I want to extend the Austin's example on Dirichlet process mixtures for density estimationto the multivariate case.
The first information about multivariate Gaussian mixture using pymc3 I have found is this issue at Github. People involved in the issue said that there are two different solutions but they don't work for me. For instance, by using the Brandon's Multivariate Extension in a simple model like this:
import numpy as np
import pymc3 as pm
from mvnormal_extension import MvNormal
with pm.Model() as model:
var_x = MvNormal('var_x', mu = 3*np.zeros(2), tau = np.diag(np.ones(2)), shape=2)
trace = pm.sample(100)
I can't obtain the proper Mean around (3,3):
pm.summary(trace)
var_x:
Mean SD MC Error 95% HPD interval
-------------------------------------------------------------------
0.220 1.161 0.116 [-1.897, 2.245]
0.165 1.024 0.102 [-2.626, 1.948]
Posterior quantiles:
2.5 25 50 75 97.5
|--------------|==============|==============|--------------|
-1.897 -0.761 0.486 1.112 2.245
-2.295 -0.426 0.178 0.681 2.634
The other solution can be reproduced thanks to Benavente:
import numpy as np
import pymc3 as pm
import scipy
import theano
from theano import tensor
target_data = np.random.random((500, 16))
N_COMPONENTS = 5
N_SAMPLES, N_DIMS = target_data.shape
# Dirichilet prior.
ALPHA_0 = np.ones(N_COMPONENTS)
# Component means prior.
MU_0 = np.zeros(N_DIMS)
LAMB_0 = 1. * np.eye(N_DIMS)
# Components precision prior.
BETA_0, BETA_1 = 0., 1. # Covariance stds prior uniform limits.
L_0 = 2. # LKJ corr. shape. Larger shape -> more biased to identity.
# In order to convert the upper triangular correlation values to a
# complete correlation matrix, we need to construct an index matrix:
# Source: http://stackoverflow.com/q/29759789/1901296
N_ELEMS = N_DIMS * (N_DIMS - 1) / 2
tri_index = np.zeros([N_DIMS, N_DIMS], dtype=int)
tri_index[np.triu_indices(N_DIMS, k=1)] = np.arange(N_ELEMS)
tri_index[np.triu_indices(N_DIMS, k=1)[::-1]] = np.arange(N_ELEMS)
with pm.Model() as model:
# Component weight prior.
pi = pm.Dirichlet('pi', ALPHA_0, testval=np.ones(N_COMPONENTS) / N_COMPONENTS)
#pi_potential = pm.Potential('pi_potential', tensor.switch(tensor.min(pi) < .01, -np.inf, 0))
###################
# Components plate.
###################
# Component means.
mus = [pm.MvNormal('mu_{}'.format(i), MU_0, LAMB_0, shape=N_DIMS)
for i in range(N_COMPONENTS)]
# Component precisions.
#lamb = diag(sigma) * corr(corr_shape) * diag(sigma)
corr_vecs = [
pm.LKJCorr('corr_vec_{}'.format(i), L_0, N_DIMS)
for i in range(N_COMPONENTS)
]
# Transform the correlation vector representations to matrices.
corrs = [
tensor.fill_diagonal(corr_vecs[i][tri_index], 1.)
for i in range(N_COMPONENTS)
]
# Stds for the correlation matrices.
cov_stds = pm.Uniform('cov_stds', BETA_0, BETA_1, shape=(N_COMPONENTS, N_DIMS))
# Finally re-compose the covariance matrices using diag(sigma) * corr * diag(sigma)
# Source http://austinrochford.com/posts/2015-09-16-mvn-pymc3-lkj.html
lambs = []
for i in range(N_COMPONENTS):
std_diag = tensor.diag(cov_stds[i])
cov = std_diag.dot(corrs[i]).dot(std_diag)
lambs.append(tensor.nlinalg.matrix_inverse(cov))
stacked_mus = tensor.stack(mus)
stacked_lambs = tensor.stack(lambs)
#####################
# Observations plate.
#####################
z = pm.Categorical('z', pi, shape=N_SAMPLES)
#theano.as_op(itypes=[tensor.dmatrix, tensor.lvector, tensor.dmatrix, tensor.dtensor3],
otypes=[tensor.dscalar])
def likelihood_op(values, z_values, mu_values, prec_values):
logp = 0.
for i in range(N_COMPONENTS):
indices = z_values == i
if not indices.any():
continue
logp += scipy.stats.multivariate_normal(
mu_values[i], prec_values[i]).logpdf(values[indices]).sum()
return logp
def likelihood(values):
return likelihood_op(values, z, stacked_mus, stacked_lambs)
y = pm.DensityDist('y', likelihood, observed=target_data)
step1 = pm.Metropolis(vars=mus + lambs + [pi])
step2 = pm.ElemwiseCategoricalStep(vars=[z], values=list(range(N_COMPONENTS)))
trace = pm.sample(100, step=[step1, step2])
I have changed in this code pm.ElemwiseCategoricalStep to pm.ElemwiseCategorical and
logp += scipy.stats.multivariate_normal(mu_values[i], prec_values[i]).logpdf(values[indices])
by
logp += scipy.stats.multivariate_normal(mu_values[i], prec_values[i]).logpdf(values[indices]).sum()
but I get this exception:
ValueError: expected an ndarray
Apply node that caused the error: Elemwise{Composite{((i0 + i1) - (i2 + i3))}}[(0, 0)](Sum{acc_dtype=float64}.0, FromFunctionOp{likelihood_op}.0, Sum{acc_dtype=float64}.0, FromFunctionOp{likelihood_op}.0)
Toposort index: 101
Inputs types: [TensorType(float64, scalar), TensorType(float64, scalar), TensorType(float64, scalar), TensorType(float64, scalar)]
Inputs shapes: [(), (), (), ()]
Inputs strides: [(), (), (), ()]
Inputs values: [array(-127.70516572917249), -13460.012199423296, array(-110.90354888959129), -13234.61313535326]
Outputs clients: [['output']]
HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'.
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.
I appreciate any help.
Thanks!
Related
I am pretty new to model predictive controls modeling with Gekko and in general.
I have created an ARX MPC in Gekko, which is working great. I, however, noticed that in the first 50-80 iterations, the results are well.. disappointing. However, after the first iterations, I get good results (I guess the ARX algorithm is at play here or possible BIAS?). Now my problem is that the model might crash after some time, and I have to redo the 50-80 iteration to get good results again, is there a way to "save" the last calculated model and use that when rebooting the calculations?
The issue that you are likely encountering is that the "prior" values have not yet been initialized. Try solving once with a steady-state initialization as shown in the example MPC application with the TCLab that is the final source block on for TCLab F.
m.options.IMODE=1
m.solve()
You can then switch to control or simulation mode:
# set up MPC
m.options.IMODE = 6 # MPC
m.time=np.linspace(0,120,61)
Background information on using ARX models
Identification of the ARX model and prediction or control with the ARX model are two separate applications.
Identify ARX Model
The m.sysid() function to identify an ARX model does not save an archive but does return the model as output arguments:
yp,p,K = m.sysid(t,u,y,na,nb,pred='meas')
The model is returned as p.
# see https://apmonitor.com/wiki/index.php/Apps/ARXTimeSeries
from gekko import GEKKO
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# load data and parse into columns
url = 'http://apmonitor.com/do/uploads/Main/tclab_dyn_data2.txt'
data = pd.read_csv(url)
t = data['Time']
u = data['H1']
y = data['T1']
m = GEKKO(remote=False)
# system identification
na = 2 # output coefficients
nb = 2 # input coefficients
yp,p,K = m.sysid(t,u,y,na,nb,pred='meas')
plt.figure()
plt.subplot(2,1,1)
plt.plot(t,u,label=r'$Heater_1$')
plt.legend()
plt.ylabel('Heater')
plt.subplot(2,1,2)
plt.plot(t,y)
plt.plot(t,yp)
plt.legend([r'$T_{meas}$',r'$T_{pred}$'])
plt.ylabel('Temperature (°C)')
plt.xlabel('Time (sec)')
plt.show()
Predict with ARX Model
Below is an example of prediction with the ARX model.
import numpy as np
from gekko import GEKKO
import matplotlib.pyplot as plt
na = 2 # Number of A coefficients
nb = 1 # Number of B coefficients
ny = 2 # Number of outputs
nu = 2 # Number of inputs
# A (na x ny)
A = np.array([[0.36788,0.36788],\
[0.223,-0.136]])
# B (ny x (nb x nu))
B1 = np.array([0.63212,0.18964]).T
B2 = np.array([0.31606,1.26420]).T
B = np.array([[B1],[B2]])
C = np.array([0,0])
# create parameter dictionary
# parameter dictionary p['a'], p['b'], p['c']
# a (coefficients for a polynomial, na x ny)
# b (coefficients for b polynomial, ny x (nb x nu))
# c (coefficients for output bias, ny)
p = {'a':A,'b':B,'c':C}
# Create GEKKO model
m = GEKKO(remote=False)
# Build GEKKO ARX model
y,u = m.arx(p)
# load inputs
tf = 20 # final time
u1 = np.zeros(tf+1)
u2 = u1.copy()
u1[5:] = 3.0
u2[10:] = 5.0
u[0].value = u1
u[1].value = u2
# customize names
mv1 = u[0]
mv2 = u[1]
cv1 = y[0]
cv2 = y[1]
# options
m.time = np.linspace(0,tf,tf+1)
m.options.imode = 4
m.options.nodes = 2
# simulate
m.solve()
m.open_folder()
plt.figure(1)
plt.subplot(2,1,1)
plt.plot(m.time,mv1.value,'r-',label=r'$MV_1$')
plt.plot(m.time,mv2.value,'b--',label=r'$MV_2$')
plt.ylabel('MV')
plt.legend(loc='best')
plt.subplot(2,1,2)
plt.plot(m.time,cv1.value,'r:',label=r'$CV_1$')
plt.plot(m.time,cv2.value,'b.-',label=r'$CV_2$')
plt.ylabel('CV')
plt.xlabel('Time (sec)')
plt.legend(loc='best')
plt.show()
The model is saved in the m.path folder that can be viewed with m.open_folder(). Set m = GEKKO(remote=False) to calculate locally and observe all of the files that are used to generate the model and the solution.
I'm trying to run a bayesian logistic regression on the wine dataset provided from the sklearn package. As variables, I decided to use alcohol, color_intensity, flavanoids, hue and magnesium where alcohol is my response variable and the rest the predictors. To do so, I'm using pyro and torch packages:
import pyro
import torch
import pyro.distributions as dist
import pyro.optim as optim
from pyro.infer import SVI, Trace_ELBO
import pandas as pd
import numpy as np
from pyro.infer import Predictive
import torch.distributions.constraints as constraints
from sklearn import datasets
pyro.set_rng_seed(0)
#loading data and prepearing dataframe
wine = datasets.load_wine()
data = pd.DataFrame(columns = wine['feature_names'], data=wine['data'] )
#choosiing variables: response and predictors
variables = data[['alcohol', 'color_intensity', 'flavanoids', 'hue', 'magnesium']]
#standardization
variables = (variables-variables.min())/(variables.max()-variables.min())
#tensorizing
alcohol = torch.tensor(variables['alcohol'].values, dtype=torch.float)
predictors = torch.stack([torch.tensor(variables[column].values, dtype=torch.float)
for column in ['alcohol', 'color_intensity', 'flavanoids', 'hue', 'magnesium']], 1)
#splitting data
k = int(0.8 * len(variables))
x_train, y_train = predictors[:k], alcohol[:k]
x_test, y_test = predictors[k:], alcohol[k:]
#modelling
def model_alcohol(predictors, alcohol):
n_observations, n_predictors = predictors.shape
#weights
w = pyro.sample('w', dist.Normal(torch.zeros(n_predictors), torch.ones(n_predictors)))
epsilon = pyro.sample('epsilon', dist.Normal(0.,1.))
#non-linearity
y_hat = torch.sigmoid((w*predictors).sum(dim=1) + epsilon)
sigma = pyro.sample("sigma", dist.Uniform(0.,3.))
with pyro.plate('alcohol', len(alcohol)):
y=pyro.sample('y', dist.Normal(y_hat, sigma), obs=alcohol)
def guide_alcohol(predictors, alcohol=None):
n_observations, n_predictors = predictors.shape
w_loc = pyro.param('w_loc', torch.rand(n_predictors))
w_scale = pyro.param('w_scale', torch.rand(n_predictors), constraint=constraints.positive)
w = pyro.sample('w', dist.Normal(w_loc, w_scale))
epsilon_loc = pyro.param('b_loc', torch.rand(1))
epsilon_scale = pyro.param('b_scale', torch.rand(1), constraint=constraints.positive)
epsilon = pyro.sample('epsilon', dist.Normal(epsilon_loc, epsilon_scale))
sigma_loc = pyro.param('sigma_loc', torch.rand(n_predictors))
sigma_scale = pyro.param('sigma_scale', torch.rand(n_predictors),
constraint=constraints.positive)
sigma = pyro.sample('sigma', dist.Normal(sigma_loc, sigma_scale))
alcohol_svi = SVI(model=model_alcohol, guide=guide_alcohol, optim=optim.ClippedAdam({'lr' : 0.0002}),
loss=Trace_ELBO())
losses = []
for step in range(10000):
loss = alcohol_svi.step(x_train, y_train)/len(x_train)
losses.append(loss)
As I have to use Stochastic Variational Inference, I have defined both the model and the guide. My problem is now at matching tensor sizes, as I now I get the error:
RuntimeError: The size of tensor a (142) must match the size of tensor b (5) at non-singleton
dimension 0
Trace Shapes:
Param Sites:
Sample Sites:
w dist 5 |
value 5 |
epsilon dist |
value 1 |
sigma dist |
value 5 |
alcohol dist |
value 142 |
I'm kinda new to the idea of modelling on my own, so clearly there are mistakes around the code (hopefully not on the theory behind it). Still, I see I should adjust dimension on the guide maybe? I'm not entirely sure on how to honestly.
Your main problem is that w is not declared as a single event (.to_event(1)), and your variance (sigma) should have the same dim as your observations (()). The model and guide below fix this; I suggest you look at auto-generated guides in Pyro, and a different prior on sigma.
def model_alcohol(predictors, alcohol):
n_observations, n_predictors = predictors.shape
# weights
# w is a single event
w = pyro.sample('w', dist.Normal(torch.zeros(n_predictors), torch.ones(n_predictors)).to_event(1))
epsilon = pyro.sample('epsilon', dist.Normal(0., 1.))
# non-linearity
y_hat = torch.sigmoid(predictors # w + epsilon) # (predictors * weight).sum(1) == predictors # w
sigma = pyro.sample("sigma", dist.Uniform(0., 3.))
with pyro.plate('alcohol', len(alcohol)):
pyro.sample('y', dist.Normal(y_hat, sigma), obs=alcohol)
def guide_alcohol(predictors, alcohol=None):
n_observations, n_predictors = predictors.shape
w_loc = pyro.param('w_loc', torch.rand(n_predictors))
w_scale = pyro.param('w_scale', torch.rand(n_predictors), constraint=constraints.positive)
pyro.sample('w', dist.Normal(w_loc, w_scale).to_event(1))
epsilon_loc = pyro.param('b_loc', torch.rand(1))
epsilon_scale = pyro.param('b_scale', torch.rand(1), constraint=constraints.positive)
epsilon = pyro.sample('epsilon', dist.Normal(epsilon_loc, epsilon_scale))
sigma_loc = pyro.param('sigma_loc', torch.rand(1))
sigma_scale = pyro.param('sigma_scale', torch.rand(1),
constraint=constraints.positive)
pyro.sample('sigma', dist.HalfNormal(sigma_loc, sigma_scale)) # MUST BE POSITIVE
Anyone able to match the sklearn confusion matrix to h2o?
They never match....
Doing something similar with Keras produces a perfect match.
But in h2o they are always off. Tried it every which way...
Borrowed some code from:
Any difference between H2O and Scikit-Learn metrics scoring?
# In[30]:
import pandas as pd
import h2o
from h2o.estimators.gbm import H2OGradientBoostingEstimator
h2o.init()
# Import a sample binary outcome train/test set into H2O
train = h2o.import_file("https://s3.amazonaws.com/erin-data/higgs/higgs_train_10k.csv")
test = h2o.import_file("https://s3.amazonaws.com/erin-data/higgs/higgs_test_5k.csv")
# Identify predictors and response
x = train.columns
y = "response"
x.remove(y)
# For binary classification, response should be a factor
train[y] = train[y].asfactor()
test[y] = test[y].asfactor()
# Train and cross-validate a GBM
model = H2OGradientBoostingEstimator(distribution="bernoulli", seed=1)
model.train(x=x, y=y, training_frame=train)
# In[31]:
# Test AUC
model.model_performance(test).auc()
# 0.7817203808052897
# In[32]:
# Generate predictions on a test set
pred = model.predict(test)
# In[33]:
from sklearn.metrics import roc_auc_score, confusion_matrix
pred_df = pred.as_data_frame()
y_true = test[y].as_data_frame()
roc_auc_score(y_true, pred_df['p1'].tolist())
#pred_df.head()
# In[36]:
y_true = test[y].as_data_frame().values
cm = pd.DataFrame(confusion_matrix(y_true, pred_df['predict'].values))
# In[37]:
print(cm)
0 1
0 1354 961
1 540 2145
# In[38]:
model.model_performance(test).confusion_matrix()
Confusion Matrix (Act/Pred) for max f1 # threshold = 0.353664307031828:
0 1 Error Rate
0 964.0 1351.0 0.5836 (1351.0/2315.0)
1 274.0 2411.0 0.102 (274.0/2685.0)
Total 1238.0 3762.0 0.325 (1625.0/5000.0)
# In[39]:
h2o.cluster().shutdown()
This does the trick, thx for the hunch Vivek. Still not an exact match but extremely close.
perf = model.model_performance(train)
threshold = perf.find_threshold_by_max_metric('f1')
model.model_performance(test).confusion_matrix(thresholds=threshold)
I also meet the same issue. Here is what I would do to make a fair comparison:
model.train(x=x, y=y, training_frame=train, validation_frame=test)
cm1 = model.confusion_matrix(metrics=['F1'], valid=True)
Since we train the model using training data and validation data, then the pred['predict'] will use the threshold which maximizes the F1 score of validation data. To make sure, one can use these lines:
threshold = perf.find_threshold_by_max_metric(metric='F1', valid=True)
pred_df['predict'] = pred_df['p1'].apply(lambda x: 0 if x < threshold else 1)
To get another confusion matrix from scikit learn:
from sklearn.metrics import confusion_matrix
cm2 = confusion_matrix(y_true, pred_df['predict'])
In my case, I don't understand why I get slightly different results. Something like, for example:
print(cm1)
>> [[3063 176]
[ 94 146]]
print(cm2)
>> [[3063 176]
[ 95 145]]
I've a tensorflow NN model for classification of one-hot-encoded group labels (groups are exclusive), which ends with (layerActivs[-1] are the activations of the final layer):
probs = sess.run(tf.nn.softmax(layerActivs[-1]),...)
classes = sess.run(tf.round(probs))
preds = sess.run(tf.argmax(classes))
The tf.round is included to force any low probabilities to 0. If all probabilities are below 50% for an observation, this means that no class will be predicted. I.e., if there are 4 classes, we could have probs[0,:] = [0.2,0,0,0.4], so classes[0,:] = [0,0,0,0]; preds[0] = 0 follows.
Obviously this is ambiguous, as it is the same result that would occur if we had probs[1,:]=[.9,0,.1,0] -> classes[1,:] = [1,0,0,0] -> 1 preds[1] = 0. This is a problem when using the tensorflow builtin metrics class, as the functions can't distinguish between no prediction, and prediction in class 0. This is demonstrated by this code:
import numpy as np
import tensorflow as tf
import pandas as pd
''' prepare '''
classes = 6
n = 100
# simulate data
np.random.seed(42)
simY = np.random.randint(0,classes,n) # pretend actual data
simYhat = np.random.randint(0,classes,n) # pretend pred data
truth = np.sum(simY == simYhat)/n
tabulate = pd.Series(simY).value_counts()
# create placeholders
lab = tf.placeholder(shape=simY.shape, dtype=tf.int32)
prd = tf.placeholder(shape=simY.shape, dtype=tf.int32)
AM_lab = tf.placeholder(shape=simY.shape,dtype=tf.int32)
AM_prd = tf.placeholder(shape=simY.shape,dtype=tf.int32)
# create one-hot encoding objects
simYOH = tf.one_hot(lab,classes)
# create accuracy objects
acc = tf.metrics.accuracy(lab,prd) # real accuracy with tf.metrics
accOHAM = tf.metrics.accuracy(AM_lab,AM_prd) # OHE argmaxed to labels - expected to be correct
# now setup to pretend we ran a model & generated OHE predictions all unclassed
z = np.zeros(shape=(n,classes),dtype=float)
testPred = tf.constant(z)
''' run it all '''
# setup
sess = tf.Session()
sess.run([tf.global_variables_initializer(),tf.local_variables_initializer()])
# real accuracy with tf.metrics
ACC = sess.run(acc,feed_dict = {lab:simY,prd:simYhat})
# OHE argmaxed to labels - expected to be correct, but is it?
l,p = sess.run([simYOH,testPred],feed_dict={lab:simY})
p = np.argmax(p,axis=-1)
ACCOHAM = sess.run(accOHAM,feed_dict={AM_lab:simY,AM_prd:p})
sess.close()
''' print stuff '''
print('Accuracy')
print('-known truth: %0.4f'%truth)
print('-on unprocessed data: %0.4f'%ACC[1])
print('-on faked unclassed labels data (s.b. 0%%): %0.4f'%ACCOHAM[1])
print('----------\nTrue Class Freqs:\n%r'%(tabulate.sort_index()/n))
which has the output:
Accuracy
-known truth: 0.1500
-on unprocessed data: 0.1500
-on faked unclassed labels data (s.b. 0%): 0.1100
----------
True Class Freqs:
0 0.11
1 0.19
2 0.11
3 0.25
4 0.17
5 0.17
dtype: float64
Note freq for class 0 is same as faked accuracy...
I experimented with setting a value of preds to np.nan for observations with no predictions, but tf.metrics.accuracy throws ValueError: cannot convert float NaN to integer; also tried np.inf but got OverflowError: cannot convert float infinity to integer.
How can I convert the rounded probabilities to class predictions, but appropriately handle unpredicted observations?
This has gone long enough without an answer, so I'll post here as the answer my solution. I convert belonging probabilities to class predictions with a new function that has 3 main steps:
set any NaN probabilities to 0
set any probabilities below 1/num_classes to 0
use np.argmax() to extract predicted classes, then set any unclassed observations to a uniformly selected class
The resultant vector of integer class labels can be passed to the tf.metrics functions. My function below:
def predFromProb(classProbs):
'''
Take in as input an (m x p) matrix of m observations' class probabilities in
p classes and return an m-length vector of integer class labels (0...p-1).
Probabilities at or below 1/p are set to 0, as are NaNs; any unclassed
observations are randomly assigned to a class.
'''
numClasses = classProbs.shape[1]
# zero out class probs that are at or below chance, or NaN
probs = classProbs.copy()
probs[np.isnan(probs)] = 0
probs = probs*(probs > 1/numClasses)
# find any un-classed observations
unpred = ~np.any(probs,axis=1)
# get the predicted classes
preds = np.argmax(probs,axis=1)
# randomly classify un-classed observations
rnds = np.random.randint(0,numClasses,np.sum(unpred))
preds[unpred] = rnds
return preds
i tried to do a LR with SKLearn for a rather large dataset with ~600 dummy and only few interval variables (and 300 K lines in my dataset) and the resulting confusion matrix looks suspicious. I wanted to check the significance of the returned coefficients and ANOVA but I cannot find how to access it. Is it possible at all? And what is the best strategy for data that contains lots of dummy variables? Thanks a lot!
Scikit-learn deliberately does not support statistical inference. If you want out-of-the-box coefficients significance tests (and much more), you can use Logit estimator from Statsmodels. This package mimics interface glm models in R, so you could find it familiar.
If you still want to stick to scikit-learn LogisticRegression, you can use asymtotic approximation to distribution of maximum likelihiood estimates. Precisely, for a vector of maximum likelihood estimates theta, its variance-covariance matrix can be estimated as inverse(H), where H is the Hessian matrix of log-likelihood at theta. This is exactly what the function below does:
import numpy as np
from scipy.stats import norm
from sklearn.linear_model import LogisticRegression
def logit_pvalue(model, x):
""" Calculate z-scores for scikit-learn LogisticRegression.
parameters:
model: fitted sklearn.linear_model.LogisticRegression with intercept and large C
x: matrix on which the model was fit
This function uses asymtptics for maximum likelihood estimates.
"""
p = model.predict_proba(x)
n = len(p)
m = len(model.coef_[0]) + 1
coefs = np.concatenate([model.intercept_, model.coef_[0]])
x_full = np.matrix(np.insert(np.array(x), 0, 1, axis = 1))
ans = np.zeros((m, m))
for i in range(n):
ans = ans + np.dot(np.transpose(x_full[i, :]), x_full[i, :]) * p[i,1] * p[i, 0]
vcov = np.linalg.inv(np.matrix(ans))
se = np.sqrt(np.diag(vcov))
t = coefs/se
p = (1 - norm.cdf(abs(t))) * 2
return p
# test p-values
x = np.arange(10)[:, np.newaxis]
y = np.array([0,0,0,1,0,0,1,1,1,1])
model = LogisticRegression(C=1e30).fit(x, y)
print(logit_pvalue(model, x))
# compare with statsmodels
import statsmodels.api as sm
sm_model = sm.Logit(y, sm.add_constant(x)).fit(disp=0)
print(sm_model.pvalues)
sm_model.summary()
The outputs of print() are identical, and they happen to be coefficient p-values.
[ 0.11413093 0.08779978]
[ 0.11413093 0.08779979]
sm_model.summary() also prints a nicely formatted HTML summary.