I have a free text description based on which I need to perform a classification. For example the description can be that of an incident. Based on the description of the incident , I need to predict the risk associated with the event . For eg : "A murder in town" - this description is a candidate for "high" risk.
I tried logistic regression but realized that currently there is support only for binary classification. For Multi class classification ( there are only three possible values ) based on free text description , what would be the most suitable algorithm? ( Linear Regression or Naive Bayes )
Since you are using spark, I assume you have bigdata, so -I am no expert- but after reading your answer, I would like to make some points.
Create the Training (80%) and Testing Data Sets (20%)
I would partition my data to Training (60-70%), Testing (15-20%) and Evaluation (15-20%) sets..
The idea is that you can fine tune your classification algorithm w.r.t. the Training set, but we really want to do with with Classification tasks, is to have them classify unseen data. So fine tune your algorithm with the Testing set, and when you are done, use the Evaluation set, to get a real understanding of how things work!
Stop words
If your data are articles from Newspapers and such,I personally haven't seen any significant improvement by using more sophisticated stop words removal approaches...
But that's just a personal statement, but if I were you, I wouldn't focus on that step.
Term Frequency
How about using Term Frequency-Inverse Document Frequency (TF-IDF) term weighting instead? You may want to read: How can I create a TF-IDF for Text Classification using Spark?
I would try both and compare!
Multinomial
Do you have any particular reason to try the Multinomial Distribution? If no, since when n is 1 and k is 2 the multinomial distribution is the Bernoulli distribution, as stated in Wikipedia, which is supported.
Try both and compare ( this is something you have to get used to, if you wish to make your model better! :) )
I also see that apache-spark-mllib offers Random forests, which might worth a read, at least! ;)
If your data is not that big, I would also try Support vector machines (SVMs), from scikit-learn, which however supports python, so you should switch to pyspark or plain python, abandoning spark. BTW, if you are actually going for sklearn, this might come in handy: How to split into train, test and evaluation sets in sklearn?, since Pandas plays nicely along with sklearn.
Hope this helps!
Off-topic:
This is really not the way to ask a question in Stack Overflow. Read How to ask a good question?
Personally, if I were you, I would do all the things you have done in your answer first, and then post a question, summarizing my approach.
As for the bounty, you may want to read: How does the Bounty System work?
This is how I solved the above problem.
Though prediction accuracy is not bad ,the model has to be tuned further
for better results.
Experts , please revert back if you find anything wrong.
My input data frame has two columns "Text" and "RiskClassification"
Below are the sequence of steps to predict using Naive Bayes in Java
Add a new column "label" to the input dataframe . This column will basically decode the risk classification like below
sqlContext.udf().register("myUDF", new UDF1<String, Integer>() {
#Override
public Integer call(String input) throws Exception {
if ("LOW".equals(input))
return 1;
if ("MEDIUM".equals(input))
return 2;
if ("HIGH".equals(input))
return 3;
return 0;
}
}, DataTypes.IntegerType);
samplingData = samplingData.withColumn("label", functions.callUDF("myUDF", samplingData.col("riskClassification")));
Create the Training ( 80 % ) and Testing Data Sets ( 20 % )
For eg :
DataFrame lowRisk = samplingData.filter(samplingData.col("label").equalTo(1));
DataFrame lowRiskTraining = lowRisk.sample(false, 0.8);
Union All the dataframes to build the complete training data
Building test data is slightly tricky . Test Data should have all data which
is not present in the training data
Start transformation of training data and build the model
6 . Tokenize the text column in the training data set
Tokenizer tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words");
DataFrame tokenized = tokenizer.transform(trainingRiskData);
Remove Stop Words. (Here you can also do advanced operations like lemme, stemmer, POS etc using Stanford NLP library)
StopWordsRemover remover = new StopWordsRemover().setInputCol("words").setOutputCol("filtered");
DataFrame stopWordsRemoved = remover.transform(tokenized);
Compute Term Frequency using HashingTF. CountVectorizer is another way to do this
int numFeatures = 20;
HashingTF hashingTF = new HashingTF().setInputCol("filtered").setOutputCol("rawFeatures")
.setNumFeatures(numFeatures);
DataFrame rawFeaturizedData = hashingTF.transform(stopWordsRemoved);
IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features");
IDFModel idfModel = idf.fit(rawFeaturizedData);
DataFrame featurizedData = idfModel.transform(rawFeaturizedData);
Convert the featurized input into JavaRDD . Naive Bayes works on LabeledPoint
JavaRDD<LabeledPoint> labelledJavaRDD = featurizedData.select("label", "features").toJavaRDD()
.map(new Function<Row, LabeledPoint>() {
#Override
public LabeledPoint call(Row arg0) throws Exception {
LabeledPoint labeledPoint = new LabeledPoint(new Double(arg0.get(0).toString()),
(org.apache.spark.mllib.linalg.Vector) arg0.get(1));
return labeledPoint;
}
});
Build the model
NaiveBayes naiveBayes = new NaiveBayes(1.0, "multinomial");
NaiveBayesModel naiveBayesModel = naiveBayes.train(labelledJavaRDD.rdd(), 1.0);
Run all the above transformations on the test data also
Loop through the test data frame and perform the below actions
Create a LabeledPoint using the "label" and "features" in the test data frame
For eg : If the test data frame has label and features in the third and seventh column , then
LabeledPoint labeledPoint = new LabeledPoint(new Double(dataFrameRow.get(3).toString()),
(org.apache.spark.mllib.linalg.Vector) dataFrameRow.get(7));
Use the Prediction Model to predict the label
double predictedLabel = naiveBayesModel.predict(labeledPoint.features());
Add the predicted label also as a column to the test data frame.
Now test data frame has the expected label and the predicted label.
You can export the test data to csv and do analysis or you can compute the accuracy programatically as well.
Related
I have been dealing with random forest and naive bayes lately. Now i want to use a Support vector machine.
After fitting the model i wanted to use the output columns "probability" and "label" to compute the AUC value. But now I have seen that there is no column "probability" for SVM?!
Here you can see how I have done so far:
from pyspark.ml.classification import LinearSVC
svm = LinearSVC(maxIter=5, regParam=0.01)
model = svm.fit(train)
scores = model.transform(train)
results = scores.select('probability', 'label')
# Create Score-Label Set for 'BinaryClassificationMetrics'
results_collect = results.collect()
results_list = [(float(i[0][0]), 1.0-float(i[1])) for i in results_collect]
scoreAndLabels = sc.parallelize(results_list)
metrics = BinaryClassificationMetrics(scoreAndLabels)
print("AUC-value: " + str(round(metrics.areaUnderROC,4)))
That was my approach how I have done this in the past for random forest and naive bayes. I thought I could do it with svm too... But that does not work because there is no output column "probability".
Does anyone know why the column "probability" does not exist? And how i can compute the AUC-value now?
Using the most recent spark/pyspark to the time of this answer:
If you use the pyspark.ml module (unlike mllib), you can work with Dataframe as the interface:
svm = LinearSVC(maxIter=5, regParam=0.01)
model = svm.fit(train)
test_prediction = model.transform(test)
Create the evaluator (see it's source code for settings):
from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator()
Apply evaluator to data (again, source code shows more options):
evaluation = evaluator.evaluate(test_prediction)
The result of evaluate is, by default, the "Area Under Curve":
print("evaluation (area under ROC): %f" % evaluation)
SVM algorithm doesn't provide probability estimates, but only some scores.
There is an algorithm proposed by Platt to compute probabilities given SVM scores, but it's criticized but some and apparently not implemented in Spark.
Btw, there was a similar question What does the score of the Spark MLLib SVM output mean?
I trained a LDA model and load it into the environment to transform the new data:
from pyspark.ml.clustering import LocalLDAModel
lda = LocalLDAModel.load(path)
df = lda.transform(text)
The model will add a new column called topicDistribution. In my opinion, this distribution should be same for the same input, otherwise this model is not consistent. However, it is not in practice.
May I ask the reason why and how to fix it?
LDA uses randomness when training and, depending on the implementation, when infering new data. The implementation in Spark is based on EM MAP inference so I believe it only uses randomness when training the model. This means that the results will be different each time the algorithm is trained and run.
To get the same results when running on the same input and same parameters, you can set the random seed when training the model. For example, to set the random seed to 1:
model = LDA.train(data, k=2, seed=1)
To set the seed when transforming new data, create a parameter map to overwrite the default value (None for seed).
lda = LocalLDAModel.load(path)
paramMap[lda.seed] = 1L
df = lda.transform(text, paramMap)
For more information about overwriting model parameters, see here.
I have used Naive Bayes for Text Classification
Below is the link I used for understanding Naive Bayes
https://www.analyticsvidhya.com/blog/2015/09/naive-bayes-explained/
Though I got good prediction results , I was not able to understand the reason for the failure cases
I measured the probability of the features using predictProbabilities to understand the reason for
in correct prediction
Below is my understanding based on which I am trying to find why predictions are wrong in some cases
Assume my test data is like below ( I have around 100000 records for training )
Text Classification
There is a murder in town - HIGH SEVERITY
The old women was murdered - HIGH SEVERITY
Boy was hit by ball in street - LOW SEVERITY
John sprained his ankle while playing - LOW SEVERITY
Now when I do a prediction for below sentence
"There is a murder in city" - I expect the model to predict HIGH SEVERITY.
But at times the model predicts LOW SEVERITY
I pulled up all text which has same words and tried to figure out why this is happening .
If I compute the probability manually using the formula in https://www.analyticsvidhya.com/blog/2015/09/naive-bayes-explained/, it should have been predicted correctly .
But I could not find any clue why the prediction is going wrong.
Kindly let me know if I am missing any critical information
Code Snippet Added Below
My Training Data Frame consists of three columns "id" , "risk", "label"
The text is already lemmetized using stanford NLP
// TOKENIZE DATA
regexTokenizer = new RegexTokenizer()
.setInputCol("text")
.setOutputCol("words")
.setPattern("\\W");
DataFrame tokenized = regexTokenizer.transform(trainingRiskData);
// REMOVE STOP WORDS
remover = new StopWordsRemover().setInputCol("words").setOutputCol("filtered");
DataFrame stopWordsRemoved = remover.transform(tokenized);
// COMPUTE TERM FREQUENCY USING HASHING
int numFeatures = 20;
hashingTF = new HashingTF().setInputCol("filtered").setOutputCol("rawFeatures")
.setNumFeatures(numFeatures);
DataFrame rawFeaturizedData = hashingTF.transform(stopWordsRemoved);
IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features");
idfModel = idf.fit(rawFeaturizedData);
DataFrame featurizedData = idfModel.transform(rawFeaturizedData);
JavaRDD<LabeledPoint> labelledJavaRDD = featurizedData.select("label", "features").toJavaRDD()
.map(new Function<Row, LabeledPoint>() {
#Override
public LabeledPoint call(Row arg0) throws Exception {
LabeledPoint labeledPoint = new LabeledPoint(new Double(arg0.get(0).toString()),
(org.apache.spark.mllib.linalg.Vector) arg0.get(1));
return labeledPoint;
}
});
NaiveBayes naiveBayes = new NaiveBayes(1.0, "multinomial");
NaiveBayesModel naiveBayesModel = naiveBayes.train(labelledJavaRDD.rdd(), 1.0);
Once the training model is built , test data is passed through the same transformations and prediction is done using below code
Column 3 is label in test data frame.
Column 7 is features in test data frame
LabeledPoint labeledPoint = new LabeledPoint(new Double(dataFrameRow.get(3).toString()),
(org.apache.spark.mllib.linalg.Vector) dataFrameRow.get(7));
double predictedLabel = naiveBayesModel.predict(labeledPoint.features());
This is a very common process in Machine Learning.
I have a dataset and I split it into training set and test set.
Since I apply some normalizing and standardization to the training set,
I would like to use the same info of the training set (mean/std/min/max
values of each feature), to apply the normalizing and standardization
to the test set too. Do you know any optimal way to do that?
I am aware of the functions of MinMaxScaler, StandardScaler etc..
You can achieve this via a few lines of code on both the training and test set.
On the training side there are two approaches:
MultivariateStatisticalSummary
http://spark.apache.org/docs/latest/mllib-statistics.html
val summary: MultivariateStatisticalSummary = Statistics.colStats(observations)
println(summary.mean) // a dense vector containing the mean value for each column
println(summary.variance) // column-wise variance
println(summary.numNonzeros) // number of nonzeros in each
Using SQL
from pyspark.sql.functions import mean, min, max
In [6]: df.select([mean('uniform'), min('uniform'), max('uniform')]).show()
+------------------+-------------------+------------------+
| AVG(uniform)| MIN(uniform)| MAX(uniform)|
+------------------+-------------------+------------------+
|0.5215336029384192|0.19657711634539565|0.9970412477032209|
+------------------+-------------------+------------------+
On the testing data - you can then manually "normalize the data using the statistics obtained above from the training data. You can decide in which sense you wish to normalize: e.g.
Student's T
val normalized = testData.map{ m =>
(m - trainMean) / trainingSampleStddev
}
Feature Scaling
val normalized = testData.map{ m =>
(m - trainMean) / (trainMax - trainMin)
}
There are others: take a look at https://en.wikipedia.org/wiki/Normalization_(statistics)
I have a corpus of wiki pages (baseball, hockey, music, football) which I'm running through tfidf and then through kmeans. After a couple issues to start (you can see my previous questions), I'm finally getting a KMeansModel...but when I try to predict, I keep getting the same center. Is this because of the small dataset, or because I'm comparing a multi-word document against a smaller amount of words(1-20) query? Or is there something else I'm doing wrong? See the below code:
//Preprocessing of data includes splitting into words
//and removing words with only 1 or 2 characters
val corpus: RDD[Seq[String]]
val hashingTF = new HashingTF(100000)
val tf = hashingTF.transform(corpus)
val idf = new IDF().fit(tf)
val tfidf = idf.transform(tf).cache
val kMeansModel = KMeans.train(tfidf, 3, 10)
val queryTf = hashingTF.transform(List("music"))
val queryTfidf = idf.transform(queryTf)
kMeansModel.predict(queryTfidf) //Always the same, no matter the term supplied
This question seems somewhat related to this one
More a checklist than an answer:
A single word query or a very short sentence is probably not a good choice especially when combined with a large feature vector. I would start with significant fragments of the documents from the corpus
Manually check similarity between query an each cluster. Is it even remotely similar to each cluster?
import breeze.linalg.{DenseVector => BDV, SparseVector => BSV, Vector => BV}
import breeze.linalg.functions.cosineDistance
import org.apache.spark.mllib.linalg.{Vector, SparseVector, DenseVector}
def toBreeze(v: Vector): BV[Double] = v match {
case DenseVector(values) => new BDV[Double](values)
case SparseVector(size, indices, values) => {
new BSV[Double](indices, values, size)
}
}
val centers = kMeansModel.clusterCenters.map(toBreeze(_))
val query = toBreeze(queryTfidf)
centers.map(c => cosineDistance(query, c))
Does K-Means converge? Depending on a dataset and initial centroids ten or twenty iterations can be not enough. Try to increase this number to one thousand or so and see if the problem persist.
Is your corpus diverse enough to form meaningful clusters? Try to find centroids for each document in you corpus. Do you get a relatively uniform distribution or almost all documents are assigned to a single cluster.
Perform visual inspection. Take your tfidf RDD convert to a matrix, apply PCA, plot, color by cluster and see if you get a meaningful results.
Plot centroids as well and check if these cover possible cluster. If not check convergence once again.
You can also check similarities between centroids:
(0 until centers.size)
.toList
.flatMap(i => ((i + 1) until centers.size)
.map(j => (i, j, 1 - cosineDistance(centers(i), centers(j)))))
Is your pre-processing thorough enough? Simple removal of the short words most likely won't suffice. I would at lest extend it using with stopwords removal. Some stemming wouldn't hurt too.
K-Means results depend on the initial centroids. Try running an algorithm multiple times an see if problem persists.
Try more sophisticated algorithm like LDA