Newbie to Spark and PySpark.
I am following the collaborative filtering tutorial here.
I was able to train the model. However, I don't know how to access the latent factors (vectors) corresponding to users and products.
Reproducing the top part of the code from the above link here:
from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating
# Load and parse the data
data = sc.textFile("data/mllib/als/test.data")
ratings = data.map(lambda l: l.split(','))\
.map(lambda l: Rating(int(l[0]), int(l[1]), float(l[2])))
# Build the recommendation model using Alternating Least Squares
rank = 10
numIterations = 10
model = ALS.train(ratings, rank, numIterations)
How can I extract the latent factors from model?
Try:
model.productFeatures()
and
model.productFeatures()
Related
I am attempting to get shap values out of an array which was created by
explainer = shap.Explainer(xg_clf, X_train)
shap_values2 = explainer(X_train)
using my XGBoost data, to make a dataframe of feature_names and their SHAP importance, as they would appear in a SHAP bar or summary plot.
Following advice from how to extract the most important feature names? and How to get feature names of shap_values from TreeExplainer? specifically the comment by user Thoo, which shows how the values can be extracted to make a dataframe:
vals= np.abs(shap_values).mean(0)
feature_importance = pd.DataFrame(list(zip(X_train.columns,vals)),columns=['col_name','feature_importance_vals'])
feature_importance.sort_values(by=['feature_importance_vals'],ascending=False,inplace=True)
feature_importance.head()
shap_values has 11595 persons with 595 features each, which I understand is large, but, creating the vals variable runs very slowly, about 58 minutes on my laptop. It uses almost all RAM on the computer.
After 58 minutes I get an error:
Command terminated by signal 9
which as far as I understand, means that the computer ran out of RAM.
I've tried converting the 2nd line in Thoo's code to
feature_importance = pd.DataFrame(list(zip(X_train.columns,np.abs(shap_values2).mean(0))),columns=['col_name','feature_importance_vals'])
so that vals isn't stored but this change doesn't reduce RAM at all.
I've also tried a different comment from the same GitHub issue (user "ba1mn"):
def global_shap_importance(model, X):
""" Return a dataframe containing the features sorted by Shap importance
Parameters
----------
model : The tree-based model
X : pd.Dataframe
training set/test set/the whole dataset ... (without the label)
Returns
-------
pd.Dataframe
A dataframe containing the features sorted by Shap importance
"""
explainer = shap.Explainer(model)
shap_values = explainer(X)
cohorts = {"": shap_values}
cohort_labels = list(cohorts.keys())
cohort_exps = list(cohorts.values())
for i in range(len(cohort_exps)):
if len(cohort_exps[i].shape) == 2:
cohort_exps[i] = cohort_exps[i].abs.mean(0)
features = cohort_exps[0].data
feature_names = cohort_exps[0].feature_names
values = np.array([cohort_exps[i].values for i in range(len(cohort_exps))])
feature_importance = pd.DataFrame(
list(zip(feature_names, sum(values))), columns=['features', 'importance'])
feature_importance.sort_values(
by=['importance'], ascending=False, inplace=True)
return feature_importance
but global_shap_importance returns the feature importances in the wrong order, and I don't see how I can alter global_shap_importance so that the features are returned in the same order as summary_plot (beeswarm plot).
How can I get the feature importance ranking into a dataframe?
I pulled this straight from the source code. Confirmed identical to the summary_plot.
def shapley_feature_ranking(shap_values, X):
feature_order = np.argsort(np.mean(np.abs(shap_values), axis=0))
return pd.DataFrame(
{
"features": [X.columns[i] for i in feature_order][::-1],
"importance": [
np.mean(np.abs(shap_values), axis=0)[i] for i in feature_order
][::-1],
}
)
shapley_feature_ranking(shap_values[0], X)
I am working with app store reviews to classify them as class "0" or class "1" based on the text in the review and the sentiment the review carries.
In my classification steps I apply the following methods to my dataframe:
def get_sentiment(s):
vs = analyzer.polarity_scores(s)
if vs['compound'] >= 0.5:
return 1
elif vs['compound'] <= -0.5:
return -1
else:
return 0
df['sentiment'] = df['review'].apply(get_sentiment)
For simplicity sake, the data has already been labeled as either class '0' or '1', but I am training the model for the classification of new instances that have not been labeled yet. In short, the data I'm working with has already been labeled. They are in the classification column.
Then in my train test split method do the following:
msg_train, msg_test, label_train, label_test = train_test_split(df.drop('classification', axis=1), df['classification'], test_size=0.3, random_state=42)
So the dataframe for the X parameter has review and sentiment, and for the y parameter I only have the classification that I am training my model on.
Since the normalization is repetitive, I am running a pipeline like so for simplicity:
pipeline1 = Pipeline([
('bow', CountVectorizer(analyzer=clean_review)),
('tfidf', TfidfTransformer()),
('classifier', MultinomialNB())
])
Where the clean_review function is as follows:
def clean_review(sentence):
no_punc = [c for c in sentence if c not in string.punctuation]
no_punc = ''.join(no_punc)
no_stopwords = [w.lower() for w in no_punc.split() if w not in stopwords_set]
stemmed_words = [ps.stem(w) for w in no_stopwords]
return stemmed_words
Where stopwords_set is the collection of english stopwords from the nltk library, and ps is from the PortStemmer module in the nltk library (for word stemming).
I get the following error: ValueError: Found input variables with inconsistent numbers of samples: [2, 505]
When I searched this error before, I saw that the likely issue could've been that there is a mismatch in the number of records for each attribute. I've found this not to be the case. All the records that I am using have values for every column.
Can someone else help me interpret what this error could mean?
My end goal is to have a dataframe that has the CountVectorizer and TfIdfTransformer applied to the text, but also retain the column for the sentiment of each review.
I would then like to be able to train the MultinomialNB classifier on this dataframe and apply this model to other tasks.
I'm not sure on what the error is due to since I don't know what the size of your dataframe should be. I would need more information. On which line is the error thrown?
Regarding the fact that you want to retain the sentiment column, you could apply CountVectorizer and TfIdfTransformer (by the way you could skip a step and directly apply TfidfVectorizer) only on the text data and then have another transformer in the pipeline which adds the original sentiment column before you feed the dataframe to the classifier.
I'm starting with PySpark, building binary classification models (logistic regression), and I need to find the optimal threshold (cuttoff) point for my models.
I want to use the ROC curve to find this point, but I don't know how to extract the threshold value for each point in this curve. Is there a way to find this values?
Things I've found:
This post shows how to extract the ROC curve, but only the values for the TPR and FPR. It's useful for plotting and for selecting the optimal point, but I can't find the threshold value.
I know I can find the threshold values for each point in the ROC curve using H2O (I've done it before), but I'm working on Pyspark.
Here is a post describing how to do it with R... but, again, I need to do it with Pyspark
Other facts
I'm using Apache Spark 2.4.0.
I'm working with Data Frames (I really don't know - yet - how to work with RDDs, but I'm not afraid to learn ;) )
If you specifically need to generate ROC curves for different thresholds, one approach could be to generate a list of threshold values you're interested in and fit/transform on your dataset for each threshold. Or you could manually calculate the ROC curve for each threshold point using the probability field in the response from model.transform(test).
Alternatively, you can use BinaryClassificationMetrics to extract a curve plotting various metrics (F1 score, precision, recall) by threshold.
Unfortunately it appears the PySpark version doesn't implement most of the methods the Scala version does, so you'd need to wrap the class to do it in Python.
For example:
from pyspark.mllib.evaluation import BinaryClassificationMetrics
# Scala version implements .roc() and .pr()
# Python: https://spark.apache.org/docs/latest/api/python/_modules/pyspark/mllib/common.html
# Scala: https://spark.apache.org/docs/latest/api/java/org/apache/spark/mllib/evaluation/BinaryClassificationMetrics.html
class CurveMetrics(BinaryClassificationMetrics):
def __init__(self, *args):
super(CurveMetrics, self).__init__(*args)
def _to_list(self, rdd):
points = []
# Note this collect could be inefficient for large datasets
# considering there may be one probability per datapoint (at most)
# The Scala version takes a numBins parameter,
# but it doesn't seem possible to pass this from Python to Java
for row in rdd.collect():
# Results are returned as type scala.Tuple2,
# which doesn't appear to have a py4j mapping
points += [(float(row._1()), float(row._2()))]
return points
def get_curve(self, method):
rdd = getattr(self._java_model, method)().toJavaRDD()
return self._to_list(rdd)
Usage:
import matplotlib.pyplot as plt
preds = predictions.select('label','probability').rdd.map(lambda row: (float(row['probability'][1]), float(row['label'])))
# Returns as a list (false positive rate, true positive rate)
points = CurveMetrics(preds).get_curve('roc')
plt.figure()
x_val = [x[0] for x in points]
y_val = [x[1] for x in points]
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.plot(x_val, y_val)
Results in:
Here's an example of an F1 score curve by threshold value if you aren't married to ROC:
One way is to use sklearn.metrics.roc_curve.
First use your fitted model to make predictions:
from pyspark.ml.classification import LogisticRegression
lr = LogisticRegression(labelCol="label", featuresCol="features")
model = lr.fit(trainingData)
predictions = model.transform(testData)
Then collect your scores and labels1:
preds = predictions.select('label','probability')\
.rdd.map(lambda row: (float(row['probability'][1]), float(row['label'])))\
.collect()
Now transform preds to work with roc_curve
from sklearn.metrics import roc_curve
y_score, y_true = zip(*preds)
fpr, tpr, thresholds = roc_curve(y_true, y_score, pos_label = 1)
Notes:
I am not 100% certain that the probabilities vector will always be ordered such that the positive label will be at index 1. However in a binary classification problem, you'll know right away if your AUC is less than 0.5. In that case, just take 1-p for the probabilities (since the class probabilities sum to 1).
I want to perform text classification using word2vec.
I got vectors of words.
ls = []
sentences = lines.split(".")
for i in sentences:
ls.append(i.split())
model = Word2Vec(ls, min_count=1, size = 4)
words = list(model.wv.vocab)
print(words)
vectors = []
for word in words:
vectors.append(model[word].tolist())
data = np.array(vectors)
data
output:
array([[ 0.00933912, 0.07960335, -0.04559333, 0.10600036],
[ 0.10576613, 0.07267512, -0.10718666, -0.00804013],
[ 0.09459028, -0.09901826, -0.07074171, -0.12022413],
[-0.09893986, 0.01500741, -0.04796079, -0.04447284],
[ 0.04403428, -0.07966098, -0.06460238, -0.07369237],
[ 0.09352681, -0.03864434, -0.01743148, 0.11251986],.....])
How can i perform classification (product & non product)?
You already have the array of word vectors using model.wv.syn0. If you print it, you can see an array with each corresponding vector of a word.
You can see an example here using Python3:
import pandas as pd
import os
import gensim
import nltk as nl
from sklearn.linear_model import LogisticRegression
#Reading a csv file with text data
dbFilepandas = pd.read_csv('machine learning\\Python\\dbSubset.csv').apply(lambda x: x.astype(str).str.lower())
train = []
#getting only the first 4 columns of the file
for sentences in dbFilepandas[dbFilepandas.columns[0:4]].values:
train.extend(sentences)
# Create an array of tokens using nltk
tokens = [nl.word_tokenize(sentences) for sentences in train]
Now it's time to use the vector model, in this example we will calculate the LogisticRegression.
# method 1 - using tokens in Word2Vec class itself so you don't need to train again with train method
model = gensim.models.Word2Vec(tokens, size=300, min_count=1, workers=4)
# method 2 - creating an object 'model' of Word2Vec and building vocabulary for training our model
model = gensim.models.Word2vec(size=300, min_count=1, workers=4)
# building vocabulary for training
model.build_vocab(tokens)
print("\n Training the word2vec model...\n")
# reducing the epochs will decrease the computation time
model.train(tokens, total_examples=len(tokens), epochs=4000)
# You can save your model if you want....
# The two datasets must be the same size
max_dataset_size = len(model.wv.syn0)
Y_dataset = []
# get the last number of each file. In this case is the department number
# this will be the 0 or 1, or another kind of classification. ( to use words you need to extract them differently, this way is to numbers)
with open("dbSubset.csv", "r") as f:
for line in f:
lastchar = line.strip()[-1]
if lastchar.isdigit():
result = int(lastchar)
Y_dataset.append(result)
else:
result = 40
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(model.wv.syn0, Y_dataset[:max_dataset_size])
# Prediction of the first 15 samples of all features
predict = clf.predict(model.wv.syn0[:15, :])
# Calculating the score of the predictions
score = clf.score(model.wv.syn0, Y_dataset[:max_dataset_size])
print("\nPrediction word2vec : \n", predict)
print("Score word2vec : \n", score)
You can also calculate the similarity of words belonging to your created model dictionary:
print("\n\nSimilarity value : ",model.wv.similarity('women','men'))
You can find more functions to use here.
Your question is rather broad but I will try to give you a first approach to classify text documents.
First of all, I would decide how I want to represent each document as one vector. So you need a method that takes a list of vectors (of words) and returns one single vector. You want to avoid that the length of the document influences what this vector represents. You could for example choose the mean.
def document_vector(array_of_word_vectors):
return array_of_word_vectors.mean(axis=0)
where array_of_word_vectors is for example data in your code.
Now you can either play a bit around with distances (for example cosine distance would a nice first choice) and see how far certain documents are from each other or - and that's probably the approach that brings faster results - you can use the document vectors to build a training set for a classification algorithm of your choice from scikit learn, for example Logistic Regression.
The document vectors will become your matrix X and your vector y is an array of 1 and 0, depending on the binary category that you want the documents to be classified into.
I am using Spark 1.5.1 and,
In pyspark, after I fit the model using:
model = LogisticRegressionWithLBFGS.train(parsedData)
I can print the prediction using:
model.predict(p.features)
Is there a function to print the probability score also along with the prediction?
You have to clear the threshold first, and this works only for binary classification:
from pyspark.mllib.classification import LogisticRegressionWithLBFGS, LogisticRegressionModel
from pyspark.mllib.regression import LabeledPoint
parsed_data = [LabeledPoint(0.0, [4.6,3.6,1.0,0.2]),
LabeledPoint(0.0, [5.7,4.4,1.5,0.4]),
LabeledPoint(1.0, [6.7,3.1,4.4,1.4]),
LabeledPoint(0.0, [4.8,3.4,1.6,0.2]),
LabeledPoint(1.0, [4.4,3.2,1.3,0.2])]
model = LogisticRegressionWithLBFGS.train(sc.parallelize(parsed_data))
model.threshold
# 0.5
model.predict(parsed_data[2].features)
# 1
model.clearThreshold()
model.predict(parsed_data[2].features)
# 0.9873840020002339
I presume the question is on computing probability score for the predicting the entire training set. if so , I did the following to compute it. Not sure if the post is still active, but this is howI did this:
#get the original training data before it was converted to rows of LabelPoint.
#let us assume it is otd ( of type spark DataFrame)
#let us extract the featureset as rdd by:
fs=otd.rdd.map(lambda x:x[1:]) # assuming label is col 0.
#the below is just a sample way of creating a Labelpoint rows..
parsedData= otd.rdd.map(lambda x: reg.LabeledPoint(int(x[0]-1),x[1:]))
# now convert otd to a panda DataFrame as:
ptd= otd.toPandas()
m= ptd.shape[0]
# train and get the model
model=LogisticRegressionWithLBFGS.train(trainingData,numClasses=10)
#Now store the model.predict rdd structures
predict=model.predict(fs)
pr=predict.collect()
correct=0
correct = ((ptd.label-1) == (pr)).sum()
print((correct/m) *100)
Note the above is for multi-class classification.