I am using Coded UI to automate scripts. I am a newbie to C# and I was able to write a hand coded browser script in coded UI and the test passed, but the script execution is dead slow. I assume that some kind of threading has to be disabled. Could somebody please help to resolve the problem -Thanks, Kalaivani
There is a similar question here: Coded UI Test is slow waiting for UI thread
Can you be more specific about what looks like (provide some code) and where it is slow (which methods are taking long time).
Also, have you compared the execution time of Debugging the test vs Running the test?
Related
I got a question for you guys and its not as specific as usual, which could make it a little annoying to answer.
The tool i'm working with is Camunda in combination with Groovy scripts and the goal is to reduce the maximum cpu load (or peak load). I'm doing this by "stretching" the work load over a certain time frame since the platform seems to be unhappy with huge work load inputs in a short amount of time. The resulting problem is that Camunda wont react smoothly when someone tries to operate it at the UI - Level.
So i wrote a small script which basically just lets each individual process determine his own "time to sleep" before running, if a certain threshold is exceeded. This is based on how many processes are trying to run at the same time as the individual process.
It looks like:
Process wants to start -> Process asks how many other processes are running ->
waitingTime = numberOfProcesses * timeToSleep * iterationOfMeasures
CPU-Usage Curve 1,3 without the Script. Curve 2,4 With the script
Testing it i saw that i could stretch the work load and smoothe out the UI - Levels. But now i need to describe why this is working exactly.
The Questions are:
What does a sleep method do exactly ?
What does the sleep method do on CPU - Level?
How does an OS-Scheduler react to a Sleep Method?
Namely: Does the scheduler reschedule or just simply "wait" for the time given?
How can i recreate and test the question given above?
The main goal is not for you to answer this, but could you give me a hint for finding the right Literature to answer these questions? Maybe you remember a book which helped you understand this kind of things or a Professor recommended something to you. (Mine wont answer, and i cant blame him)
I'm grateful for hints and or recommendations !
i'm sure you could use timer event
https://docs.camunda.org/manual/7.15/reference/bpmn20/events/timer-events/
it allows to postpone next task trigger for some time defined by expression.
about sleep in java/groovy: https://www.javamex.com/tutorials/threads/sleep.shtml
using sleep is blocking current thread in groovy/java/camunda.
so instead of doing something effective it's just blocked.
The program I am developing uses threads to deal with long running processes. I want to be able to use Gauge Pulse to show the user that whilst a long running thread is in progress, something is actually taking place. Otherwise visually nothing will happen for quite some time when processing large files & the user might think that the program is doing nothing.
I have placed a guage within the status bar of the program. My problem is this. I am having problems when trying to call gauge pulse, no matter where I place the code it either runs to fast then halts, or runs at the correct speed for a few seconds then halts.
I've tried placing the one line of code below into the thread itself. I have also tried create another thread from within the long running process thread to call the code below. I still get the same sort of problems.
I do not think that I could use wx.CallAfter as this would defeat the point. Pulse needs to be called whilst process is running, not after the fact. Also tried usin time.sleep(2) which is also not good as it slows the process down, which is something I want to avoid. Even when using time.sleep(2) I still had the same problems.
Any help would be massively appreciated!
progress_bar.Pulse()
You will need to find someway to send update requests to the main GUI from your thread during the long running process. For example, if you were downloading a very large file using a thread, you would download it in chunks and after each chunk is complete, you would send an update to the GUI.
If you are running something that doesn't really allow chunks, such as creating a large PDF with fop, then I suppose you could use a wx.Timer() that just tells the gauge to pulse every so often. Then when the thread finishes, it would send a message to stop the timer object from updating the gauge.
The former is best for showing progress while the latter works if you just want to show the user that your app is doing something. See also
http://wiki.wxpython.org/LongRunningTasks
http://www.blog.pythonlibrary.org/2010/05/22/wxpython-and-threads/
http://www.blog.pythonlibrary.org/2013/09/04/wxpython-how-to-update-a-progress-bar-from-a-thread/
I'm using 3.9.7 cURL library to download files from the internet, so I created a dynamic bibioteca of viculo. dll written in C using VC + + 6.0 the problem is that when either I call my function from within my vb6 application window locks and unlocks only after you have downloaded the file how do I solve this problem?
The problem is that when you call the function from your DLL, it "blocks" your app's execution until it gets finished. Basically, execution goes from the piece of code that makes the function call, to the code inside of the function call, and then only comes back to the next line after the function call after the code inside of the function has finished running. In fact, that's how all function calls work. You can see this for yourself by single-stepping through your code in the VB 6 development environment.
You don't normally notice this because the code inside of a function being called doesn't take very long to execute before control is returned to the caller. But in this case, since the function you're calling from the DLL is doing a lot of processing, it takes a while to execute, so it "blocks" the execution of your application's code for quite a while.
This is a good general explanation for the reason why your application window appears to be frozen. A bit more technically, it's because the message pump that is responsible for processing user interaction with on-screen elements is not running (it's part of your code that has been temporarily suspended until the function that you called finishes processing). This is a bit more difficult for a VB programmer to appreciate, since none of this nitty-gritty stuff is exposed in the world of VB. It's all happening behind the scenes, just like it is in a C program, but you don't normally have to deal with any of it. Occasionally, though, the abstraction leaks, and the nitty-gritty rears its ugly head. This is one of those cases.
The correct solution to this general problem, as others have hinted at, is to run lengthy operations on a background thread. This leaves your main thread (right now, the only one you have, the one your application is running on) free to continue processing user input, while the other thread can process the data and return that processed data to the main thread when it is finished. Of course, computers can't actually do more than one thing at a time, but the magic of the operating system rapidly switching between one task and another means that you can simulate this. The mechanism for doing so involves threads.
The catch comes in the fact that the VB 6 environment does not have any type of support for creating multiple threads. You only get one thread, and that's the main thread that your application runs on. If you freeze execution of that one, even temporarily, your application freezes—as you've already found out.
However, if you're already writing a C++ DLL, there's no reason you can't create multiple threads in a VB 6 app. You just have to handle everything yourself as if you were using another lower-level language like C++. Run the C++ code on a background thread, and only return its results to the main thread when it is completely finished. In the mean time, your main thread is free.
This is still quite a bit of work, though, especially if you're inexperienced when it comes to Win32 programming and the issues surrounding multiple threads. It might be easier to find a different library that supports asynchronous function calls out-of-the-box. Antagony suggests using VB's AsyncRead method. That is probably a good option; as Karl Peterson says in the linked article, it keeps everything in pure VB 6 code, which can be a real time saver as well as a boon to future maintenance programmers. The only problem is that you'll still have to process the data somehow once you obtain it. And if that's slow, you're right back where you started from…
Check out this article, which demonstrates how to asynchronously transfer large files using a little-known method in user controls.
Can someone recommend a straight forward way of adding some type of graphical notification (status bar, spinning clocks, etc...) to my wx.Python gui application? Currently, it searches logs on a server for unique strings, and often times takes upwards to 3-4 minutes to complete. However, it would be convenient to have some type of display letting a user know that the status of the job towards finishing/completion. If I added a feature like this, I'm not sure, but I'm afraid I may have to look at using threads ... and I'm a complete newbie to Python? Any help and direction will be appreciated.
Yes, you'd need to use threads or queues or something similar. Fortunately, there are some excellent examples here: http://wiki.wxpython.org/LongRunningTasks and this tutorial I wrote is pretty straight-forward too: http://www.blog.pythonlibrary.org/2010/05/22/wxpython-and-threads/
Using threads isn't that hard. Basically you put the long running part in the thread and every so often, you send a status update to your GUI using a thread-safe method, like wx.PostEvent or wx.CallAfter. Then you can update your statusbar or a progress bar or whatever you're using.
What's a good way to leverage TDD to drive out thread-safe code? For example, say I have a factory method that utilizes lazy initialization to create only one instance of a class, and return it thereafter:
private TextLineEncoder textLineEncoder;
...
public ProtocolEncoder getEncoder() throws Exception {
if(textLineEncoder == null)
textLineEncoder = new TextLineEncoder();
return textLineEncoder;
}
Now, I want to write a test in good TDD fashion that forces me to make this code thread-safe. Specifically, when two threads call this method at the same time, I don't want to create two instances and discard one. This is easily done, but how can I write a test that makes me do it?
I'm asking this in Java, but the answer should be more broadly applicable.
You could inject a "provider" (a really simple factory) that is responsible for just this line:
textLineEncoder = new TextLineEncoder();
Then your test would inject a really slow implementation of the provider. That way the two threads in the test could more easily collide. You could go as far as have the first thread wait on a Semaphore that would be released by the second thread. Then success of the test would ensure that the waiting thread times out. By giving the first thread a head-start you can make sure that it's waiting before the second one releases.
It's hard, though possible - possibly harder than it's worth. Known solutions involve instrumenting the code under test. The discussion here, "Extreme Programming Challenge Fourteen" is worth sifting through.
In the book Clean Code there are some tips on how to test concurrent code. One tip that has helped me to find concurrency bugs, is running concurrently more tests than the CPU has cores.
In my project, running the tests takes about 2 seconds on my quad core machine. When I want to test the concurrent parts (there are some tests for that), I hold down in IntelliJ IDEA the hotkey for running all tests, until I see in the status bar that 20, 50 or 100 test runs are in execution. I follow in Windows Task Manager the CPU and memory usage, to find out when all the test runs have finished executing (memory usage goes up by 1-2 GB when they all are running and then slowly goes back down).
Then I close one by one all the test run output dialogs, and check that there were no failures. Sometimes there are failed tests or tests which are in deadlock, and then I investigate them until I find the bug and have fixed it. That has helped me to find a couple of nasty concurrency bugs. The most important thing, when facing an exception/deadlock that should not have happened, is always assuming that the code is broken, and investigating the reason ruthlessly and fixing it. There are no cosmic rays which cause programs to crash randomly - bugs in code cause programs to crash.
There are also frameworks such as http://www.alphaworks.ibm.com/tech/contest which use bytecode manipulation to force the code to do more thread switching, thus increasing the probability of making concurrency bugs visible.
When I test drove an implementation that needed to be thread safe recently I came up with the solution I provided as an answer for this question. Hope that helps even though there are no tests there. Hope link is OK raher than duplicating teh answer...
Chapter 12 of Java Concurrency in Practice is called "Testing Concurrent Programs". It documents testing for safety and liveness, but says this is a hard subject. I am not sure this problem is solvable by the tools of that chapter.
Just off the top of my head could you compare the instances returned to see if they are indeed the same instance or if they are different? That's probably where I would start with C#, I would imagine you can do the same in java