org.apache.spark.SparkException: Task not serializable? - apache-spark

here is my code :
val stream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)
val lines = stream.map(_._2)
lines.print()
lines.foreachRDD { rdd =>
rdd.foreach( data =>
if (data != null) {
println(data.toString)
val records = data.toString
CassandraConnector(conf).withSessionDo {
session =>
session.execute("INSERT INTO propatterns_test.meterreadings JSON "+records+";")
}
}
)
}
so where i am going wrong.
my error log is :
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2037)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:874)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:873)
at etc.
I am storing rdd message into cassandra.

Related

Kafka Avro to Elasticsearch with Spark

Want to put Avro messages from Kafka topics into Elasticsearch using Spark job (and SchemaRegistry with many defined schemas). I was able to read and deserialize records into Strings (json) format succesfully (with those 2 methods):
// Deserialize Avro to String
def avroToJsonString(record: GenericRecord): String = try {
val baos = new ByteArrayOutputStream
try {
val schema = record.getSchema
val jsonEncoder = EncoderFactory.get.jsonEncoder(schema, baos, false)
val avroWriter = new SpecificDatumWriter[GenericRecord](schema)
avroWriter.write(record, jsonEncoder)
jsonEncoder.flush()
baos.flush()
new String(baos.toByteArray)
} catch {
case ex: IOException =>
throw new IllegalStateException(ex)
} finally if (baos != null) baos.close()
}
// Parse JSON String
val parseJsonStream = (inStream: String) => {
try {
val parsed = Json.parse(inStream)
Option(parsed)
} catch {
case e: Exception => System.err.println("Exception while parsing JSON: " + inStream)
e.printStackTrace()
None
}
}
I'm reading record by record and I see deserialized JSON strings in debugger, everything looks fine, but for some reason I couldn't save them into Elasticsearch, because I guess RDD is needed to call saveToEs method. This is how I read avro records from Kafka:
val kafkaStream : InputDStream[ConsumerRecord[String, GenericRecord]] = KafkaUtils.createDirectStream[String, GenericRecord](ssc, PreferBrokers, Subscribe[String, GenericRecord](KAFKA_AVRO_TOPICS, kafkaParams))
val kafkaStreamParsed= kafkaStream.foreachRDD(rdd => {
rdd.foreach( x => {
val jsonString: String = avroToJsonString(x.value())
parseJsonStream(jsonString)
})
})
In case when I was reading json (not Avro) records, I was able to do it with:
EsSparkStreaming.saveToEs(kafkaStreamParsed, ELASTICSEARCH_EVENTS_INDEX + "/" + ELASTICSEARCH_TYPE)
I have an error in saveToEs method saying
Cannot resolve overloaded method 'saveToEs'
Tried to make rdd with sc.makeRDD() but had no luck either. How should I put all these records from batch job into RDD and afterward to Elasticsearch or I'm doing it all wrong?
UPDATE
Tried with solution:
val messages: DStream[Unit] = kafkaStream
.map(record => record.value)
.flatMap(record => {
val record1 = avroToJsonString(record)
JSON.parseFull(record1).map(rawMap => {
val map = rawMap.asInstanceOf[Map[String,String]]
})
})
again with the same Error (cannot resolve overloaded method)
UPDATE2
val kafkaStreamParsed: DStream[Any] = kafkaStream.map(rdd => {
val eventJSON = avroToJsonString(rdd.value())
parseJsonStream(eventJSON)
})
try {
EsSparkStreaming.saveToEs(kafkaStreamParsed, ELASTICSEARCH_EVENTS_INDEX + "/" + ELASTICSEARCH_TYPE)
} catch {
case e: Exception =>
EsSparkStreaming.saveToEs(kafkaStreamParsed, ELASTICSEARCH_FAILED_EVENTS)
e.printStackTrace()
}
Now I get the records in ES.
Using Spark 2.3.0 and Scala 2.11.8
I've managed to do it:
val kafkaStream : InputDStream[ConsumerRecord[String, GenericRecord]] = KafkaUtils.createDirectStream[String, GenericRecord](ssc, PreferBrokers, Subscribe[String, GenericRecord](KAFKA_AVRO_EVENT_TOPICS, kafkaParams))
val kafkaStreamParsed: DStream[Any] = kafkaStream.map(rdd => {
val eventJSON = avroToJsonString(rdd.value())
parseJsonStream(eventJSON)
})
try {
EsSparkStreaming.saveToEs(kafkaStreamParsed, ELASTICSEARCH_EVENTS_INDEX + "/" + ELASTICSEARCH_TYPE)
} catch {
case e: Exception =>
EsSparkStreaming.saveToEs(kafkaStreamParsed, ELASTICSEARCH_FAILED_EVENTS)
e.printStackTrace()
}

Kudu Client fails with exceptions after running for few days

I have a Scala/Spark/Kafka process that I run. When I first start the process I create a KuduClient Object using a function I made that I share between classes. For this job I only create the KuduClient once, and let the process run continuously. I've noticed that after several days I frequently get exceptions.
I'm not really sure what to do. I think maybe an option would be to create a new Kudu client every day or so but I'm unsure of how to do that in this case as well.
import org.apache.spark.SparkConf
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.kafka010.KafkaUtils
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.json.JSONObject
import org.apache.kudu.client.KuduClient
import org.apache.log4j.Logger
object Thing extends Serializable {
#transient lazy val client: KuduClient = createKuduClient(config)
#transient lazy val logger: Logger = Logger.getLogger(getClass.getName)
def main(args: Array[String]) {
UtilFunctions.loadConfig(args) //I send back a config object.
UtilFunctions.loadLogger() //factory method to load logger
val props: Map[String, String] = setKafkaProperties()
val topic = Set(config.getString("config.TOPIC_NAME"))
val conf = new SparkConf().setMaster("local[2]").setAppName(config.getString("config.SPARK_APP_NAME"))
val ssc = new StreamingContext(conf, Seconds(10))
ssc.sparkContext.setLogLevel("ERROR")
ssc.checkpoint(config.getString("config.SPARK_CHECKPOINT_NAME"))
// val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, props, topic)
val kafkaStream = KafkaUtils.createDirectStream[String, String](ssc, PreferConsistent, Subscribe[String, String](topic, props))
val distRecordsStream = kafkaStream.map(record => (record.key(), record.value()))
distRecordsStream.window(Seconds(10), Seconds(10))
distRecordsStream.foreachRDD(distRecords => {
logger.info(distRecords + " : " + distRecords.count())
distRecords.foreach(record => {
logger.info(record._2)
MyClass.DoSomethingWithThisData(new JSONObject(record._2), client)
})
})
ssc.start()
ssc.awaitTermination()
}
def createKuduClient(config: Config): KuduClient = {
var client: KuduClient = null
try{
client = new KuduClient.KuduClientBuilder(config.getString("config.KUDU_MASTER"))
.defaultAdminOperationTimeoutMs(config.getInt("config.KUDU_ADMIN_TIMEOUT_S") * 1000)
.defaultOperationTimeoutMs(config.getInt("config.KUDU_OPERATION_TIMEOUT_S") * 1000)
.build()
}
catch {
case e: Throwable =>
logger.error(e.getMessage)
logger.error(e.getStackTrace.toString)
Thread.sleep(10000) //try to create a new kudu client
client = createKuduClient(config)
}
client //return
}
def setKafkaProperties(): Map[String, String] = {
val zookeeper = config.getString("config.ZOOKEEPER")
val offsetReset = config.getString("config.OFFSET_RESET")
val brokers = config.getString("config.BROKERS")
val groupID = config.getString("config.GROUP_ID")
val deserializer = config.getString("config.DESERIALIZER")
val autoCommit = config.getString("config.AUTO_COMMIT")
val maxPollRecords = config.getString("config.MAX_POLL_RECORDS")
val maxPollIntervalms = config.getString("config.MAX_POLL_INTERVAL_MS")
val props = Map(
"bootstrap.servers" -> brokers,
"zookeeper.connect" -> zookeeper,
"group.id" -> groupID,
"key.deserializer" -> deserializer,
"value.deserializer" -> deserializer,
"enable.auto.commit" -> autoCommit,
"auto.offset.reset" -> offsetReset,
"max.poll.records" -> maxPollRecords,
"max.poll.interval.ms" -> maxPollIntervalms)
props
}
}
Exceptions below. I've removed the IP address inplace of using "x"
ERROR client.TabletClient: [Peer
master-ip-xxx-xx-xxx-40.ec2.internal:7051] Unexpected exception from
downstream on [id: 0x42ba3f4d, /xxx.xx.xxx.39:36820 =>
ip-xxx-xxx-xxx-40.ec2.internal/xxx.xx.xxx.40:7051]
java.lang.RuntimeException: Could not deserialize the response,
incompatible RPC? Error is: step
at org.apache.kudu.client.KuduRpc.readProtobuf(KuduRpc.java:383)
at org.apache.kudu.client.Negotiator.parseSaslMsgResponse(Negotiator.java:282)
at org.apache.kudu.client.Negotiator.handleResponse(Negotiator.java:235)
at org.apache.kudu.client.Negotiator.messageReceived(Negotiator.java:229)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.apache.kudu.client.shaded.org.jboss.netty.handler.timeout.ReadTimeoutHandler.messageReceived(ReadTimeoutHandler.java:184)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.apache.kudu.client.shaded.org.jboss.netty.handler.codec.oneone.OneToOneDecoder.handleUpstream(OneToOneDecoder.java:70)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.apache.kudu.client.shaded.org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
at org.apache.kudu.client.shaded.org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
at org.apache.kudu.client.shaded.org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:310)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline$DefaultChannelHandlerContext.sendUpstream(DefaultChannelPipeline.java:791)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
at org.apache.kudu.client.shaded.org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
at org.apache.kudu.client.shaded.org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
at org.apache.kudu.client.shaded.org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:303)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.SimpleChannelUpstreamHandler.handleUpstream(SimpleChannelUpstreamHandler.java:70)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:564)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.DefaultChannelPipeline.sendUpstream(DefaultChannelPipeline.java:559)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:108)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:337)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:89)
at org.apache.kudu.client.shaded.org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178)
at org.apache.kudu.client.shaded.org.jboss.netty.util.ThreadRenamingRunnable.run(ThreadRenamingRunnable.java:108)
at org.apache.kudu.client.shaded.org.jboss.netty.util.internal.DeadLockProofWorker$1.run(DeadLockProofWorker.java:42)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
I've also seen exceptions like these after running for a while which others seem to attribute to being the open file handles limit of your user.
java.io.IOException: All datanodes
DatanodeInfoWithStorage[xxx.xx.xxx.36:1004,DS-55c403c3-203a-4dac-b383-72fcdb686185,DISK]
are bad. Aborting...
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1465)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.processDatanodeError(DFSOutputStream.java:1236)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputSt
Is this have something too do with having too many open files? A way to "purge" these files once they reach a limit?

how to implement Exactly-once when Spark Streaming + Kafka Integration

I have a question.There is a guide how to implement exactly-one,here is the code:
https://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html#storing-offsets
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
stream.map(record => (record.key, record.value))
//=====================================================
//separate line
//=====================================================
stream.foreachRDD { rdd =>
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
// some time later, after outputs have completed
stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
}
But what if I want to using the 'reduceByKeyAndWindow' int the separate line,just like this:
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
val lines: DStream[String] = stream.map(record => record.value)
lines.map(row => {
(row.split(",")(1), 1)
}).reduceByKeyAndWindow((a: Int, b: Int) => (a + b), Seconds(30), Seconds(5))
.foreachRDD(rdd => {
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
//mycode start
rdd.foreach(println)
//mycaode end
stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
})
I am trying this ,but I got a error:
Exception in thread "main" java.lang.ClassCastException: org.apache.spark.rdd.MapPartitionsRDD cannot be cast to org.apache.spark.streaming.kafka010.HasOffsetRanges
AnyHelp?Thanks in advance!

spark streaming hbase error

I want to insert streaming data into hbase;
this is my code :
val tableName = "streamingz"
val conf = HBaseConfiguration.create()
conf.addResource(new Path("file:///opt/cloudera/parcels/CDH-5.4.7-1.cdh5.4.7.p0.3/etc/hbase/conf.dist/hbase-site.xml"))
conf.set(TableInputFormat.INPUT_TABLE, tableName)
val admin = new HBaseAdmin(conf)
if (!admin.isTableAvailable(tableName)) {
print("-----------------------------------------------------------------------------------------------------------")
val tableDesc = new HTableDescriptor(tableName)
tableDesc.addFamily(new HColumnDescriptor("z1".getBytes()))
tableDesc.addFamily(new HColumnDescriptor("z2".getBytes()))
admin.createTable(tableDesc)
} else {
print("Table already exists!!--------------------------------------------------------------------------------------")
}
val ssc = new StreamingContext(sc, Seconds(10))
val topicSet = Set("fluxAstellia")
val kafkaParams = Map[String, String]("metadata.broker.list" - > "10.32.201.90:9092")
val stream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicSet)
val lines = stream.map(_._2).map(_.split(" ", -1)).foreachRDD(rdd => {
if (!rdd.partitions.isEmpty) {
val myTable = new HTable(conf, tableName)
rdd.map(rec => {
var put = new Put(rec._1.getBytes)
put.add("z1".getBytes(), "name".getBytes(), Bytes.toBytes(rec._2))
myTable.put(put)
}).saveAsNewAPIHadoopDataset(conf)
myTable.flushCommits()
} else {
println("rdd is empty")
}
})
ssc.start()
ssc.awaitTermination()
}
}
I got this error:
:66: error: value _1 is not a member of Array[String]
var put = new Put(rec._1.getBytes)
I'm beginner so how I can't fix this error, and I have a question:
where exactly create the table; outside the streaming process or inside ?
Thank you
You error is basically on line var put = new Put(rec._1.getBytes)
You can call _n only on a Map(_1 for key and _2 for value) or a Tuple.
rec is a String Array you got by splitting the string in the stream by space characters. If you were after first element, you'd write it as var put = new Put(rec(0).getBytes). Likewise in the next line you'd write it as put.add("z1".getBytes(), "name".getBytes(), Bytes.toBytes(rec(1)))

Kafka spark directStream can not get data

I'm using spark directStream api to read data from Kafka. My code as following please:
val sparkConf = new SparkConf().setAppName("testdirectStreaming")
val sc = new SparkContext(sparkConf)
val ssc = new StreamingContext(sc, Seconds(2))
val kafkaParams = Map[String, String](
"auto.offset.reset" -> "smallest",
"metadata.broker.list"->"10.0.0.11:9092",
"spark.streaming.kafka.maxRatePerPartition"->"100"
)
//I set all of the 3 partitions fromOffset are 0
var fromOffsets:Map[TopicAndPartition, Long] = Map(TopicAndPartition("mytopic",0) -> 0)
fromOffsets+=(TopicAndPartition("mytopic",1) -> 0)
fromOffsets+=(TopicAndPartition("mytopic",2) -> 0)
val kafkaData = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, MessageAndMetadata[String, String]](
ssc, kafkaParams, fromOffsets,(mmd: MessageAndMetadata[String, String]) => mmd)
var offsetRanges = Array[OffsetRange]()
kafkaData.transform { rdd =>
offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
rdd
}.map {
_.message()
}.foreachRDD { rdd =>
for (o <- offsetRanges) {
println(s"---${o.topic} ${o.partition} ${o.fromOffset} ${o.untilOffset}")
}
rdd.foreachPartition{ partitionOfRecords =>
partitionOfRecords.foreach { line =>
println("===============value:"+line)
}
}
}
I'm sure there are data in the kafka cluster, but my code could not get any of them. Thanks in advance.
I found the reason: The old messages in kafka have already been deleted since the retention period expired. So when I set the fromOffset is 0 it caused OutOfOffSet exception. The exception caused Spark reset the offset with the latest ones. Therefore I could not get any messages. The solution is that I need to set the appropriate fromOffset to avoid the Exception.

Resources