PHP void functions - php-7.1

PHP 7.1 will introduce the void function type.
https://wiki.php.net/rfc/void_return_type
In which cases is it useful to explicitly specify that a function is a "void" type instead of simply return; without any precision?

This would be helpful to the developers working on the project for a few reasons.
Provides a clear indication that the function does not return a value
The above could equally apply to auto-generated docs
Could be used for unit testing
Could help prevent coding errors, where a developer accidentally tries to return, or expect, a value

Related

How to mock calls made to Durable Entities in Azure durable functions?

I'm using MOQ to mock a durable entity, but seeing this error:
Extension methods (here: DurableContextExtensions.CallEntityAsync) may
not be used in setup / verification expressions.
Here's how I'm doing it:
mockContext.Setup(e => e.CallEntityAsync<List<string>>(It.IsAny<EntityId>(), "EntityFunctionName"))
.ReturnsAsync(new List<string>() {"one", "two", "three" });
Is there any way I can mock calls to my durable entity?
As of Durable Functions 2.3.0, all of our extension methods are now baked directly into the interface, so it should be substantially easier to use Moq with all of these methods and their overloads.
Edit: The previous answer below covers why the previous extension method approach made this dificult.
So this is an inherent limitation of how Moq works with extension methods.
Unfortunately, in the meantime, you will need to find out the core method on IDurableOrchestrationContext that is called by the extension method that provides the overload you are using.
For instance, in this case, DurableContextExtension.CallEntityAsync(EntityId entityId, string operationName) is calling IDurableOrchestrationContext.CallEntityAsync(EntityId entityId, string operationName, object operationInput), with a value of null for operationInput. You can find this by looking at the source code.
This is obviously not an ideal way for mocking, as without looking at our source code, it is difficult to tell if you are attempting to mock an extension method or not at the time of writing your tests. You can use a Moq analyzer to at least catch these errors at compile time, but it still won't tell you which method signature to mock to get rid of the error.
We are proposing getting rid of extension methods altogether for this reason, and just putting all of these signature overloads as interface methods directly, so you can mock any of them safely. This is a breaking change for customers who write their tests by directly implementing the interface, so we are trying to keep this change out of a patch release, and only in a minor release with clear guidance of how to fix those broken by these changes. Look for this to be fixed in version 2.3.0 of the extension.

How to define and call a function in Jenkinsfile?

I've seen a bunch of questions related to this subject, but none of them offers anything that would be an acceptable solution (please, no loading external Groovy scripts, no calling to sh step etc.)
The operation I need to perform is a oneliner, but pipeline limitations made it impossible to write anything useful in that unter-language...
So, here's minimal example:
#NonCPS
def encodeProperties(Map properties) {
properties.collect { k, v -> "$k=$v" }.join('|')
}
node('dockerized') {
stage('Whatever') {
properties = [foo: 123, bar: "foo"]
echo encodeProperties(properties)
}
}
Depending on whether I add or remove #NonCPS annotation, or type declaration of the argument, the error changes, but it never gives any reason for what happened. It's basically random noise, that contradicts the reality of the situation (at times it would claim that some irrelevant object doesn't have a method encodeProperties, other times it would say that it cannot find a method encodeProperties with a signature that nobody was trying to call it with (like two arguments instead of one) and so on.
From reading the documentation, which is of disastrous quality, I sort of understood that maybe functions in general aren't serializable, and that is why you need to explain this explicitly to the Groovy interpreter... I'm sorry, this makes no sense, but this is roughly what documentation says.
Obviously, trying to use collect inside stage creates a load of new errors... Which are, at least understandable in that the author confesses that their version of Groovy doesn't implement most of the Groovy standard...
It's just a typo. You defined encodeProperties but called encodeProprties.

Common php functions in hack

I decided to start a new project to get into hacklang, and after fixing some if the problems I initially ran into transitioning from php habits, I ran into the following errors:
Unbound name: str_replace
Unbound name: empty
Doing some research I found that this is due to using 'legacy' php which isn't typechecked, and will error with //strict.
That's fine and all, empty() was easy enough to replace, however str_replace() is a bit more difficult.
Is there an equivalent function that will work with //strict? Or at least something similar.
I'm aware that I could use //decl but I feel like that defeats the purpose in my case.
Is there at least any way to tell which functions are implemented in hack and which are not in the documentation as I couldn't find one?
For reference (though it isn't too relevant to the question itself), here is the code:
<?hh //strict
class HackMarkdown {
public function parse(string $content) : string {
if($content===null){
throw new RuntimeException('Empty Content');
}
$prepared = $this->prepare($content);
}
private function prepare(string $contentpre) : Vector<string>{
$contentpre = str_replace(array("\r\n","\r"),"\n",$contentpre);
//probably need more in here
$prepared = Vector::fromArray(explode($contentpre,"\n"));
//and here
return $prepared;
}
}
You don't need to change your code at all. You just need to tell the Hack tools about all the inbuilt PHP functions.
The easiest way to do this is to download this folder and put it somewhere in your project. I put it in a hhi folder in the base of my project. The files in there tell Hack about all the inbuilt PHP functions.
Most of them don't have type hints, which can lead to Hack thinking the return type of everything is mixed instead of the actual return, that is actually correct in most cases as, for example, str_replace can return either a string or a bool. However, it does stop the "unbound name" errors, which is the main reason for adding them.

Ignore certain TypeScript compile errors?

I am wondering if there is a way to ignore certain TypeScript errors upon compilation?
I basically have the same issues most people with large projects have around using the this keyword, and I don't want to put all my classes methods into the constructor.
So I have got an example like so:
TypeScript Example
Which seems to create perfectly valid JS and allows me to get around the this keyword issue, however as you can see in the example the typescript compiler tells me that I cannot compile that code as the keyword this is not valid within that scope. However I don't see why it is an error as it produces okay code.
So is there a way to tell it to ignore certain errors? I am sure given time there will be a nice way to manage the this keyword, but currently I find it pretty dire.
== Edit ==
(Do not read unless you care about context of this question and partial rant)
Just to add some context to all this to show that I'm not just some nut-job (I am sure a lot of you will still think I am) and that I have some good reasons why I want to be able to allow these errors to go through.
Here are some previous questions I have made which highlight some major problems (imo) with TypeScript current this implementation.
Using lawnchair with Typescript
Issue with child scoping of this in Typescript
https://typescript.codeplex.com/discussions/429350 (And some comments I make down the bottom)
The underlying problem I have is that I need to guarantee that all logic is within a consistent scope, I need to be able to access things within knockout, jQuery etc and the local instance of a class. I used to do this with the var self = this; within the class declaration in JavaScript and worked great. As mentioned in some of these previous questions I cannot do that now, so the only way I can guarantee the scope is to use lambda methods, and the only way I can define one of these as a method within a class is within the constructor, and this part is HEAVILY down to personal preference, but I find it horrific that people seem to think that using that syntax is classed as a recommended pattern and not just a work around.
I know TypeScript is in alpha phase and a lot will change, and I HOPE so much that we get some nicer way to deal with this but currently I either make everything a huge mess just to get typescript working (and this is within Hundreds of files which I'm migrating over to TypeScript ) or I just make the call that I know better than the compiler in this case (VERY DANGEROUS I KNOW) so I can keep my code nice and hopefully when a better pattern comes out for handling this I can migrate it then.
Also just on a side note I know a lot of people are loving the fact that TypeScript is embracing and trying to stay as close to the new JavaScript features and known syntax as possible which is great, but typescript is NOT the next version of JavaScript so I don't see a problem with adding some syntactic sugar to the language as people who want to use the latest and greatest official JavaScript implementation can still do so.
The author's specific issue with this seems to be solved but the question is posed about ignoring errors, and for those who end up here looking how to ignore errors:
If properly fixing the error or using more decent workarounds like already suggested here are not an option, as of TypeScript 2.6 (released on Oct 31, 2017), now there is a way to ignore all errors from a specific line using // #ts-ignore comments before the target line.
The mendtioned documentation is succinct enough, but to recap:
// #ts-ignore
const s : string = false
disables error reporting for this line.
However, this should only be used as a last resort when fixing the error or using hacks like (x as any) is much more trouble than losing all type checking for a line.
As for specifying certain errors, the current (mid-2018) state is discussed here, in Design Meeting Notes (2/16/2018) and further comments, which is basically
"no conclusion yet"
and strong opposition to introducing this fine tuning.
I think your question as posed is an XY problem. What you're going for is how can I ensure that some of my class methods are guaranteed to have a correct this context?
For that problem, I would propose this solution:
class LambdaMethods {
constructor(private message: string) {
this.DoSomething = this.DoSomething.bind(this);
}
public DoSomething() {
alert(this.message);
}
}
This has several benefits.
First, you're being explicit about what's going on. Most programmers are probably not going to understand the subtle semantics about what the difference between the member and method syntax are in terms of codegen.
Second, it makes it very clear, from looking at the constructor, which methods are going to have a guaranteed this context. Critically, from a performance, perspective, you don't want to write all your methods this way, just the ones that absolutely need it.
Finally, it preserves the OOP semantics of the class. You'll actually be able to use super.DoSomething from a derived class implementation of DoSomething.
I'm sure you're aware of the standard form of defining a function without the arrow notation. There's another TypeScript expression that generates the exact same code but without the compile error:
class LambdaMethods {
private message: string;
public DoSomething: () => void;
constructor(message: string) {
this.message = message;
this.DoSomething = () => { alert(this.message); };
}
}
So why is this legal and the other one isn't? Well according to the spec: an arrow function expression preserves the this of its enclosing context. So it preserves the meaning of this from the scope it was declared. But declaring a function at the class level this doesn't actually have a meaning.
Here's an example that's wrong for the exact same reason that might be more clear:
class LambdaMethods {
private message: string;
constructor(message: string) {
this.message = message;
}
var a = this.message; // can't do this
}
The way that initializer works by being combined with the constructor is an implementation detail that can't be relied upon. It could change.
I am sure given time there will be a nice way to manage the this keyword, but currently I find it pretty dire.
One of the high-level goals (that I love) in TypeScript is to extend the JavaScript language and work with it, not fight it. How this operates is tricky but worth learning.

Why can't I add Contract.Requires in an overridden method?

I'm using code contract (actually, learning using this).
I'm facing something weird to me... I override a method, defined in a 3rd party assembly. I want to add a Contract.Require statement like this:
public class MyClass: MyParentClass
{
protected override void DoIt(MyParameter param)
{
Contract.Requires<ArgumentNullException>(param != null);
this.ExecuteMyTask(param.Something);
}
protected void ExecuteMyTask(MyParameter param)
{
Contract.Requires<ArgumentNullException>(param != null);
/* body of the method */
}
}
However, I'm getting warnings like this:
Warning 1 CodeContracts:
Method 'MyClass.DoIt(MyParameter)' overrides 'MyParentClass.DoIt(MyParameter))', thus cannot add Requires.
[edit] changed the code a bit to show alternatives issues [/edit]
If I remove the Contract.Requires in the DoIt method, I get another warning, telling me I have to provide unproven param != null
I don't understand this warning. What is the cause, and can I solve it?
You can't add extra requirements which your callers may not know about. It violates Liskov's Subtitution Principle. The point of polymorphism is that a caller should be able to treat a reference which actually refers to an instance of your derived class as if it refers to an instance of the base class.
Consider:
MyParentClass foo = GetParentClassFromSomewhere();
DoIt(null);
If that's statically determined to be valid, it's wrong for your derived class to hold up its hands and say "No! You're not meant to call DoIt with a null argument!" The aim of static analysis of contracts is that you can determine validity of calls, logic etc at compile-time... so no extra restrictions can be added at execution time, which is what happens here due to polymorphism.
A derived class can add guarantees about what it will do - what it will ensure - but it can't make any more demands from its callers for overridden methods.
I'd like to note that you can do what Jon suggested (this answers adds upon his) but also have your contract without violating LSP.
You can do so by replacing the override keyword with new.
The base remains the base; all you did is introduce another functionality (as the keywords literally suggest).
It's not ideal for static-checking because the safety could be easily casted away (cast to base-class first, then call the method) but that's a must because otherwise it would violate LSP and you do not want to do that obviously. Better than nothing though, I'd say.
In an ideal world you could also override the method and call the new one, but C# wouldn't let you do so because the methods would have the same signatures (even tho it would make perfect sense; that's the trade-off).

Resources