HA setup of Spark Cluster using Zookeeper Quorum - apache-spark

We are trying to setup Spark HA setup with ZK.
We have 2 machines for Master for Spark process and another 3 for Spark Slaves
The configuration In Master Machine for spark HA done as below in spark-env.sh :
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=DEV-SMP-Manager01:2181DEV-SMP-Worker01:2181,DEV-SMP-Worker05:2181"
where DEV-SMP-Manager01:2181DEV-SMP-Worker01:2181,DEV-SMP-Worker05:2181 are ZK Quorum. and they are up and running .
When we start the master(s) using command sbin/start-master.sh ,
We have seen some error messages related to curator
java.lang.NoClassDefFoundError: org/apache/curator/RetryPolicy at storm.kafka.KafkaSpout.open(KafkaSpout.java:85) at backtype.storm.daemon.executor$fn__3373$fn__3388.invoke(executor.clj:522) at backtype.storm.util$async_loop$fn__464.invoke(util.clj:461) at clojure.lang.AFn.run(AFn.java:24) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.ClassNotFoundException: org.apache.curator.RetryPolicy at java.net.URLClassLoader$1.run(URLClassLoader.java:372) at java.net.URLClassLoader$1.run(URLClassLoader.java:361) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:360) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ... 5 more
Version used :-
Spark - spark-1.6.1
ZK - 3.4.6

Please try adding the curator-client jar in classpath by adding the following in your spark-env.sh file :
SPARK_CLASSPATH="$SPARK_CLASSPATH:/path/to/curator-client.jar"

Related

Spark job not running when jar is in HDFS

I am trying to run a spark job in standalone mode but the command is not picking up the jar from HDFS.The jar is present in the HDFS location and Its working fine when I run it in local mode.
Below is the command I am using
spark-submit --deploy-mode client --master yarn --class com.main.WordCount /spark/wc.jar
Below is my program:
val conf = new SparkConf().setAppName("WordCount").setMaster("yarn")
val spark = new SparkContext(conf)
val file = spark.textFile(args(0))
val count = file.flatMap(f=>f.split(" ")).map(word=>(word,1)).reduceByKey(_+_).collect
count.foreach(println)
And I am getting below error:
Warning: Local jar /spark/wc.jar does not exist, skipping.
java.lang.ClassNotFoundException: com.main.WordCount
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:228)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:693)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
But If i use deploy mode cluster I am getting below error:
Exception in thread "main" java.io.FileNotFoundException: File file:/spark/wc.jar does not exist
at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421)
at org.apache.hadoop.fs.FileUtil.copy(FileUtil.java:337)
at org.apache.hadoop.fs.FileUtil.copy(FileUtil.java:289)
at org.apache.spark.deploy.yarn.Client.copyFileToRemote(Client.scala:340)
at org.apache.spark.deploy.yarn.Client.org$apache$spark$deploy$yarn$Client$$distribute$1(Client.scala:433)
at org.apache.spark.deploy.yarn.Client$$anonfun$prepareLocalResources$10.apply(Client.scala:530)
at org.apache.spark.deploy.yarn.Client$$anonfun$prepareLocalResources$10.apply(Client.scala:529)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:529)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:834)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:167)
at org.apache.spark.deploy.yarn.Client.run(Client.scala:1119)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1178)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Could you please clarify what is local mode. There are only two deploy mode client and cluster, the only difference is in client mode Driver program will run on the system and in cluster mode driver program will run from random node in the cluster.
For spark submit command:
When you execute spark submit command spark will pull all the local resources/files defined with --files , --py-files argument as well as Spark Main Jar to temporary HDFS location/directory, which is created by that particular spark application with the application name. when you give HDFS location, it will fail to location the Jar on local machine. It is mandatory to keep the Jar on local.

Ignite Yarn and Hortonworks

I'm trying to deploy ignite so that I can use the shared RDD/Dataframe cache for my spark cluster. I've followed the spark install instructions and choose to deploy into my existing yarn cluster running spark. I'm using HDP to deploy spark.
I've already verified that Resource Manager and History server are listening on the ports below and I can telnet to each port. What am I doing wrong? Am I not deploying this the way it is intended?
I'm running:
yarn jar ignite-yarn-2.6.0.jar ./ignite-yarn-2.6.0.jar ../../../cluster.properties
Error below:
18/09/24 22:13:38 INFO client.RMProxy: Connecting to ResourceManager at dev01clus02.dna.local/172.31.31.5:8050
18/09/24 22:13:38 INFO client.AHSProxy: Connecting to Application History server at dev01clus02.dna.local/172.31.31.5:10200
Exception in thread "main" java.lang.RuntimeException: Failed update ignite.
at org.apache.ignite.yarn.IgniteProvider.updateIgnite(IgniteProvider.java:243)
at org.apache.ignite.yarn.IgniteProvider.getIgnite(IgniteProvider.java:93)
at org.apache.ignite.yarn.IgniteYarnClient.getIgnite(IgniteYarnClient.java:194)
at org.apache.ignite.yarn.IgniteYarnClient.main(IgniteYarnClient.java:84)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.util.RunJar.run(RunJar.java:233)
at org.apache.hadoop.util.RunJar.main(RunJar.java:148)
Caused by: java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:209)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read1(BufferedInputStream.java:286)
at java.io.BufferedInputStream.read(BufferedInputStream.java:345)
at sun.net.www.http.HttpClient.parseHTTPHeader(HttpClient.java:704)
at sun.net.www.http.HttpClient.parseHTTP(HttpClient.java:647)
at sun.net.www.http.HttpClient.parseHTTP(HttpClient.java:675)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream0(HttpURLConnection.java:1569)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1474)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:480)
at org.apache.ignite.yarn.IgniteProvider.updateIgnite(IgniteProvider.java:220)
... 9 more
It looks like a piece of insfrastructure, provided by GridGain for Apache Ignite project, does not work currently. I'll raise the issue.
In the meantime, you can provide IGNITE_PATH property (in config, system properties or env) pointed to unzipped Apache Ignite 2.6 distribution directory to avoid downloading attempts altogether.

How to integrate Ganglia for Spark 2.1 Job metrics, Spark ignoring Ganglia metrics

I am trying to integrate Spark 2.1 job's metrics to Ganglia.
My spark-default.conf looks like
*.sink.ganglia.class org.apache.spark.metrics.sink.GangliaSink
*.sink.ganglia.name Name
*.sink.ganglia.host $MASTERIP
*.sink.ganglia.port $PORT
*.sink.ganglia.mode unicast
*.sink.ganglia.period 10
*.sink.ganglia.unit seconds
When i submit my job i can see the warn
Warning: Ignoring non-spark config property: *.sink.ganglia.host=host
Warning: Ignoring non-spark config property: *.sink.ganglia.name=Name
Warning: Ignoring non-spark config property: *.sink.ganglia.mode=unicast
Warning: Ignoring non-spark config property: *.sink.ganglia.class=org.apache.spark.metrics.sink.GangliaSink
Warning: Ignoring non-spark config property: *.sink.ganglia.period=10
Warning: Ignoring non-spark config property: *.sink.ganglia.port=8649
Warning: Ignoring non-spark config property: *.sink.ganglia.unit=seconds
My environment details are
Hadoop : Amazon 2.7.3 - emr-5.7.0
Spark : Spark 2.1.1,
Ganglia: 3.7.2
If you have any inputs or any other alternative of Ganglia please reply.
according to the spark docs
The metrics system is configured via a configuration file that Spark expects to be present at $SPARK_HOME/conf/metrics.properties. A custom file location can be specified via the spark.metrics.conf configuration property.
so instead of having these confs in spark-default.conf, move them to $SPARK_HOME/conf/metrics.properties
For EMR specifically, you'll need to put these settings in /etc/spark/conf/metrics.properties on the master node.
Spark on EMR does include the Ganglia library:
$ ls -l /usr/lib/spark/external/lib/spark-ganglia-lgpl_*
-rw-r--r-- 1 root root 28376 Mar 22 00:43 /usr/lib/spark/external/lib/spark-ganglia-lgpl_2.11-2.3.0.jar
In addition, your example is missing the equals sign (=) between the config names and values - unsure if that's an issue. Below is an example config that worked successfully for me.
*.sink.ganglia.class=org.apache.spark.metrics.sink.GangliaSink
*.sink.ganglia.name=AMZN-EMR
*.sink.ganglia.host=$MASTERIP
*.sink.ganglia.port=8649
*.sink.ganglia.mode=unicast
*.sink.ganglia.period=10
*.sink.ganglia.unit=seconds
From this page:
https://spark.apache.org/docs/latest/monitoring.html
Spark also supports a Ganglia sink which is not included in the default build due to licensing restrictions:
GangliaSink: Sends metrics to a Ganglia node or multicast group.
**To install the GangliaSink you’ll need to perform a custom build of Spark**. Note that by embedding this library you will include LGPL-licensed code in your Spark package. For sbt users, set the SPARK_GANGLIA_LGPL environment variable before building. For Maven users, enable the -Pspark-ganglia-lgpl profile. In addition to modifying the cluster’s Spark build user
I don't know if anyone still needs this. But you have to make the full Ganglia configurations:
# Ganglia conf
*.sink.ganglia.class=org.apache.spark.metrics.sink.GangliaSink
*.sink.ganglia.name=AMZN-EMR
*.sink.ganglia.host=$MASTERIP
*.sink.ganglia.port=8649
*.sink.ganglia.mode=unicast
*.sink.ganglia.period=10
*.sink.ganglia.unit=seconds
# Enable JvmSource for instance master, worker, driver and executor
master.source.jvm.class=org.apache.spark.metrics.source.JvmSource
worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource
driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource
executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource
Even with the full configuration, I'm running into this issue from AWS EMR 5.33.0
21/05/26 14:18:20 ERROR org.apache.spark.metrics.MetricsSystem: Source class org.apache.spark.metrics.source.JvmSource cannot be instantiated
java.lang.ClassNotFoundException: org.apache.spark.metrics.source.JvmSource
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:239)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSources$1.apply(MetricsSystem.scala:184)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSources$1.apply(MetricsSystem.scala:181)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:130)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:130)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:236)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap.foreach(HashMap.scala:130)
at org.apache.spark.metrics.MetricsSystem.registerSources(MetricsSystem.scala:181)
at org.apache.spark.metrics.MetricsSystem.start(MetricsSystem.scala:102)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:528)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:238)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
21/05/26 14:18:20 ERROR org.apache.spark.metrics.MetricsSystem: Sink class org.apache.spark.metrics.sink.GangliaSink cannot be instantiated
21/05/26 14:18:20 ERROR org.apache.spark.SparkContext: Error initializing SparkContext.
java.lang.ClassNotFoundException: org.apache.spark.metrics.sink.GangliaSink
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.spark.util.Utils$.classForName(Utils.scala:239)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSinks$1.apply(MetricsSystem.scala:200)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSinks$1.apply(MetricsSystem.scala:196)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:130)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:130)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:236)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap.foreach(HashMap.scala:130)
at org.apache.spark.metrics.MetricsSystem.registerSinks(MetricsSystem.scala:196)
at org.apache.spark.metrics.MetricsSystem.start(MetricsSystem.scala:104)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:528)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:238)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
It's weird because AWS EMR should provide this dependency (org.apache.spark:spark-core_2.11:2.4.7) and I hope that the Spark distribution with AWS EMR is compiled with the Ganglia option. Forcing this jar on --packages or --jars spark options doesn't help either.
If someone manages to get Ganglia working with Spark on AWS EMR with driver/executors jvm monitoring. Please do tell me how.

running spark on yarn as client

I'm trying to run a spark job with yarn using:
./bin/spark-submit --class "KafkaToMaprfs" --master yarn --deploy-mode client /home/mapr/kafkaToMaprfs/target/scala-2.10/KafkaToMaprfs.jar
But facing this error:
/opt/mapr/hadoop/hadoop-2.7.0 17/01/03 11:19:26 WARN NativeCodeLoader:
Unable to load native-hadoop library for your platform... using
builtin-java classes where applicable 17/01/03 11:19:38 ERROR
SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended!
It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:124)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:64)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
at org.apache.spark.SparkContext.(SparkContext.scala:530)
at KafkaToMaprfs$.main(KafkaToMaprfs.scala:61)
at KafkaToMaprfs.main(KafkaToMaprfs.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:752)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 17/01/03 11:19:39 WARN MetricsSystem: Stopping a MetricsSystem that is
not running Exception in thread "main"
org.apache.spark.SparkException: Yarn application has already ended!
It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:124)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:64)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
at org.apache.spark.SparkContext.(SparkContext.scala:530)
at KafkaToMaprfs$.main(KafkaToMaprfs.scala:61)
at KafkaToMaprfs.main(KafkaToMaprfs.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:752)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
I have a multi node cluster, i'm deploying the application from a remote node.
I'm using spark 1.6.1 and hadoop 2.7.x versions.
I didn't set the cluster, so I couldn't find where the mistake lies.
Can anyone please help me fix this?
In my case i'm using MapR distribution.And i didn't configure the environment.
So, when i dug down to the all the conf folders.I made some changes in the below files,
1. In Spark-env.sh,Make sure these values are set right.
export SPARK_LOG_DIR=
export SPARK_PID_DIR=
export HADOOP_HOME=
export HADOOP_CONF_DIR=
export JAVA_HOME=
export SPARK_SUBMIT_OPTIONS=
2. yarn-env.sh.
Make sure the yarn_conf_dir, and java_home are set with correct values.
3. In spark-defaults.conf
1.spark.driver.extraClassPath
2.set value for HADOOP_CONF_DIR
4. HADOOP_CONF_DIR and JAVA_HOME in $SPARK_HOME/conf/spark-env.sh
1.export HADOOP_CONF_DIR=/opt/mapr/hadoop/hadoop-2.7.0/etc/hadoop
2.export JAVA_HOME =
5.spark assembly jar
1.Copy the following JAR file from the local file system to a world-readable location on MapR-FS: Substitute your Spark version and
specific JAR file name in the command.
/opt/mapr/spark/spark-/lib/spark-assembly--hadoop-mapr-.jar
Now i'm able to run my spark application as YARN-CLIENT smoothly using spark-submit.
These are basic essentials to make spark connect with yarn.
Correct me if i missed any other things.

Spark 1.1.0 on cdh5.1.3 does not work in yarn-cluster mode

I am having CDH 5.1 (Hadoop 2.3.0-cdh5.1.3) installed on my cluster, version:
I have installed and configured a prebuilt version of Spark 1.1.0 (Apache Version), built for hadoop 2.3 on my cluster.
when I run the Pi example in the ‘client mode’, it runs successfully, but it fails in the ‘yarn-cluster’ mode. The spark job is successfully submitted, but fails after polling the application master for sometime:
More Logs:
Application application_1415193640322_0016 failed 2 times due to Error launching appattempt_1415193640322_0016_000002. Got exception: org.apache.hadoop.yarn.exceptions.YarnException: java.io.EOFException
at org.apache.hadoop.yarn.ipc.RPCUtil.getRemoteException(RPCUtil.java:38)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.ContainerManagerImpl.startContainers(ContainerManagerImpl.java:710)
at org.apache.hadoop.yarn.api.impl.pb.service.ContainerManagementProtocolPBServiceImpl.startContainers(ContainerManagementProtocolPBServiceImpl.java:60)
at org.apache.hadoop.yarn.proto.ContainerManagementProtocol$ContainerManagementProtocolService$2.callBlockingMethod(ContainerManagementProtocol.java:95)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:587)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1026)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2013)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2009)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1614)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2007)
Caused by: java.io.EOFException
at java.io.DataInputStream.readFully(DataInputStream.java:197)
at java.io.DataInputStream.readUTF(DataInputStream.java:609)
at java.io.DataInputStream.readUTF(DataInputStream.java:564)
at org.apache.hadoop.yarn.security.ContainerTokenIdentifier.readFields(ContainerTokenIdentifier.java:151)
at org.apache.hadoop.security.token.Token.decodeIdentifier(Token.java:142)
at org.apache.hadoop.yarn.server.utils.BuilderUtils.newContainerTokenIdentifier(BuilderUtils.java:262)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.ContainerManagerImpl.startContainers(ContainerManagerImpl.java:696)
... 10 more
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.hadoop.yarn.ipc.RPCUtil.instantiateException(RPCUtil.java:53)
at org.apache.hadoop.yarn.ipc.RPCUtil.unwrapAndThrowException(RPCUtil.java:101)
at org.apache.hadoop.yarn.api.impl.pb.client.ContainerManagementProtocolPBClientImpl.startContainers(ContainerManagementProtocolPBClientImpl.java:99)
at org.apache.hadoop.yarn.server.resourcemanager.amlauncher.AMLauncher.launch(AMLauncher.java:118)
at org.apache.hadoop.yarn.server.resourcemanager.amlauncher.AMLauncher.run(AMLauncher.java:249)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.yarn.exceptions.YarnException): java.io.EOFException
at org.apache.hadoop.yarn.ipc.RPCUtil.getRemoteException(RPCUtil.java:38)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.ContainerManagerImpl.startContainers(ContainerManagerImpl.java:710)
at org.apache.hadoop.yarn.api.impl.pb.service.ContainerManagementProtocolPBServiceImpl.startContainers(ContainerManagementProtocolPBServiceImpl.java:60)
at org.apache.hadoop.yarn.proto.ContainerManagementProtocol$ContainerManagementProtocolService$2.callBlockingMethod(ContainerManagementProtocol.java:95)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:587)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1026)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2013)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2009)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1614)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2007)
Caused by: java.io.EOFException
at java.io.DataInputStream.readFully(DataInputStream.java:197)
at java.io.DataInputStream.readUTF(DataInputStream.java:609)
at java.io.DataInputStream.readUTF(DataInputStream.java:564)
at org.apache.hadoop.yarn.security.ContainerTokenIdentifier.readFields(ContainerTokenIdentifier.java:151)
at org.apache.hadoop.security.token.Token.decodeIdentifier(Token.java:142)
at org.apache.hadoop.yarn.server.utils.BuilderUtils.newContainerTokenIdentifier(BuilderUtils.java:262)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.ContainerManagerImpl.startContainers(ContainerManagerImpl.java:696)
... 10 more
at org.apache.hadoop.ipc.Client.call(Client.java:1409)
at org.apache.hadoop.ipc.Client.call(Client.java:1362)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:206)
at com.sun.proxy.$Proxy69.startContainers(Unknown Source)
at org.apache.hadoop.yarn.api.impl.pb.client.ContainerManagementProtocolPBClientImpl.startContainers(ContainerManagementProtocolPBClientImpl.java:96)
... 5 more
. Failing the application.
When I go to node Manager logs:
Log Type: stderr
Log Length: 87
Error: Could not find or load main class org.apache.spark.deploy.yarn.ExecutorLauncher
Can you please suggest any solution.Do you think I should compile the spark code on my cluster. Or should I use Spark provided with CDH5.1.
Any help will be appreciated!
spark-shell does not work with spark yarn-cluster mode. You should add --master yarn-client
Example:
path/to/pyspark --master yarn-client

Resources