scala snippet illustrating problem
object Question extends App {
val conf =
new SparkConf().setAppName("blah").
setMaster("local").set("spark.sql.shuffle.partitions", "2")
val sparkSession = SparkSession.builder .config(conf) .getOrCreate()
val spark = sparkSession
import spark.implicits._
sparkSession.sparkContext.setLogLevel("ERROR")
class CustomPartitioner(num: Int) extends Partitioner {
def numPartitions: Int = num
def getPartition(key: Any): Int = if (key.toString == "a") 0 else 1
}
case class Emp(name: String, deptId: String)
case class Dept(deptId: String, name: String)
val value: RDD[Emp] = spark.sparkContext.parallelize(
Seq(
Emp("anne", "a"),
Emp("dave", "d"),
Emp("claire", "c"),
Emp("roy", "r"),
Emp("bob", "b"),
Emp("zelda", "z"),
Emp("moe", "m")
)
)
val employee: Dataset[Emp] = value.toDS()
val department: Dataset[Dept] = spark.sparkContext.parallelize(
Seq(
Dept("a", "ant dept"),
Dept("d", "duck dept"),
Dept("c", "cat dept"),
Dept("r", "rabbit dept"),
Dept("b", "badger dept"),
Dept("z", "zebra dept"),
Dept("m", "mouse dept")
)
).toDS()
val dumbPartitioner: Partitioner = new CustomPartitioner(2)
// Convert to-be-joined dataframes to custom repartition RDDs [ custom partitioner: cp ]
//
val deptPairRdd: RDD[(String, Dept)] = department.rdd.map { dept => (dept.deptId, dept) }
val empPairRdd: RDD[(String, Emp)] = employee.rdd.map { emp: Emp => (emp.deptId, emp) }
val cpEmpRdd: RDD[(String, Emp)] = empPairRdd.partitionBy(dumbPartitioner)
val cpDeptRdd: RDD[(String, Dept)] = deptPairRdd.partitionBy(dumbPartitioner)
assert(cpEmpRdd.partitioner.get == dumbPartitioner)
assert(cpDeptRdd.partitioner.get == dumbPartitioner)
// Here we join using RDDs and ensure that the resultant rdd is partitioned so most things end up in partition 1
val joined: RDD[(String, (Emp, Dept))] = cpEmpRdd.join(cpDeptRdd)
val reso: Array[(Array[(String, (Emp, Dept))], Int)] = joined.glom().collect().zipWithIndex
reso.foreach((item: Tuple2[Array[(String, (Emp, Dept))], Int]) => println(s"array size: ${item._2}. contents: ${item._1.toList}"))
System.out.println("partitioner of RDD created by joining 2 RDD's w/ custom partitioner: " + joined.partitioner)
assert(joined.partitioner.contains(dumbPartitioner))
val recoveredDeptDF: DataFrame = deptPairRdd.toDF
val recoveredEmpDF: DataFrame = empPairRdd.toDF
System.out.println(
"partitioner for DF recovered from custom partitioned RDD (not as expected!):" +
recoveredDeptDF.rdd.partitioner)
val joinedDf = recoveredEmpDF.join(recoveredDeptDF, "_1")
println("printing results of joining the 2 dataframes we 'recovered' from the custom partitioned RDDS (looks good)")
joinedDf.show()
println("PRINTING partitions of joined DF does not match the glom'd results we got from underlying RDDs")
joinedDf.rdd.glom().collect().
zipWithIndex.foreach {
item: Tuple2[Any, Int] =>
val asList = item._1.asInstanceOf[Array[org.apache.spark.sql.Row]].toList
println(s"array size: ${item._2}. contents: $asList")
}
assert(joinedDf.rdd.partitioner.contains(dumbPartitioner)) // this will fail ;^(
}
Check out my new library which adds partitionBy method to the Dataset/Dataframe API level.
Taking your Emp and Dept objects as example:
class DeptByIdPartitioner extends TypedPartitioner[Dept] {
override def getPartitionIdx(value: Dept): Int = if (value.deptId.startsWith("a")) 0 else 1
override def numPartitions: Int = 2
override def partitionKeys: Option[Set[PartitionKey]] = Some(Set(("deptId", StringType)))
}
class EmpByDepIdPartitioner extends TypedPartitioner[Emp] {
override def getPartitionIdx(value: Emp): Int = if (value.deptId.startsWith("a")) 0 else 1
override def numPartitions: Int = 2
override def partitionKeys: Option[Set[PartitionKey]] = Some(Set(("deptId", StringType)))
}
Note that we are extending TypedPartitioner.
It is compile-time safe, you won't be able to repartition a dataset of persons with emp partitioner.
val spark = SparkBuilder.getSpark()
import org.apache.spark.sql.exchange.implicits._ //<-- addtitonal import
import spark.implicits._
val deptPartitioned = department.repartitionBy(new DeptByIdPartitioner)
val empPartitioned = employee.repartitionBy(new EmpByDepIdPartitioner)
Let's check how our data is partitioned:
Dep dataset:
Partition N 0
: List([a,ant dept])
Partition N 1
: List([d,duck dept], [c,cat dept], [r,rabbit dept], [b,badger dept], [z,zebra dept], [m,mouse dept])
If we join repartitioned by the same key dataset Catalyst will properly recognize this:
val joined = deptPartitioned.join(empPartitioned, "deptId")
println("Joined:")
val result: Array[(Int, Array[Row])] = joined.rdd.glom().collect().zipWithIndex.map(_.swap)
for (elem <- result) {
println(s"Partition N ${elem._1}")
println(s"\t: ${elem._2.toList}")
}
Partition N 0
: List([a,ant dept,anne])
Partition N 1
: List([b,badger dept,bob], [c,cat dept,claire], [d,duck dept,dave], [m,mouse dept,moe], [r,rabbit dept,roy], [z,zebra dept,zelda])
What version of Spark are you using? If it's 2.x and above, it's recommended to use Dataframe/Dataset API instead, not RDDs
It's much easier to work with the mentioned API than with RDDs, and it performs much better on later versions of Spark
You may find the link below useful for how to join DFs:
How to join two dataframes in Scala and select on few columns from the dataframes by their index?
Once you get your joined DataFrame, you can use the link below for partitioning by column values, which I assume you're trying to achieve:
Partition a spark dataframe based on column value?
I'm trying to parse a RDD[Seq[String]] to Dataframe.
ALthough it's a Seq of Strings they could have a more specific type as Int, Boolean, Double, String an so on.
For example, a line could be:
"hello", "1", "bye", "1.1"
"hello1", "11", "bye1", "2.1"
...
Another execution could have a different number of columns.
First column is going to be always a String, second an int and so on and it's going to be always on this way. On the other hand, one execution could have seq of five elements and others execution could have 2000, so it depends of the execution. In each execution the name of type of columns is defined.
To do it, I could have something like this:
//I could have a parameter to generate the StructType dinamically.
def getSchema(): StructType = {
var schemaArray = scala.collection.mutable.ArrayBuffer[StructField]()
schemaArray += StructField("col1" , IntegerType, true)
schemaArray += StructField("col2" , StringType, true)
schemaArray += StructField("col3" , DoubleType, true)
StructType(schemaArray)
}
//Array of Any?? it doesn't seem the best option!!
val l1: Seq[Any] = Seq(1,"2", 1.1 )
val rdd1 = sc.parallelize(l1).map(Row.fromSeq(_))
val schema = getSchema()
val df = sqlContext.createDataFrame(rdd1, schema)
df.show()
df.schema
I don't like at all to have a Seq of Any, but it's really what I have. Another chance??
On the other hand I was thinking that I have something similar to a CSV, I could create one. With spark there is a library to read an CSV and return a dataframe where types are infered. Is it possible to call it if I have already an RDD[String]?
Since number of columns changes for each execution I would suggest to go with CSV option with delimiter set to space or something else. This way spark will figure out columns types for you.
Update:
Since you mentioned that you read data from HBase, one way to go is to convert HBase row to JSON or CSV and then to convert the RDD to dataframe:
val jsons = hbaseContext.hbaseRDD(tableName, scan).map{case (_, r) =>
val currentJson = new JSONObject
val cScanner = r.cellScanner
while (cScanner.advance) {
currentJson.put(Bytes.toString(cScanner.current.getQualifierArray, cScanner.current.getQualifierOffset, cScanner.current.getQualifierLength),
Bytes.toString(cScanner.current.getValueArray, cScanner.current.getValueOffset, cScanner.current.getValueLength))
}
currentJson.toString
}
val df = spark.read.json(spark.createDataset(jsons))
Similar thing can be done for CSV.
case class SourcePartition(id: String, host:String ,bucket: Int)
joinedRDDs =partitions.joinWithCassandraTable("db_name","table_name")
joinedRDDs.values.foreach(println)
I have to use joinWithCassandraTable , How do i covert the result CassandraRow in to a DataFrame? OR is there any equivalent of joinWithCassandraTable with DataFrame ?
I have to read a lot of partitions in one go, I'm aware of Datastax Cassandra connector Predicate push down, but it allows to pull only one Partition at a time ( It doesnt seems to allow IN operator , Only = seems to be supported)
val spark: SparkSession = SparkSession.builder().master("local[4]").appName("RDD2DF").getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
val internalJoinRDD = spark.sparkContext.cassandraTable("test", "test_table_1").joinWithCassandraTable("test", "table_table_2")
internalJoin.toDebugString
internalJoinRDD.toDF()
Can you try the above code snippet.
If you have a schema for your data, you can use
def createDataFrame(internalJoinRDD: RDD[Row], schema: StructType): DataFrame
I have a table of two string type columns (username, friend) and for each username, I want to collect all of its friends on one row, concatenated as strings. For example: ('username1', 'friends1, friends2, friends3')
I know MySQL does this with GROUP_CONCAT. Is there any way to do this with Spark SQL?
Before you proceed: This operations is yet another another groupByKey. While it has multiple legitimate applications it is relatively expensive so be sure to use it only when required.
Not exactly concise or efficient solution but you can use UserDefinedAggregateFunction introduced in Spark 1.5.0:
object GroupConcat extends UserDefinedAggregateFunction {
def inputSchema = new StructType().add("x", StringType)
def bufferSchema = new StructType().add("buff", ArrayType(StringType))
def dataType = StringType
def deterministic = true
def initialize(buffer: MutableAggregationBuffer) = {
buffer.update(0, ArrayBuffer.empty[String])
}
def update(buffer: MutableAggregationBuffer, input: Row) = {
if (!input.isNullAt(0))
buffer.update(0, buffer.getSeq[String](0) :+ input.getString(0))
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) = {
buffer1.update(0, buffer1.getSeq[String](0) ++ buffer2.getSeq[String](0))
}
def evaluate(buffer: Row) = UTF8String.fromString(
buffer.getSeq[String](0).mkString(","))
}
Example usage:
val df = sc.parallelize(Seq(
("username1", "friend1"),
("username1", "friend2"),
("username2", "friend1"),
("username2", "friend3")
)).toDF("username", "friend")
df.groupBy($"username").agg(GroupConcat($"friend")).show
## +---------+---------------+
## | username| friends|
## +---------+---------------+
## |username1|friend1,friend2|
## |username2|friend1,friend3|
## +---------+---------------+
You can also create a Python wrapper as shown in Spark: How to map Python with Scala or Java User Defined Functions?
In practice it can be faster to extract RDD, groupByKey, mkString and rebuild DataFrame.
You can get a similar effect by combining collect_list function (Spark >= 1.6.0) with concat_ws:
import org.apache.spark.sql.functions.{collect_list, udf, lit}
df.groupBy($"username")
.agg(concat_ws(",", collect_list($"friend")).alias("friends"))
You can try the collect_list function
sqlContext.sql("select A, collect_list(B), collect_list(C) from Table1 group by A
Or you can regieter a UDF something like
sqlContext.udf.register("myzip",(a:Long,b:Long)=>(a+","+b))
and you can use this function in the query
sqlConttext.sql("select A,collect_list(myzip(B,C)) from tbl group by A")
In Spark 2.4+ this has become simpler with the help of collect_list() and array_join().
Here's a demonstration in PySpark, though the code should be very similar for Scala too:
from pyspark.sql.functions import array_join, collect_list
friends = spark.createDataFrame(
[
('jacques', 'nicolas'),
('jacques', 'georges'),
('jacques', 'francois'),
('bob', 'amelie'),
('bob', 'zoe'),
],
schema=['username', 'friend'],
)
(
friends
.orderBy('friend', ascending=False)
.groupBy('username')
.agg(
array_join(
collect_list('friend'),
delimiter=', ',
).alias('friends')
)
.show(truncate=False)
)
In Spark SQL the solution is likewise:
SELECT
username,
array_join(collect_list(friend), ', ') AS friends
FROM friends
GROUP BY username;
The output:
+--------+--------------------------+
|username|friends |
+--------+--------------------------+
|jacques |nicolas, georges, francois|
|bob |zoe, amelie |
+--------+--------------------------+
This is similar to MySQL's GROUP_CONCAT() and Redshift's LISTAGG().
Here is a function you can use in PySpark:
import pyspark.sql.functions as F
def group_concat(col, distinct=False, sep=','):
if distinct:
collect = F.collect_set(col.cast(StringType()))
else:
collect = F.collect_list(col.cast(StringType()))
return F.concat_ws(sep, collect)
table.groupby('username').agg(F.group_concat('friends').alias('friends'))
In SQL:
select username, concat_ws(',', collect_list(friends)) as friends
from table
group by username
-- the spark SQL resolution with collect_set
SELECT id, concat_ws(', ', sort_array( collect_set(colors))) as csv_colors
FROM (
VALUES ('A', 'green'),('A','yellow'),('B', 'blue'),('B','green')
) as T (id, colors)
GROUP BY id
One way to do it with pyspark < 1.6, which unfortunately doesn't support user-defined aggregate function:
byUsername = df.rdd.reduceByKey(lambda x, y: x + ", " + y)
and if you want to make it a dataframe again:
sqlContext.createDataFrame(byUsername, ["username", "friends"])
As of 1.6, you can use collect_list and then join the created list:
from pyspark.sql import functions as F
from pyspark.sql.types import StringType
join_ = F.udf(lambda x: ", ".join(x), StringType())
df.groupBy("username").agg(join_(F.collect_list("friend").alias("friends"))
Language: Scala
Spark version: 1.5.2
I had the same issue and also tried to resolve it using udfs but, unfortunately, this has led to more problems later in the code due to type inconsistencies. I was able to work my way around this by first converting the DF to an RDD then grouping by and manipulating the data in the desired way and then converting the RDD back to a DF as follows:
val df = sc
.parallelize(Seq(
("username1", "friend1"),
("username1", "friend2"),
("username2", "friend1"),
("username2", "friend3")))
.toDF("username", "friend")
+---------+-------+
| username| friend|
+---------+-------+
|username1|friend1|
|username1|friend2|
|username2|friend1|
|username2|friend3|
+---------+-------+
val dfGRPD = df.map(Row => (Row(0), Row(1)))
.groupByKey()
.map{ case(username:String, groupOfFriends:Iterable[String]) => (username, groupOfFriends.mkString(","))}
.toDF("username", "groupOfFriends")
+---------+---------------+
| username| groupOfFriends|
+---------+---------------+
|username1|friend2,friend1|
|username2|friend3,friend1|
+---------+---------------+
Below python-based code that achieves group_concat functionality.
Input Data:
Cust_No,Cust_Cars
1, Toyota
2, BMW
1, Audi
2, Hyundai
from pyspark.sql import SparkSession
from pyspark.sql.types import StringType
from pyspark.sql.functions import udf
import pyspark.sql.functions as F
spark = SparkSession.builder.master('yarn').getOrCreate()
# Udf to join all list elements with "|"
def combine_cars(car_list,sep='|'):
collect = sep.join(car_list)
return collect
test_udf = udf(combine_cars,StringType())
car_list_per_customer.groupBy("Cust_No").agg(F.collect_list("Cust_Cars").alias("car_list")).select("Cust_No",test_udf("car_list").alias("Final_List")).show(20,False)
Output Data:
Cust_No, Final_List
1, Toyota|Audi
2, BMW|Hyundai
You can also use Spark SQL function collect_list and after you will need to cast to string and use the function regexp_replace to replace the special characters.
regexp_replace(regexp_replace(regexp_replace(cast(collect_list((column)) as string), ' ', ''), ',', '|'), '[^A-Z0-9|]', '')
it's an easier way.
Higher order function concat_ws() and collect_list() can be a good alternative along with groupBy()
import pyspark.sql.functions as F
df_grp = df.groupby("agg_col").agg(F.concat_ws("#;", F.collect_list(df.time)).alias("time"), F.concat_ws("#;", F.collect_list(df.status)).alias("status"), F.concat_ws("#;", F.collect_list(df.llamaType)).alias("llamaType"))
Sample Output
+-------+------------------+----------------+---------------------+
|agg_col|time |status |llamaType |
+-------+------------------+----------------+---------------------+
|1 |5-1-2020#;6-2-2020|Running#;Sitting|red llama#;blue llama|
+-------+------------------+----------------+---------------------+