Changing State when Using Scala Concurrency - multithreading

I have a function in my Controller that takes user input, and then, using an infinite loop, queries a database and sends the object returned from the database to a webpage. This all works fine, except that I needed to introduce concurrency in order to both run this logic and render the webpage.
The code is given by:
def getSearchResult = Action { request =>
val search = request.queryString.get("searchInput").head.head
val databaseSupport = new InteractWithDatabase(comm, db)
val put = Future {
while (true) {
val data = databaseSupport.getFromDatabase(search)
if (data.nonEmpty) {
if (data.head.vendorId.equals(search)) {
comm.communicator ! data.head
}
}
}
}
Ok(views.html.singleElement.render)
}
The issue arises when I want to call this again, but with a different input. Because the first thread is in an infinite loop, it never ceases to run and is still running even when I start the second thread. Therefore, both objects are being sent to the webpage at the same time in two separate threads.
How can I stop the first thread once I call this function again? Or, is there a better implementation of this whole idea so that I could do it without using multithreading?
Note: I tried removing the concurrency from this function (as multithreading has been the thing giving me all of these problems) and instead moving it to the web socket itself, but this posed problems as the web socket is connected to a router, and everything connects to the web socket through the router.

Try AsyncAction where you return a Future[Result] as a result. Make database call in side this result. E.g.(pseudo code),
def getSearchResult = AsyncAction { request =>
val search = request.queryString.get("searchInput").head.head
val databaseSupport = new InteractWithDatabase(comm, db)
Future {
val data = databaseSupport.getFromDatabase(search)
if (data.nonEmpty) {
if (data.head.vendorId.equals(search)) {
comm.communicator ! data.head // A
}
}
Ok(views.html.singleElement.render)
}
}
Better if databaseSupport.getFromDatabase(search) returns a Future but that is a story for another day. The tricky part is to figure how to deal with Actor at "A". Just remember at the exit it must return Future[Result] result type.

Related

Batch up requests in Groovy?

I'm new to Groovy and am a bit lost on how to batch up requests so they can be submitted to a server as a batch, instead of individually, as I currently have:
class Handler {
private String jobId
// [...]
void submit() {
// [...]
// client is a single instance of Client used by all Handlers
jobId = client.add(args)
}
}
class Client {
//...
String add(String args) {
response = postJson(args)
return parseIdFromJson(response)
}
}
As it is now, something calls Client.add(), which POSTs to a REST API and returns a parsed result.
The issue I have is that the add() method is called maybe thousands of times in quick succession, and it would be much more efficient to collect all the args passed in to add(), wait until there's a moment when the add() calls stop coming in, and then POST to the REST API a single time for that batch, sending all the args in one go.
Is this possible? Potentially, add() can return a fake id immediately, as long as the batching occurs, the submit happens, and Client can later know the lookup between fake id and the ID coming from the REST API (which will return IDs in the order corresponding to the args sent to it).
As mentioned in the comments, this might be a good case for gpars which is excellent at these kinds of scenarios.
This really is less about groovy and more about asynchronous programming in java and on the jvm in general.
If you want to stick with the java concurrent idioms I threw together a code snippet you could use as a potential starting point. This has not been tested and edge cases have not been considered. I wrote this up for fun and since this is asynchronous programming and I haven't spent the appropriate time thinking about it, I suspect there are holes in there big enough to drive a tank through.
That being said, here is some code which makes an attempt at batching up the requests:
import java.util.concurrent.*
import java.util.concurrent.locks.*
// test code
def client = new Client()
client.start()
def futureResponses = []
1000.times {
futureResponses << client.add(it as String)
}
client.stop()
futureResponses.each { futureResponse ->
// resolve future...will wait if the batch has not completed yet
def response = futureResponse.get()
println "received response with index ${response.responseIndex}"
}
// end of test code
class FutureResponse extends CompletableFuture<String> {
String args
}
class Client {
int minMillisLullToSubmitBatch = 100
int maxBatchSizeBeforeSubmit = 100
int millisBetweenChecks = 10
long lastAddTime = Long.MAX_VALUE
def batch = []
def lock = new ReentrantLock()
boolean running = true
def start() {
running = true
Thread.start {
while (running) {
checkForSubmission()
sleep millisBetweenChecks
}
}
}
def stop() {
running = false
checkForSubmission()
}
def withLock(Closure c) {
try {
lock.lock()
c.call()
} finally {
lock.unlock()
}
}
FutureResponse add(String args) {
def future = new FutureResponse(args: args)
withLock {
batch << future
lastAddTime = System.currentTimeMillis()
}
future
}
def checkForSubmission() {
withLock {
if (System.currentTimeMillis() - lastAddTime > minMillisLullToSubmitBatch ||
batch.size() > maxBatchSizeBeforeSubmit) {
submitBatch()
}
}
}
def submitBatch() {
// here you would need to put the combined args on a format
// suitable for the endpoint you are calling. In this
// example we are just creating a list containing the args
def combinedArgs = batch.collect { it.args }
// further there needs to be a way to map one specific set of
// args in the combined args to a specific response. If the
// endpoint responds with the same order as the args we submitted
// were in, then that can be used otherwise something else like
// an id in the response etc would need to be figured out. Here
// we just assume responses are returned in the order args were submitted
List<String> combinedResponses = postJson(combinedArgs)
combinedResponses.indexed().each { index, response ->
// here the FutureResponse gets a value, can be retrieved with
// futureResponse.get()
batch[index].complete(response)
}
// clear the batch
batch = []
}
// bogus method to fake post
def postJson(combinedArgs) {
println "posting json with batch size: ${combinedArgs.size()}"
combinedArgs.collect { [responseIndex: it] }
}
}
A few notes:
something needs to be able to react to the fact that there were no calls to add for a while. This implies a separate monitoring thread and is what the start and stop methods manage.
if we have an infinite sequence of adds without pauses, you might run out of resources. Therefore the code has a max batch size where it will submit the batch even if there is no lull in the calls to add.
the code uses a lock to make sure (or try to, as mentioned above, I have not considered all potential issues here) we stay thread safe during batch submissions etc
assuming the general idea here is sound, you are left with implementing the logic in submitBatch where the main problem is dealing with mapping specific args to specific responses
CompletableFuture is a java 8 class. This can be solved using other constructs in earlier releases, but I happened to be on java 8.
I more or less wrote this without executing or testing, I'm sure there are some mistakes in there.
as can be seen in the printout below, the "maxBatchSizeBeforeSubmit" setting is more a recommendation that an actual max. Since the monitoring thread sleeps for some time and then wakes up to check how we are doing, the threads calling the add method might have accumulated any number of requests in the batch. All we are guaranteed is that every millisBetweenChecks we will wake up and check how we are doing and if the criteria for submitting a batch has been reached, then the batch will be submitted.
If you are unfamiliar with java Futures and locks, I would recommend you read up on them.
If you save the above code in a groovy script code.groovy and run it:
~> groovy code.groovy
posting json with batch size: 153
posting json with batch size: 234
posting json with batch size: 243
posting json with batch size: 370
received response with index 0
received response with index 1
received response with index 2
...
received response with index 998
received response with index 999
~>
it should work and print out the "responses" received from our fake json submissions.

Node.js Spawning multiple threads within a class method

How can I run a single method multiple times multi-threaded when called as a method of a class?
At first I tried to use the cluster module, but I realize it just re-runs the whole process from the start, rightfully so.
How can I achieve something like what's outlined below?
I want a class's method to spawn n processes, and when the parallel tasks are completed, I can resolve a promise which the method returns.
The problem with the code below is that calling cluster.fork() will fork index.js process.
index.js
const Person = require('./Person.js');
var Mary = new Person('Mary');
Mary.run(5).then(() => {...});
console.log('I should only run once, but I am called 5 times too many');
Person.js
const cluster = require('cluster');
class Person{
run(distance){
var completed = 0;
return new Promise((resolve, reject) => {
for(var i = 0; i < distance; i++) {
// run a separate process for each
cluster.fork().send(i).on('message', message => {
if (message === 'completed') { ++completed; }
if (completed === distance) { resolve(); }
});
}
});
}
}
I think the short answer is impossible. It's even worse - this has nothing to do with js. To multi (process or thread) in your particular problem you will essentially need a copy of the object in every thread, since it needs (maybe) access to fields - in this case you would need to either initialize it in every thread or share memory. That last one I don't think is provided in cluster, and not trivial in other languages in every use case.
If the calculation is independent of the Person I suggest you extract it, and use the usual (in index.js):
if(cluster.isWorker) {
//Use the i for calculation
} else {
//Create Person, then fork children in for loop
}
You then collect the results and change the Person as needed. You will be copying index.js, but this is standard and you only run what you need.
The problem is if results are dependent on Person. If these are constant for all i you can still send them to your forks independently. Otherwise what you have is the only way to fork. In general forking in cluster is not meant for methods, but for the app itself, which is the standard forking behavior.
Another solution
Following your comment, I suggest you checkout child_process.execFile or child_process.exec on same file.
This way you can spawn a totally independent process on the fly. Now instead of calling cluster.fork you call execFile. You can use either the exit code or stdout as return values (stderr etc.). Promise is now replaced with:
var results = []
for(var i = 0; i < distance; i++) {
// run a separate process for each
results.push(child_process.execFile().child.execFile('node', 'mymethod.js`,i]));
}
//... catch the exit event from all results or return a callback using results.
Inside mymethod.js Have your code that takes i and returns what you want either in the exit code or through stdout, both properties of the returned child_process. This is a bit un-node.js-y since you're waiting on asynchronous calls, but you're requirements are non standard. Since I'm not sure how you use this perhaps returning a callback with the array is a better idea.

dataTaskWithURL for dummies

I keep learning iDev but I still can't deal with http requests.
It seems to be crazy, but everybody whom I talk about synchronous requests do not understand me. Okay, it's really important to keep on a background queue as much as it possible to provide smooth UI. But in my case I load JSON data from server and I need to use this data immediately.
The only way I achieved it are semaphores. Is it okay? Or I have to use smth else? I tried NSOperation, but in fact I have to many little requests so creating each class for them for me seems to be not easy-reading-code.
func getUserInfo(userID: Int) -> User {
var user = User()
let linkURL = URL(string: "https://server.com")!
let session = URLSession.shared
let semaphore = DispatchSemaphore(value: 0)
let dataRequest = session.dataTask(with: linkURL) { (data, response, error) in
let json = JSON(data: data!)
user.userName = json["first_name"].stringValue
user.userSurname = json["last_name"].stringValue
semaphore.signal()
}
dataRequest.resume()
semaphore.wait(timeout: DispatchTime.distantFuture)
return user
}
You wrote that people don't understand you, but on the other hand it reveals that you don't understand how asynchronous network requests work.
For example imagine you are setting an alarm for a specific time.
Now you have two options to spend the following time.
Do nothing but sitting in front of the alarm clock and wait until the alarm occurs. Have you ever done that? Certainly not, but this is exactly what you have in mind regarding the network request.
Do several useful things ignoring the alarm clock until it rings. That is the way how asynchronous tasks work.
In terms of a programming language you need a completion handler which is called by the network request when the data has been loaded. In Swift you are using a closure for that purpose.
For convenience declare an enum with associated values for the success and failure cases and use it as the return value in the completion handler
enum RequestResult {
case Success(User), Failure(Error)
}
Add a completion handler to your function including the error case. It is highly recommended to handle always the error parameter of an asynchronous task. When the data task returns it calls the completion closure passing the user or the error depending on the situation.
func getUserInfo(userID: Int, completion:#escaping (RequestResult) -> ()) {
let linkURL = URL(string: "https://server.com")!
let session = URLSession.shared
let dataRequest = session.dataTask(with: linkURL) { (data, response, error) in
if error != nil {
completion(.Failure(error!))
} else {
let json = JSON(data: data!)
var user = User()
user.userName = json["first_name"].stringValue
user.userSurname = json["last_name"].stringValue
completion(.Success(user))
}
}
dataRequest.resume()
}
Now you can call the function with this code:
getUserInfo(userID: 12) { result in
switch result {
case .Success(let user) :
print(user)
// do something with the user
case .Failure(let error) :
print(error)
// handle the error
}
}
In practice the point in time right after your semaphore and the switch result line in the completion block is exactly the same.
Never use semaphores as an alibi not to deal with asynchronous patterns
I hope the alarm clock example clarifies how asynchronous data processing works and why it is much more efficient to get notified (active) rather than waiting (passive).
Don't try to force network connections to work synchronously. It invariably leads to problems. Whatever code is making the above call could potentially be blocked for up to 90 seconds (30 second DNS timeout + 60 second request timeout) waiting for that request to complete or fail. That's an eternity. And if that code is running on your main thread on iOS, the operating system will kill your app outright long before you reach the 90 second mark.
Instead, design your code to handle responses asynchronously. Basically:
Create data structures to hold the results of various requests, such as obtaining info from the user.
Kick off those requests.
When each request comes back, check to see if you have all the data you need to do something, and then do it.
For a really simple example, if you have a method that updates the UI with the logged in user's name, instead of:
[self updateUIWithUserInfo:[self getUserInfoForUser:user]];
you would redesign this as:
[self getUserInfoFromServerAndRun:^(NSDictionary *userInfo) {
[self updateUIWithUserInfo:userInfo];
}];
so that when the response to the request arrives, it performs the UI update action, rather than trying to start a UI update action and having it block waiting for data from the server.
If you need two things—say the userInfo and a list of books that the user has read, you could do:
[self getUserInfoFromServerAndRun:^(NSDictionary *userInfo) {
self.userInfo = userInfo;
[self updateUI];
}];
[self getBookListFromServerAndRun:^(NSDictionary *bookList) {
self.bookList = bookList;
[self updateUI];
}];
...
(void)updateUI
{
if (!self.bookList) return;
if (!self.userInfo) return;
...
}
or whatever. Blocks are your friend here. :-)
Yes, it's a pain to rethink your code to work asynchronously, but the end result is much, much more reliable and yields a much better user experience.

Return from asynchronous request in for loop

I’m trying to get data from my RestAPI, specifically i’m getting an array of integers (which are id’s from other users), i want to loop through this array and download the data from all the other customers. A simplified version of the code is show below.
func asyncFunc(completion: (something:[Int])->Void){
//Get a json Array asynchonous from my RestAPI
let jsonArray = [1,2,3,4,5]
var resultingArray:[Int] = []
for myThing in jsonArray{
anotherAsyncFunc(myThing, completion: { (somethingElse) -> Void in
resultingArray.append(somethingElse)
})
}
}
func anotherAsyncFunc(data:Int, completion: (somethingElse:Int)->Void){
//Get some more jsonData from RestApi/data
let myLoadedData:Int = data*13356
completion(somethingElse: myLoadedData)
}
How would I make my asyncFunc return an array with all the items it has gotten from the second (inner) async request.
I have tried getting the count of the array which is first requested from the Rest Api and just “blocking” the UI thread by using a while loop too see if the “new” array has collected all the data (the count is equal to the count of the first requested array). This has 2 major disadvantages, mainly it blocks the UI thread and further more, it will fail and crash the app if the data connection gets broken while i’m getting the data from the other users (the inner async request), cause the while loop will never complete.
My question is how would I use a completion handler to return all the data that it should return without blocking the main thread and/or having to worry about badly timed data connection losses.
You can use a dispatch group notification. So create a dispatch group, enter the group for each item in the array, exit in the completion handler of the anotherAsyncFunc asynchronous process, and then create a notification that will trigger the final completion closure when all of the dispatch_group_enter calls have been offset by a corresponding dispatch_group_leave call:
func asyncFunc(completion: (something:[Int])->Void){
//Get a json Array asynchonous from my RestAPI
let jsonArray = [1,2,3,4,5]
var resultingArray:[Int] = []
let group = dispatch_group_create()
for myThing in jsonArray {
dispatch_group_enter(group)
anotherAsyncFunc(myThing) { somethingElse in
resultingArray.append(somethingElse)
dispatch_group_leave(group)
}
}
dispatch_group_notify(group, dispatch_get_main_queue()) {
completion(something: resultingArray)
}
}
Note, you will want to make sure you synchronize the updates to resultingArray that the anotherAsyncFunc are performing. The easiest way is to make sure that it dispatches its updates back to the main queue (if your REST API doesn't do that already).
func anotherAsyncFunc(data:Int, completion: (somethingElse:Int)->Void){
//Get some more jsonData from RestApi/data asynchronously
let myLoadedData:Int = data*13356
dispatch_async(dispatch_get_main_queue()) {
completion(somethingElse: myLoadedData)
}
}
This is just an example. You can use whatever synchronization mechanism you want, but make sure you synchronize updates on resultingArray accordingly.

Wrapping legacy object in IConnectableObservable

I have a legacy event-based object that seems like a perfect fit for RX: after being connected to a network source, it raises events when a message is received, and may terminate with either a single error (connection dies, etc.) or (rarely) an indication that there will be no more messages. This object also has a couple projections -- most users are interested in only a subset of the messages received, so there are alternate events raised only when well-known message subtypes show up.
So, in the process of learning more about reactive programming, I built the following wrapper:
class LegacyReactiveWrapper : IConnectableObservable<TopLevelMessage>
{
private LegacyType _Legacy;
private IConnectableObservable<TopLevelMessage> _Impl;
public LegacyReactiveWrapper(LegacyType t)
{
_Legacy = t;
var observable = Observable.Create<TopLevelMessage>((observer) =>
{
LegacyTopLevelMessageHandler tlmHandler = (sender, tlm) => observer.OnNext(tlm);
LegacyErrorHandler errHandler = (sender, err) => observer.OnError(new ApplicationException(err.Message));
LegacyCompleteHandler doneHandler = (sender) => observer.OnCompleted();
_Legacy.TopLevelMessage += tlmHandler;
_Legacy.Error += errHandler;
_Legacy.Complete += doneHandler;
return Disposable.Create(() =>
{
_Legacy.TopLevelMessage -= tlmHandler;
_Legacy.Error -= errHandler;
_Legacy.Complete -= doneHandler;
});
});
_Impl = observable.Publish();
}
public IDisposable Subscribe(IObserver<TopLevelMessage> observer)
{
return _Impl.RefCount().Subscribe(observer);
}
public IDisposable Connect()
{
_Legacy.ConnectToMessageSource();
return Disposable.Create(() => _Legacy.DisconnectFromMessageSource());
}
public IObservable<SubMessageA> MessageA
{
get
{
// This is the moral equivalent of the projection behavior
// that already exists in the legacy type. We don't hook
// the LegacyType.MessageA event directly.
return _Impl.RefCount()
.Where((tlm) => tlm.MessageType == MessageType.MessageA)
.Select((tlm) => tlm.SubMessageA);
}
}
public IObservable<SubMessageB> MessageB
{
get
{
return _Impl.RefCount()
.Where((tlm) => tlm.MessageType == MessageType.MessageB)
.Select((tlm) => tlm.SubMessageB);
}
}
}
Something about how it's used elsewhere feels... off... somehow, though. Here's sample usage, which works but feels strange. The UI context for my test application is WinForms, but it doesn't really matter.
// in Program.Main...
MainForm frm = new MainForm();
// Updates the UI based on a stream of SubMessageA's
IObserver<SubMessageA> uiManager = new MainFormUiManager(frm);
LegacyType lt = new LegacyType();
// ... setup lt...
var w = new LegacyReactiveWrapper(lt);
var uiUpdateSubscription = (from msgA in w.MessageA
where SomeCondition(msgA)
select msgA).ObserveOn(frm).Subscribe(uiManager);
var nonUiSubscription = (from msgB in w.MessageB
where msgB.SubType == MessageBType.SomeSubType
select msgB).Subscribe(
m => Console.WriteLine("Got MsgB: {0}", m),
ex => Console.WriteLine("MsgB error: {0}", ex.Message),
() => Console.WriteLine("MsgB complete")
);
IDisposable unsubscribeAtExit = null;
frm.Load += (sender, e) =>
{
var connectionSubscription = w.Connect();
unsubscribeAtExit = new CompositeDisposable(
uiUpdateSubscription,
nonUiSubscription,
connectionSubscription);
};
frm.FormClosing += (sender, e) =>
{
if(unsubscribeAtExit != null) { unsubscribeAtExit.Dispose(); }
};
Application.Run(frm);
This WORKS -- The form launches, the UI updates, and when I close it the subscriptions get cleaned up and the process exits (which it won't do if the LegacyType's network connection is still connected). Strictly speaking, it's enough to dispose just connectionSubscription. However, the explicit Connect feels weird to me. Since RefCount is supposed to do that for you, I tried modifying the wrapper such that rather than using _Impl.RefCount in MessageA and MessageB and explicitly connecting later, I used this.RefCount instead and moved the calls to Subscribe to the Load handler. That had a different problem -- the second subscription triggered another call to LegacyReactiveWrapper.Connect. I thought the idea behind Publish/RefCount was "first-in triggers connection, last-out disposes connection."
I guess I have three questions:
Do I fundamentally misunderstand Publish/RefCount?
Is there some preferred way to implement IConnectableObservable<T> that doesn't involve delegation to one obtained via IObservable<T>.Publish? I know you're not supposed to implement IObservable<T> yourself, but I don't understand how to inject connection logic into the IConnectableObservable<T> that Observable.Create().Publish() gives you. Is Connect supposed to be idempotent?
Would someone more familiar with RX/reactive programming look at the sample for how the wrapper is used and say "that's ugly and broken" or is this not as weird as it seems?
I'm not sure that you need to expose Connect directly as you have. I would simplify as follows, using Publish().RefCount() as an encapsulated implementation detail; it would cause the legacy connection to be made only as required. Here the first subscriber in causes connection, and the last one out causes disconnection. Also note this correctly shares a single RefCount across all subscribers, whereas your implementation uses a RefCount per message type, which isn't probably what was intended. Users are not required to Connect explicitly:
public class LegacyReactiveWrapper
{
private IObservable<TopLevelMessage> _legacyRx;
public LegacyReactiveWrapper(LegacyType legacy)
{
_legacyRx = WrapLegacy(legacy).Publish().RefCount();
}
private static IObservable<TopLevelMessage> WrapLegacy(LegacyType legacy)
{
return Observable.Create<TopLevelMessage>(observer =>
{
LegacyTopLevelMessageHandler tlmHandler = (sender, tlm) => observer.OnNext(tlm);
LegacyErrorHandler errHandler = (sender, err) => observer.OnError(new ApplicationException(err.Message));
LegacyCompleteHandler doneHandler = sender => observer.OnCompleted();
legacy.TopLevelMessage += tlmHandler;
legacy.Error += errHandler;
legacy.Complete += doneHandler;
legacy.ConnectToMessageSource();
return Disposable.Create(() =>
{
legacy.DisconnectFromMessageSource();
legacy.TopLevelMessage -= tlmHandler;
legacy.Error -= errHandler;
legacy.Complete -= doneHandler;
});
});
}
public IObservable<TopLevelMessage> TopLevelMessage
{
get
{
return _legacyRx;
}
}
public IObservable<SubMessageA> MessageA
{
get
{
return _legacyRx.Where(tlm => tlm.MessageType == MessageType.MessageA)
.Select(tlm => tlm.SubMessageA);
}
}
public IObservable<SubMessageB> MessageB
{
get
{
return _legacyRx.Where(tlm => tlm.MessageType == MessageType.MessageB)
.Select(tlm => tlm.SubMessageB);
}
}
}
An additional observation is that Publish().RefCount() will drop the underlying subscription when it's subscriber count reaches 0. Typically I only use Connect over this choice when I need to maintain a subscription even when the subscriber count on the published source drops to zero (and may go back up again later). It's rare to need to do this though - only when connecting is more expensive than holding on to the subscription resource when you might not need to.
Your understanding is not entirely wrong, but you do appear to have some points of misunderstanding.
You seem to be under the belief that multiple calls to RefCount on the same source IObservable will result in a shared reference count. They do not; each instance keeps its own count. As such, you are causing multiple subscriptions to _Impl, one per call to subscribe or call to the Message properties.
You also may be expecting that making _Impl an IConnectableObservable somehow causes your Connect method to be called (since you seem surprised you needed to call Connect in your consuming code). All Publish does is cause subscribers to the published object (returned from the .Publish() call) to share a single subscription to the underlying source observable (in this case, the object made from your call to Observable.Create).
Typically, I see Publish and RefCount used immediately together (eg as source.Publish().RefCount()) to get the shared subscription effect described above or to make a cold observable hot without needing to call Connect to start the subscription to the original source. However, this relies on using the same object returned from the .Publish().RefCount() for all subscribers (as noted above).
Your implementation of Connect seems reasonable. I don't know of any recommendations for if Connect should be idempotent, but I would not personally expect it to be. If you wanted it to be, you would just need to track calls to it the disposal of its return value to get the right balance.
I don't think you need to use Publish the way you are, unless there is some reason to avoid multiple event handlers being attached to the legacy object. If you do need to avoid that, I would recommend changing _Impl to a plain IObservable and follow the Publish with a RefCount.
Your MessageA and MessageB properties have potential to be a source of confusion for users, since they return an IObservable, but still require a call to Connect on the base object to start receiving messages. I would either change them to IConnectableObservables that somehow delegate to the original Connect (at which point the idempotency discussion becomes more relevant) or drop the properties and just let the users make the (fairly simple) projections themselves when needed.

Resources