Right, so some time ago I requested access to the N Series instances with gpu.
Don`t know what happened but when I try to create a new W. 2012 R2 datacenter server I have the option to create an NC6. I configure the whole thing and at the end it tells me I have ZERO cores available.
I have 2 types of subscription. Pay as You Go and Free Trial. Pay as You Go has a remaining of 10 cores and I have no other instance created.
How can I fix this? I really need around 30-40 hours time of one of those instances for an important project of mine that requires intense 3D capabilities.
You have to signup for this preview on http://gpu.azure.com/
Related
Hi I need to buy a subscription in azure with two DB and 1 Basic App.
Anyway I don't understand what stand for instance * hours.
I wrote an B2B site in aspnet that has to be run in this subscripotion.
How can I calculate or know how many instances I need?
And how do you calculate the hours for instance?
Is possible set it scalable?
For starters, there are 4 question in this question.
Well, instance * hours means you will have to pay X of some currency for every hour or every instance working. So 1 instance working for 20 hours = 20 hours billed, 5 instances working for 20 hours = 100 hours billed.
Hours are calculated pretty straight forward, once you've created App Service Plan you are being billed constantly, until you delete it.
Yes, WebApp's are scalable. And for the How can I calculate or know how many instances I need? we can't help you. It depends on your load. You would need to do some performance testing emulating actual load.
Also, check out the pricing calculator.
edit in Instances: So when you create a WebApp it has 1 instance initially. Instance is a VM hosting IIS that is hosting your WebApp. When you scale it, you create additional instances (VM's) that host additional IIS instances that host copies of your WebApp.
I am using a azure websites solution with 20 websites. Hosted on 4 cores, 8 GB RAM standard instance. I would like to know how I could do scaling in Azure websites and when to do it ?
Also I am reading some values from the new azure portal.
Can someone guide me on the values that I see here ?
Thank you
Averages
The Avg % is telling you, on average, how much of that resource is being used. So, if you have 8GB of ram, and you are typically using 66% of it, then you are averaging 5.28 Gb of ram used. Same goes for the CPU average listed below.
For the totals, I have no idea.
You're not using much of the CPU available to you here, but you are definitely taking advantage of the RAM. I'm not sure of what kind of web application you are running though, so it's dificult to determine what could be causing this.
Scaling
In terms of scaling, I always suggest starting with a small machine, then gradually scaling up.
Based on your usage, I'd drop to a machine that has fewer CPU cores, but more available RAM. From within your dashboard, you can see how to scale by clicking no your web app, then scrolling down. Click on the scale tab and it should appear as it does below:
You can now adjust what you want to scale by. The default setting is CPU Percentage, but that isn't particularly useful in this case. Instead, select Schedule and performance rules and a new panel wioll appear. On the right hand side, select Metric name and look for Memory Percentage.
In your particular case, this is helpful as we saw that your RAM is consistently being used.
Look at Action and you will want to Increase count by and change the number of VMs to 1. What this does is when your RAM reaches a certain usage %, Azure will auto-scale and generate a new VM for you. After a cool down period of 5 minutes (the default, listed at the bottom), your machine will revert to 1 machine.
Conclusion
With these settings, each time your website uses <= (Select your percentage) of RAM, Azure will increase the size of your machines.
In your case, I suggest using fewer cores, but more RAM.
Make sure you save your settings, with the Save button above.
Scott Hanselman as a great blog post on how to make sense of all of this.
I subscribed to free 90 days azure trail offered by MS. I was excited and talked about it everywhere(including my blog http://techibee.com/windows-2012/free-try-windows-server-2012-in-azure-for-90-days/1876) about the free service offered by MS and how to make use of it. Well, my excitement lasted only for 7-8 days. Today I got a message from Azure team that my subscription disabled as my computer hours exceed the monthly limit.
I am just wondering how these compute hours are calculated in my case. I configured 2 VMs(2 medium) and using them to explore stuff. I never shutdown them since creation. Anyone has idea how these two VMs constituted to limits.
Another question I have is, since the subscription is disabled for this month, I am considering purchasing few more compute hours(pay-as-you-go). If I do that now, should I shutdown the VMs when I am not using them actively? will it stop the compute hours from increasing or they will continue to charge me for even shutdown hours. All I want is, I should get billed only when I am actively using it, when I am not connected to that host, I shouldn't. Looks like this is not happened in the trail program and their calculations seems different. Can anyone here given me some clarity?
From http://www.windowsazure.com/en-us/pricing/details/#header-3
Compute hours are charged whenever the Virtual Machine is deployed,
irrespective of whether it is running or not.
That's where all your hours went. You need to delete your VMs to prevent them using compute time.
With the free trial account you can configure only 1 VMs medium. Probably your offered expired early becouse you configured two.
Be aware that if you create a VM and you turn it off you will be charged the same as indicated when your turn off a VM.
I'm an msdn subscriber and I'm looking at Azure as a possible platform for a new website that will test the water of a new service. This website is expecting low to very low traffic at the time of launch. I've heard that this kind of traffic levels is very expensive for Azure but since they have this msdn offer, I thought I'd finally take a look at Azure.
In the offer, I'm looking at getting "750 small compute hours per month". From the reading I've done, this seems that, if I purchase nothing more than what's given (although the subscription itself is thousands of dollars of course), that an entire month would be covered. Since 24 (hours) x 31 (max days in a month) = 744 I'm still below my allotted 750 for the month.
Am I missing something else from this simple equation? Is there further aspects that could cause the site to be "turned off" temporarily that should be considered?
Yes, you can indeed run a small instance during a whole month. Or you can have 2 extra-small instances instead (having 2 instances means you're covered by the SLA).
There are 2 other things you need to consider:
Depending on your subscription you can have maximum 45GB of storage (blob/table/queue). If you use Virtual Machines you need to know that the system disk (and additional data disks) are persisted as blobs, so make sure not to reach the limit here.
There are also other limits active, but the most important one besides storage is the data transfer limit which is also very limited (max 35GB out).
If you're expecting very low traffic, did you ever consider Windows Azure Web Sites? You get 10 of those for free during 12 months. The free ones run on shared instances, but they are perfect to host the first low-traffic version of your app.
I'm fairly new to Windows Azure and want to host a survey application that will be filled out by appr. 30.000 users simultaniously.
The application consists of 1 .aspx page that will be sent to the client once, asks 25 questions and will give a wrap-up of the given answers at the end. When the user has given the answer and hits the 'next question' buttons the given answer will be send via an .ashx handler to the server. The response is the next question and answers. The wrap-up is sent to the client after a full postback.
The answer is saved in an Azure Table that is partitioned so that each partition can hold a max of 450 users.
I would like to ask if someone can give an estimated guess about how many web-role instances we need to start in order to have this application keep running. (If that is too hard to say, is it more likely to start 5, 50 or 500 instances?)
What is a better way to go: 20 small instances or 5 large instances?
Thanks for your help!
The most obvious answer: you would be best served by testing this yourself and see how your application holds up. You can easily get performance counters and other diagnostics out of Windows Azure; for instance, you can connect Microsoft SCOM (System Center Operations Manager) to monitor your environment during test. Site Hammer is a simple load testing tool for Windows Azure (on MSDN code gallery).
Apart from this very obvious answer, I will share some guesstimates: given the type of load, you are probably better of with more small instances as opposed to a lower number of large ones, especially since you already have your storage partitioned. If you are really going to have 30K visitors simultaneously and give them a ~15 second interval between reading the questions & posting their answers you are looking at 2,000 requests per second. 10 nodes should be more than enough to handle that load. Remember that this is just a simple estimate, lacking any form of insight in your architecture, etc. For these types of loads, caching is a very good idea; it will dramatically increase the load each node can handle.
However, the best advice I can give you is to make sure that you are actively monitoring. It takes less than 30 minutes to spin up additional instances, so if you monitor your environment and/or make sure that you are notified whenever it starts to choke, you can easily upgrade your setup. Keep in mind that you do need to contact customer support to be able to go over 20 instances (this is a default limit, in place to protect you from over-spending).
Aside from the sage advice tijmenvdk gave you, let me add my opinion on instance size. In general, go with the smallest size that will support your app, and then scale out to handle increased traffic. This way, when you scale back down, your minimum compute cost is kept low. If you ran, say, a pair of extra-large instances as your baseline (since you always want minimum two instances to get the uptime SLA), your cost footprint starts at 0.12 x 8 x 2 = $1.92 per hour, even during low-traffic times. If you go with small instances, you'd be at 0.12 x 1 x 2 = $0.24 per hour.
Each VM size as associated CPU, memory, and local 9non-durable) disk storage, so pick the smallest size unit that your app works efficiently in.
For load/performance-testing, you might also want to consider a hosted solution such as Loadstorm.
How simultaneous are the requests in reality?
Will they all type the address in at exactly the same time?
That said, profile your app locally, this will enable you to estimate CPU, Network and Memory usage on Azure. Then, rather than looking at how many instances you need, look at how you can reduce the requirement! Apply these tips, and profile locally again.
Most performance tips have a tradeoff between cpu, memory or bandwith usage, the idea is to ensure that they scale equally. If you're application runs out of memory, but you have loads of CPU and network, dont
For a single page survey, ensure your html, css & js is minified, ensure its cacheable.
Combine them if possible, and to get really scaleable, push static files (css,js & images) to a CDN. This all reduces the number of requests the webserver has to deal with, and therefore reduces the number of webroles you will need = less network.
How does the ashx return the response? i.e. is it sending html, xml or json?
personally, I'd get it to return JSON, as this will require less network bandwidth, and most likely less server side processing = less mem and network.
Use Asyncronous API's to access azure storage (this uses IO completion ports to free up the iis thread to handle more requests until azure storage comes back = enabling cpu to scale)
tijmenvdk has already mentioned using queues to write. Do the list of questions change? if not, cache them, so that the app only has to read from table storage once on start-up and once for each client for the final wrap-up = saves network and cpu at the expense of memory.
All of these tips are equally applicable to a normal web application, on a single server or web-farm environment.
The point I'm trying to make is that what you can't measure, you cant improve, and measurement, improvement and cost all go hand in hand. Dynamic scaling will reduce costs, but fundamentally if your application hasn't been measured and resource usage optimised, asking how many instances you need is pointless.