Create new code refactoring for ReSharper - resharper

Is it possible to create a code refactoring for ReSharper like the one that checks a parameter for null.
This will generate the following guard check if we apply that to the method below
public void Method(string value)
{
if (value == null) throw new ArgumentNullException(nameof(value));
}
Is it possible to create a refactoring like "Check string parameter for not null or white space" that will be suggested on string parameters only?
public void Method(string value)
{
if (string.IsNullOrWhiteSpace(value)) throw new ArgumentNullException(nameof(value));
}

That is possible using context action. I don't know with what exact version this was introduced, but at least with 2016.1 it should be there.
Besides that, you can use live templates for some needs. They have some limitations though. If you reach them, you can create a custom plugin that implements a context action for instance.

Related

How to retain some of the interface methods' default implementations in the implementing class in C# 8.0?

One would think that in C# 8.0 you should be able to do the following (according to this (1st snippet)):
public interface IRestApiClient : IRestClient
{
...
Task<T> PostPrivateAsync<T>(string action, OrderedDictionary<string, object> parameters = null, DeserializeCustom<T> deserializer = null)
{
return QueryPrivateAsync(Method.POST, action, parameters, deserializer);
}
...
}
public class SpecificClient : ExchangeClient, IRestApiClient, IRestHtmlClient, ISeleniumClient, IWebSocketClient
{
}
The example above won't compile because the interface members need to be explicitly and wholly implemented (including the methods supplying the default logic)
So one would think that the following should work:
public interface IRestApiClient : IRestClient
{
...
Task<T> PostPrivateAsync<T>(string action, OrderedDictionary<string, object> parameters = null, DeserializeCustom<T> deserializer = null)
{
return QueryPrivateAsync(Method.POST, action, parameters, deserializer);
}
...
}
public class SpecificClient : ExchangeClient, IRestApiClient, IRestHtmlClient, ISeleniumClient, IWebSocketClient
{
...
public async Task<T> PostPrivateAsync<T>(string action, OrderedDictionary<string, object> parameters = null, DeserializeCustom<T> deserializer = null)
=> await ((IRestApiClient) this).PostPrivateAsync(action, parameters, deserializer);
...
}
Nope, it looks like this method is recursive (despite the upcast) and will cause our favorite Stack Overflow exception.
So my question is (abstracting from the fact that I could change the design in my example), is there a way of keeping the implementation for a specific method default, preferably without the necessity of resorting to hacky or Static Helper Extension methods? I could call static extension method in both interface and the class but it kind of defeats the purpose of this feature.
// EDIT
I must admit it confuses me and it appears I am missing something critical that is obvious to other people. I didn't provide additional info because I didn't consider my issue to be code specific. Lets look at this simple example (taken from the website I linked on the beginning of my post):
According to #Panagiotis Kanavos comment: No, default members don't need to be implemented (...) what I screenshoted should not be true. Can sb please enlighten me?
// EDIT 2
As you can see I am properly targeting .NET CORE 3.0 with C# 8.0.
ERRORS:
Interface method cannot declare a body
Interface member 'void CryptoBotCoreMVC.IDefaultInterfaceMethod.DefaultMethod()' is not implemented
To answer the question in the comments: I didn't specify LangVersion explicitly in the .csproj file.
// EDIT 3
The issue was ReSharper, see:
https://stackoverflow.com/a/58614702/3783852
My comment have been deleted, presumably by the owner of the answer so I'll write it here: the clue was the fact that there was actually no error numbers, but the compilation was blocked. It turned out that there is an option to block compilation when these errors occur in ReSharper.
It seems that in the end this is a possible duplicate, but getting to this conclusion was quite a journey :).
The issue is caused by ReSharper, reference:
https://youtrack.jetbrains.com/issue/RSRP-474628
It appears that the problem will be resolved in version v2019.3 and we currently have v2019.2.3. You can setup ReSharper to block compilation depending on issue severity, the workaround is to disable this feature for the time being.

Implement missing members - add async when return type is Task?

This question relates to ReSharper. If I have an interface that looks like this:
public interface IOrder {
Task SetDeleted(Guid id);
}
and my class inherits from that interface, I would expect ReSharper to generate the following code, when selecting the "Implement missing members":
public class OrderService {
public async Task SetDeleted(Guid id) {
throw new NotImplementedException();
}
}
However, it completely ignores the async part of the method, so I have to type that manually every single time. This was fixed in 2016.3 of ReSharper, as described here (at the bottom).
However, it does not work for the CTRL + . keybinding (or whatever it is), that looks like this:
Is it possible to somehow change, how this behavior works within ReSharper? I want all generated Task methods to be async automatically. There is no option within ReSharper's "Members Generation" that enables me to do this.
In case class has only one missing member ReSharper doesn't show dialog therefore you can't tweak generation options. But you can add one more member to your interface and invoke generation action, this time ReSharper would show the dialog where you can set option "Make task-returning methods 'async'". This generation option is persistent i.e. it's last value will be stored in ReSharper settings and used by default.

CRM 2011 SDK - get underlying IOrganizationService from service context

I have generated ServiceContext for my CRM organization. I'm able to connect to CRM properly. Since I have all my context configuration in app.config file, I wonder is it possible to get IOrganizationService from already instantiated OrganizationServiceContext?
When I need to access the service reference from multiple places, I usually do it in two steps. First of all I try to see if it's possible to pass it down to the called methods (I'm assuming that you have something like the following).
using (IOrganizationService service
= (IOrganizationService) new OrganizationServiceProxy(...))
{
DoSomething();
DoSomething(service);
}
private void DoSomething(IOrganizationService service) { ... }
When it fails (due to technical setup or just plain dumbness), I set up a private property and in the constructor (or at least the first calling method) assign it a value for future access like this.
class MyClass
{
private IOrganization _service;
private IOrganization _Service
{
get
{
if(_service == null)
_service = (IOrganizationService) new OrganizationServiceProxy(...);
return _service;
}
}
...
}
And if you have a lot of code that operates on the server, you might want to move all that stuff to a separate class and have the calls made to it (with the property setup discussed above).
I'm not fully sure if I got your question correctly so be nice if I'm missing your point.

App-level settings in DDD?

Just wanted to get the groups thoughts on how to handle configuration details of entities.
What I'm thinking of specifically is high level settings which might be admin-changed. the sort of thing that you might store in the app or web.config ultimately, but from teh DDD perspective should be set somewhere in the objects explicitly.
For sake of argument, let's take as an example a web-based CMS or blog app.
A given blog Entry entity has any number of instance settings like Author, Content, etc.
But you also might want to set (for example) default Description or Keywords that all entries in the site should start with if they're not changed by the author. Sure, you could just make those constants in the class, but then the site owner couldn't change the defaults.
So my thoughts are as follows:
1) use class-level (static) properties to represent those settings, and then set them when the app starts up, either setting them from the DB or from the web.config.
or
2) use a separate entity for holding the settings, possibly a dictionary, either use it directly or have it be a member of the Entry class
What strikes you all as the most easy / flexible? My concerns abou the first one is that it doesn't strike me as very pluggable (if I end up wanting to add more features) as changing an entity's class methods would make me change the app itself as well (which feels like an OCP violation). The second one feels like it's more heavy, though, especially if I then have to cast or parse values out of a dictionary.
I would say that that whether a value is configurable or not is irrelevant from the Domain Model's perspective - what matters is that is is externally defined.
Let's say that you have a class that must have a Name. If the Name is always required, it must be encapsulated as an invariant irrespective of the source of the value. Here's a C# example:
public class MyClass
{
private string name;
public MyClass(string name)
{
if(name == null)
{
throw new ArgumentNullException("name");
}
this.name = name;
}
public string Name
{
get { return this.name; }
set
{
if(value == null)
{
throw new ArgumentNullException("name");
}
this.name = value;
}
}
}
A class like this effectively protects the invariant: Name must not be null. Domain Models must encapsulate invariants like this without any regard to which consumer will be using them - otherwise, they would not meet the goal of Supple Design.
But you asked about default values. If you have a good default value for Name, then how do you communicate that default value to MyClass.
This is where Factories come in handy. You simply separate the construction of your objects from their implementation. This is often a good idea in any case. Whether you choose an Abstract Factory or Builder implementation is less important, but Abstract Factory is a good default choice.
In the case of MyClass, we could define the IMyClassFactory interface:
public interface IMyClassFactory
{
MyClass Create();
}
Now you can define an implementation that pulls the name from a config file:
public ConfigurationBasedMyClassFactory : IMyClassFactory
{
public MyClass Create()
{
var name = ConfigurationManager.AppSettings["MyName"];
return new MyClass(name);
}
}
Make sure that code that needs instances of MyClass use IMyClassFactory to create it instead of new'ing it up manually.

Using getters within class methods

If you have a class with some plain get/set properties, is there any reason to use the getters within the class methods, or should you just use the private member variables? I think there could be more of an argument over setters (validation logic?), but I'm wondering just about getters.
For example (in Java) - is there any reason to use option 2?:
public class Something
{
private int messageId;
public int getMessageId() { return this.messageId; }
public void setMessage(int messageId) { this.messageId = messageId; }
public void doSomething()
{
// Option 1:
doSomethingWithMessageId(messageId);
// Option 2:
doSomethingWithMessageId(getMessageId());
}
}
Java programmers in general tend to be very consistent about using getter methods. I program multiple languages and I'm not that consistent about it ;)
I'd say as long as you don't make a getter it's ok to use the raw variable - for private variables. When you make a getter, you should be using only that. When I make a getter for a private field, my IDE suggests that it replace raw field accesses for me automatically when I introduce a getter. Switching to using a getter is only a few keystrokes away (and without any chance of introducing errors), so I tend to delay it until I need it.
Of course, if you want to stuff like getter-injection, some types of proxying and subclassing framworks like hibernate, you have to user getters!
With getters you wont accidentally modify the variables :) Also, if you use both getters and the "raw" variable, your code can get confused.
Also, if you use inheritance and redefined the getter methods in child classes, getter-using methods will work properly, whereas those using the raw variables would not.
If you use the getter method everywhere - and in the future perform a code-search on all calls of getMessageId() you will find all of them, whereas if you had used the private ones, you may miss some.
Also if there's ever logic to be introduced in the setter method, you wont have to worry about changing more than 1 location for it.
If the value that you are assigning to the property is a known or verified value, you could safely use the private variable directly. (Except perhaps in some special situations, where it would be obvious why that would be bad.) Whether you do or not is more a matter of taste or style. It's not a performance issue either, as the getter or setter will be inlined by the compiler if it's simple enough.
If the value is unknown to the class, you should use the property to set it, so that you can protect the property from illegal values.
Here's an example (in C#):
public class Something {
private string _value;
public string Value {
get {
return _value;
}
set {
if (value == null) throw new ArgumentNullException();
_value = value;
}
}
public Something() {
// using a known value
_value = "undefined";
}
public Something(string initValue) {
// using an unknown value
Value = initValue;
}
}
If you use the getter you're ensuring you'll get the value after any logic/decisions have been applied to it. This probably isn't your typical situation but when it is, you'll thank yourself for this.
Unless I have a specific use case to use the internal field directly in the enclosing class, I've always felt that it's important to use access the field the same way it is accessed publicly. This ensures consistency in the return values across the board should there ever be any need to add some post-processing to the field via the getter method, or property. I feel like it's perfectly fine to access the raw field if you want its raw value for one reason or another.
More often than not, the getter encapsulation is plain and simple boilerplate code -- you're most likely not returning anything other than the field's value itself. However, in the case where you may want to change the way the data is presented at some point in the future, it's one less refactoring you have to make internally.

Resources