I'm trying to learn haskell and implemented a function conseq that would return a list of consecutive elements of size n.
conseq :: Int -> [Int] -> [[Int]]
conseq n x
| n == length(x) = [x]
| n > length(x) = [x]
| otherwise = [take n x] ++ (conseq n (drop 1 x))
This works correctly.
> take 5 $ conseq 2 [1..10]
[[1,2],[2,3],[3,4],[4,5],[5,6]]
However, if I pass [1..] instead of [1..10], the program gets stuck in an infinite loop.
As I understood it, haskell has lazy evaluation so I should still be able to get the same result right? Is it length? Shouldn't the first two conditions evaluate to false as soon as the length becomes greater than n?
What did I misunderstand?
One of the main reasons why using length is not a good idea is because when it has to be evaluated on an infinite list, it will get stuck in an infinite loop.
The good news is however, we don't need length. It would also make the time complexity worse. We can work with two enumerators, one is n-1 places ahead of the other. If this enumerator reaches the end of the list, then we know that the first enumerator still has n-1 elements, and thus we can stop yielding values:
conseq :: Int -> [a] -> [[a]]
conseq n ys = go (drop (n-1) ys) ys
where go [] _ = []
go (_:as) ba#(~(_:bs)) = take n ba : go as bs
This gives us thus:
Prelude> conseq 3 [1 ..]
[[1,2,3],[2,3,4],[3,4,5],[4,5,6],[5,6,7],[6,7,8],[7,8,9],[8,9,10],[9,10,11],[10,11,12],[11,12,13],[12,13,14],[13,14,15],[14,15,16],[15,16,17],[16,17,18],[17,18,19],[18,19,20],[19,20,21],[20,21,22],[21,22,23],[22,23,24],[23,24,25],[24,25,26],[25,26,27],…
Prelude> conseq 3 [1 .. 4]
[[1,2,3],[2,3,4]]
The first thing your function does is calculate length(x), so it knows whether it should return [x], [x], or [take n x] ++ (conseq n (drop 1 x))
length counts the number of elements in the list - all the elements. If you ask for the length of an infinite list, it never finishes counting.
I'm learning Haskell, and I've tried to generate an infinite list of primes, but I can't understand what my function is doing wrong.
The function:
prime = 2:3:filter (\x -> all (\y -> (mod x y) > 0) (init prime)) [5..]
I think it's the init prime, but the strange thing is that even if I set an upper bound to the range (5..10 for example), the function loops forever and never gets any result for prime !! 2
Can you please tell me what I'm doing wrong?
Well, for one let's look at what init does for a finite list:
init [1] == []
init [1,2] == [1]
init [1,2,3] == [1,2]
ok, so it gives us all but the last element of the list.
So what's init primes? Well, prime without the last element. Hopefully if we implemented prime correctly it shouldn't have a last element (because there are infinitely many primes!), but more importantly we don't quite need to care yet because we don't have the full list for now anyway - we only care about the first couple of elements after all, so for us it's pretty much the same as just prime itself.
Now, looking at all: What does this do? Well, it takes a list and a predicate and tells us if all the elements of the list satisfy the predicate:
all (<5) [1..4] == True
all even [1..4] == False
it even works with infinite lists!
all (<5) [1..] == False
so what's going on here? Well, here's the thing: It does work with infinite lists... but only if we can actually evaluate the list up to the first element of the list that violates the predicate! Let's see if this holds true here:
all (\y -> (mod 5 y) > 0) (init prime)
so to find out if 5 is a prime number, we'd have to check if there's a number in prime minus the last element of prime that divides it. Let's see if we can do that.
Now let's look at the definition of prime, we get
all (\y -> (mod 5 y) > 0) (2:3:filter (\x -> all (\y -> (mod x y) > 0) (init prime)) [5..])
So to determine whether 5 is a prime number, we only have to check if it's:
divisible by 2 - it's not, let's continue
divisible by 3 - still no
divisible by ...? Well, we're in the process of checking what the 3rd prime is so we don't know yet...
and there's the crux of the problem. With this logic, to determine the third prime number you need to know the third prime number! Of course logically, we actually don't want to check this at all, rather we only need to check if any of the smaller prime numbers are divisors of the current candidate.
So how do we go about doing that? Well, we'll have to change our logic unfortunately. One thing we can do is try to remember how many primes we already have, and only take as many as we need for our comparison:
prime = 2 : 3 : morePrimes 2 [5..]
morePrimes n (x:xs)
| all (\y -> mod x y > 0) (take n prime) = x : morePrimes (n+1) xs
| otherwise = morePrimes n xs
so how does this work? Well, it basically does what we were just talking about: We remember how many primes we already have (starting at 2 because we know we have at least [2,3] in n. We then check if our next prime is divisible by any of the of n primes we already know by using take n, and if it is we know it's our next prime and we need to increment n - otherwise we just carry on.
There's also the more well known form inspired by (although not quite the same as) the Sieve of Eratosthenes:
prime = sieve [2..] where
sieve (p:xs) = p : sieve (filter (\x -> mod x p > 0) xs)
so how does this work? Well, again with a similar idea: We know that the next prime number needs to be non-divisible by any previous prime number. So what do we do? Well, starting at 2 we know that the first element in the list is a prime number. We then throw away every number divisible by that prime number using filter. And afterwards, the next item in the list is going to be a prime number again (because we didn't throw it away), so we can repeat the process.
Neither of these are one liners like the one you were hoping for though.
If the code in the other answer is restructured under the identity
[take n primes | n <- [0..]] == inits primes
eventually we get
import Data.List
-- [ ([], 2), ([2], 3), ([2,3], 5), ... ]
primes = 2 : [ c | (ps, p) <- zip (inits primes) primes,
c <- take 1 [c | c <- [p+1..],
and [mod c p > 0 | p <- ps]]]
Further improving it algorithmically, it becomes
primes = 2 : [ c | (ps, r:q:_) <- zip (inits primes) -- [] [3,4,...]
(tails $ 3 : map (^2) primes), -- [2] [4,9,...]
c <- [r..q-1], and [mod c p > 0 | p <- ps]] -- [2,3] [9,25,...]
I am repeatedly getting a stack overflow on my solution to Project Euler #7 and i have no idea why.
Here is my code:
import System.Environment
checkPrime :: Int -> Bool
checkPrime n = not $ testList n [2..n `div` 2]
--testList :: Int -> [Int] -> Bool
testList _ [] = False
testList n xs
| (n `rem` (head xs) == 0) = True
| otherwise = testList n (tail xs)
primesTill n = sum [1 | x <- [2..n], checkPrime x]
nthPrime n = nthPrime' n 2
nthPrime' n x
| (primesTill x == n) = x
| otherwise = nthPrime' n x+1
main = print (nthPrime 10001)
resolving the stackoverflow
As #bheklilr mentioned in his comment the stackoverflow is caused by a wrong evaluation order in the otherwise branch of the nthPrime' function:
nthPrime' n x+1
Will be interpreted as
(nthPrime' n x)+1
Because this expression is called recursively, your call of nthPrime' n 2 will expand into
(nthPrime' n 2)+1+1+1+1+1+1+1+1 ...
but the second parameter will never get incremented and your program collects a mass of unevaluated thunks. The evaluation can only happen if the first parameter is reduced to an Int, but your function is in an endless recursion so this will never take place. All the plus ones are stored on the stack, if there is no more space left you'll get a stackoverflow error.
To solve this problem you need to put parranteses around the x+1 so your recursive call will look like this
nthPrime' n (x+1)
Now the parameters gets incremented before it is passed to the recursive call.
This should solve your stackoverflow problem, you can try it out with a smaller number e.g. 101 and you'll get the desired result.
runtime optimization
If you test your program with the original value 10001 you may realize that it still won't finish in a reasonable amount of time.
I won't go into the details of fancy algorithms to solve this problems, if you're interested in them you can easily find them online.
Instead I'll show you were the problem in your code is and show you a simple solution.
The bottleneck is your nthPrime function:
primesTill n = sum [1 | x <- [2..n], checkPrime x]
nthPrime n = nthPrime' n 2
nthPrime' n x
| (primesTill x == n) = x
| otherwise = nthPrime' n (x+1)
This function checks if the number of primes between 2 and x is equal to n. The idea is correct, but it leads to an exponential runtime. The problem is that you recalculate primesTill x for every iteration. To count the primes smaller than x you calculate them all and than sum them up. In the next step for x+1 you forget every thing you know about the numbers between 2 and x and test them all again if they are prime only as a last step you test the if x+1 is prime. Than you repeat this - forget every thing and test all numbers again - until you are finished.
Wouldn't it be great if the computer could remember the primes it has already found?
There are many possibilities to do this I'll use a simple infinite list, if you are interested in other approaches you can search for the terms memoization or dynamic programming.
We start with the list comprehension you used in primesTill:
[1 | x <- [2..n], checkPrime x]
This calculates all primes between 2 and n, but immediately forgets the prime number and replaces it with 1, so the first step will be to keep the actual numbers.
[x | x <- [2..n], checkPrime x]
This gives us a list of all prime numbers between 2 and n. If we had a sufficiently large list of prime numbers we could use the index function !! to get the 10001st prime number. So we need to set n to a really really big number, to be sure that the filtered list is long enough?
Lazy evaluation to the rescue!
Lazy evaluation in haskell allows us to build an infinite list, that is only evaluated as much as needed. If we don't supply an upper bound to a list generator it will build such an infinite list for us.
[x | x <- [2..], checkPrime x]
Now we have a infinite list of all prime numbers.
We can bind it to the a name e.g. primes and use it to define nthPrime
primes = [x | x <- [2..], checkPrime x]
nthPrime n = primes !! n
Now you can compile it with ghc -O2, run it and the result will be promptly delivered to you.
I'm new to Haskell and tinkering around with the Euler Project problems. My solution for problem #3 is far too slow. At first I tried this:
-- Problem 3
-- The prime factors of 13195 are 5, 7, 13 and 29.
-- What is the largest prime factor of the number 600851475143 ?
problem3 = max [ x | x <- [1..n], (mod n x) == 0, n /= x]
where n = 600851475143
Then I changed it to return all x and not just the largest one.
problem3 = [ x | x <- [1..n], (mod n x) == 0, n /= x]
where n = 600851475143
After 30 minutes, the list is still being processed and the output looks like this
[1,71,839,1471,6857,59569,104441,486847,1234169,5753023,10086647,87625999,408464633,716151937
Why is it so slow? Am I doing something terribly wrong or is it normal for this sort of task?
With your solution, there are about 600 billion possible numbers. As noted by delnan, making every check of the number quicker is not going to make much difference, we must limit the number of candidates.
Your solution does not seem to be correct either. 59569 = 71 * 839 isn't it? The question
only asks for prime factors. Notice that 71 and 839 is in your list so you are
doing something right. In fact, you are trying to find all factors.
I think the most dramatic effect you get simply by dividing away the factor before continuing.
euler3 = go 2 600851475143
where
go cand num
| cand == num = [num]
| cand `isFactorOf` num = cand : go cand (num `div` cand)
| otherwise = go (cand + 1) num
isFactorOf a b = b `mod` a == 0
This may seem like an obvious optimization but it relies on the fact that if both a and b divides c and a is coprime to b then a divides c/b.
If you want to do more, the common "Only check until the square root" trick has been
mentioned here. The same trick can be applied to this problem, but the performance gain does not show, unfortunately, on this instance:
euler3 = go 2 600851475143
where
go cand num
| cand*cand > num = [num]
| cand `isFactorOf` num = cand : go cand (num `div` cand)
| otherwise = go (cand + 1) num
isFactorOf a b = b `mod` a == 0
Here, when a candidate is larger than the square root of the remaining number (num), we know that num must be a prime and therefore a prime factor of the original
number (600851475143).
It is possible to remove even more candidates by only considering prime numbers,
but this is slightly more advanced because you need to make a reasonably performant
way of generating primes. See this page for ways of doing that.
It's doing a lot of work! (It's also going to give you the wrong answer, but that's a separate issue!)
There are a few very quick ways you could speed it up by thinking about the problem a little first:
You are applying your function over all numbers 1..n, and checking each one of them to ensure it isn't n. Instead, you could just go over all numbers 1..n-1 and skip out n different checks (small though they are).
The answer is odd, so you can very quickly filter out any even numbers by going from 1..(n-1)/2 and checking for 2x instead of x.
If you think about it, all factors occur in pairs, so you can in fact just search from 1..sqrt(n) (or 1..sqrt(n)/2 if you ignore even numbers) and output pairs of numbers in each step.
Not related to the performance of this function, but it's worth noting that what you've implemented here will find all of the factors of a number, whereas what you want is only the largest prime factor. So either you have to test each of your divisors for primality (which is going to be slow, again) or you can implement the two in one step. You probably want to look at 'sieves', the most simple being the Sieve of Eratosthenes, and how you can implement them.
A complete factorization of a number can take a long time for big numbers. For Project Euler problems, a brute force solution (which this is) is usually not enough to find the answer in your lifetime.
Hint: you do not need to find all prime factors, just the biggest one.
TL;DR: The two things you were doing non-optimally, are: not stopping at the square root, and not dividing out each smallest factor, as they are found.
Here's a little derivation of the (2nd) factorization code shown in the answer by HaskellElephant. We start with your code:
f1 n = [ x | x <- [2..n], rem n x == 0]
n3 = 600851475143
Prelude> f1 n3
[71,839,1471,6857,59569,104441,486847Interrupted.
So it doesn't finish in any reasonable amount of time, and some of the numbers it produces are not prime... But instead of adding primality check to the list comprehension, let's notice that 71 is prime. The first number produced by f1 n is the smallest divisor of n, and thus it is prime. If it weren't, we'd find its smallest divisor first - a contradiction.
So, we can divide it out, and continue searching for the prime factors of newly reduced number:
f2 n = tail $ iterate (\(_,m)-> (\f->(f, quot m f)) . head $ f1 m) (1,n)
Prelude> f2 n3
[(71,8462696833),(839,10086647),(1471,6857),(6857,1),(*** Exception: Prelude.hea
d: empty list
(the error, because f1 1 == []). We're done! (6857 is the answer, here...). Let's wrap it up:
takeUntil p xs = foldr (\x r -> if p x then [x] else x:r) [] xs
pfactors1 n = map fst . takeUntil ((==1).snd) . f2 $ n -- prime factors of n
Trying out our newly minted solution,
Prelude> map pfactors1 [n3..]
[[71,839,1471,6857],[2,2,2,3,3,1259Interrupted.
suddenly we hit a new inefficiency wall, on numbers without small divisors. But if n = a*b and 1 < a <= b, then a*a <= a*b == n and so it is enough to test only until the square root of a number, to find its smallest divisor.
f12 n = [ x | x <- takeWhile ((<= n).(^2)) [2..n], rem n x == 0] ++ [n]
f22 n = tail $ iterate (\(_,m)-> (\f->(f, quot m f)) . head $ f12 m) (1,n)
pfactors2 n = map fst . takeUntil ((==1).snd) . f22 $ n
What couldn't finish in half an hour now finishes in under one second (on a typical performant box):
Prelude> f12 n3
[71,839,1471,6857,59569,104441,486847,600851475143]
All the divisors above sqrt n3 were not needed at all. We unconditionally add n itself as the last divisor in f12 so it is able to handle prime numbers:
Prelude> f12 (n3+6)
[600851475149]
Since n3 / sqrt n3 = sqrt n3 ~= 775146, your original attempt at f1 n3 should have taken about a week to finish. That's how important this optimization is, of stopping at the square root.
Prelude> f22 n3
[(71,8462696833),(839,10086647),(1471,6857),(6857,1),(1,1),(1,1),(1,1),(1,1),(1,
1),(1,1),(1,1),(1,1),(1,1),(1,1),(1,1),(1,1),(1,1),(1,1)Interrupted
We've apparently traded the "Prelude.head: empty list" error for a non-terminating - but productive - behavior.
Lastly, we break f22 up in two parts and fuse them each into the other functions, for a somewhat simplified code. Also, we won't start over anew, as f12 does, searching for the smallest divisor from 2 all the time, anymore:
-- smallest factor of n, starting from d. directly jump from sqrt n to n.
smf (d,n) = head $ [ (x, quot n x) | x <- takeWhile ((<=n).(^2)) [d..]
, rem n x == 0] ++ [(n,1)]
pfactors n = map fst . takeUntil ((==1).snd) . tail . iterate smf $ (2,n)
This expresses guarded (co)recursion through a higher-order function iterate, and is functionally equivalent to that code mentioned above. The following now runs smoothly, and we're even able to find a pair of twin primes as a bonus there:
Prelude Saga> map pfactors [n3..]
[[71,839,1471,6857],[2,2,2,3,3,1259,6628403],[5,120170295029],[2,13,37,227,27514
79],[3,7,7,11,163,2279657],[2,2,41,3663728507],[600851475149],[2,3,5,5,19,31,680
0809],[600851475151],[2,2,2,2,37553217197],[3,3,3,211,105468049],[2,7,11161,3845
351],[5,67,881,2035853],[2,2,3Interrupted.
Here is my solution for Euler Project #3. It takes only 1.22 sec on my Macbook Air.
First we should find all factors of the given number. But we know, that even numbers can't be prime numbers (except number 2). So, to solve Euler Project #3 we need not all, but only odd factors:
getOddFactors num = [ x | x <- [3,5..num], num `rem` x == 0 ]
But we can optimize this function. If we plan to find a factor of num greater than sqrt num, we should have another factor which is less than sqrt num - and these possible factors we have found already. Hence, we can limit our list of possible factors by sqrt num:
getOddFactors num = [ x | x <- [3, 5..(floor.sqrt.fromIntegral) num],
num `rem` x == 0 ]
Next we want to know which of our odd factors of num are prime numbers:
isPrime number = [ x | x <- [3..(floor.sqrt.fromIntegral) number],
number `rem` x == 0] == []
Next we can filter odd factors of num with the function isPrime to find all prime factors of num. But to use laziness of Haskell to optimize our solution, we apply function filter isPrime to the reversed list of odd factors of the num. As soon as our function finds the first value which is prime number, Haskell stops computations and returns solution:
largestPrimeFactor = head . filter isPrime . reverse . getOddDivisors
Hence, the solution is:
ghci> largestPrimeFactor 600851475143
6857
(1.22 secs, 110646064 bytes)