PySpark Standalone: java.lang.IllegalStateException: unread block data - apache-spark

I am fairly new to using pyspark, and I have been trying to run a script that worked fine in local mode with a 1000-row subset of the data, but is now throwing errors in standalone mode with all of the data, which is 1GB. I figured this would happen as more data = more problems, but I am having trouble understanding what is causing this issue. These are the details for my standalone cluster:
3 executors
20GB of memory each
spark.driver.maxResultSize=1GB (added this bc I thought this might be the issue, but it didn't solve the issue)
The script is throwing the error at the stage where I am converting the spark dataframe to a pandas dataframe to parallelize some operations. I am confused that this would cause issues, because the data is only about 1G, and my executors should have much more memory than that. Here's my code snippet - the error is happening at data = data.toPandas():
def num_cruncher(data, cols=[], target='RETAINED', lvl='univariate'):
if not cols:
cols = data.columns
del cols[data.columns.index(target)]
data = data.toPandas()
pop_mean = data.mean()[0]
if lvl=='univariate':
cols = sc.parallelize(cols)
all_df = cols.map(lambda x: calculate([x], data, target)).collect()
elif lvl=='bivariate':
cols = sc.parallelize(cols)
cols = cols.cartesian(cols).filter(lambda x: x[0]<x[1])
all_df = cols.map(lambda x: calculate(list(x), data, target)).collect()
elif lvl=='trivariate':
cols = sc.parallelize(cols)
cols = cols.cartesian(cols).cartesian(cols).filter(lambda x: x[0][0]<x[0][1] and x[0][0]<x[1] and x[0][1]<x[1]).map(lambda x: (x[0][0],x[0][1],x[1]))
all_df = cols.map(lambda x: calculate(list(x), data, target)).collect()
all_df = pd.concat(all_df)
return all_df, pop_mean
And here's the error log:
16/07/11 09:49:54 ERROR TransportRequestHandler: Error while invoking RpcHandler#receive() for one-way message.
java.lang.IllegalStateException: unread block data
at java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2424)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:76)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:109)
at org.apache.spark.rpc.netty.NettyRpcEnv$$anonfun$deserialize$1$$anonfun$apply$1.apply(NettyRpcEnv.scala:258)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.rpc.netty.NettyRpcEnv.deserialize(NettyRpcEnv.scala:310)
at org.apache.spark.rpc.netty.NettyRpcEnv$$anonfun$deserialize$1.apply(NettyRpcEnv.scala:257)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.rpc.netty.NettyRpcEnv.deserialize(NettyRpcEnv.scala:256)
at org.apache.spark.rpc.netty.NettyRpcHandler.internalReceive(NettyRpcEnv.scala:588)
at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:577)
at org.apache.spark.network.server.TransportRequestHandler.processOneWayMessage(TransportRequestHandler.java:170)
at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:104)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:104)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:51)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:266)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:86)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at java.lang.Thread.run(Thread.java:745)
So my questions are:
Why is giving the workers 20GB of memory not enough for this 1GB dataset?
In general, is it a good idea to load the data into memory like I am doing here or is there any better way to do this?

For whoever might find this post useful - it seems that the issue wasn't to give more memory to the worker/slaves, but to give more memory to the driver, as mentioned in the comments by #KartikKannapur. So in order to fix this I set:
spark.driver.maxResultSize 3g
spark.driver.memory 8g
spark.executor.memory 4g
Probably overkill, but it does the job now.

Related

Read CSV file from Azure Blob storage in Rstudio Server with spark_read_csv()

I have provisioned an Azure HDInsight cluster type ML Services (R Server), operating system Linux, version ML Services 9.3 on Spark 2.2 with Java 8 HDI 3.6.
Within Rstudio Server I am trying to read in a csv file from my blob storage.
Sys.setenv(SPARK_HOME="/usr/hdp/current/spark-client")
Sys.setenv(YARN_CONF_DIR="/etc/hadoop/conf")
Sys.setenv(HADOOP_CONF_DIR="/etc/hadoop/conf")
Sys.setenv(SPARK_CONF_DIR="/etc/spark/conf")
options(rsparkling.sparklingwater.version = "2.2.28")
library(sparklyr)
library(dplyr)
library(h2o)
library(rsparkling)
sc <- spark_connect(master = "yarn-client",
version = "2.2.0")
origins <-file.path("wasb://MYDefaultContainer#MyStorageAccount.blob.core.windows.net",
"user/RevoShare")
df2 <- spark_read_csv(sc,
path = origins,
name = 'Nov-MD-Dan',
memory = FALSE)```
When I run this I get the following error
Error: java.lang.IllegalArgumentException: invalid method csv
for object 235
at sparklyr.Invoke$.invoke(invoke.scala:122)
at sparklyr.StreamHandler$.handleMethodCall(stream.scala:97)
at sparklyr.StreamHandler$.read(stream.scala:62)
at sparklyr.BackendHandler.channelRead0(handler.scala:52)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at
io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleCh annelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
at java.lang.Thread.run(Thread.java:748)
Any help would be awesome!
The path origins should point to a CSV file or a directory of CSVs. Are you sure that origins points to a directory of files or a file? There's typically at least one more directory under /user/RevoShare/ for each HDFS user, i.e., /user/RevoShare/sshuser/.
Here's an example that may help:
sample_file <- file.path("/example/data/", "yellowthings.txt")
library(sparklyr)
library(dplyr)
cc <- rxSparkConnect(interop = "sparklyr")
sc <- rxGetSparklyrConnection(cc)
fruits <- spark_read_csv(sc, path = sample_file, name = "fruits", header = FALSE)
You can use RxHadoopListFiles("/example/data/") or use hdfs dfs -ls /example/data to inspect your directories on HDFS / Blob.
HTH!

Getting Null Pointer exception while performing operations on dataframe spark

I am using following code to create dataframe from RDD. I am able to perform operations on RDD and RDD is not empty.
I tried out following two approaches.
With both I am getting same exception.
Approach 1: Build dataset using sparkSession.createDataframe().
System.out.println("RDD Count: " + rdd.count());
Dataset<Row> rows = applicationSession
.getSparkSession().createDataFrame(rdd, data.getSchema()).toDF(data.convertListToSeq(data.getColumnNames()));
rows.createOrReplaceTempView(createStagingTableName(sparkTableName));
rows.show();
rows.printSchema();
Approach 2: Use Hive Context to create dataset.
System.out.println("RDD Count: " + rdd.count());
System.out.println("Create view using HiveContext..");
Dataset<Row> rows = applicationSession.gethiveContext().applySchema(rdd, data.getSchema());
I am able to print schema for above dataset using both apporaches.
Not sure what exactly causing null pointer exception.
Show() method internally invokes take() method which is throwing null pointer exception.
But why this dataset is populated as NULL? if RDD contains values then it should not be null.
This is a strange behaviour.
Below are logs for the same.
RDD Count: 35
Also I am able to run above code in local mode without any exception it is working fine.
As soon as I deploy this code on Yarn I start getting following exception.
I am able to create dataframe even I am able to register view for the same.
As soon as I perfrom rows.show() or rows.count() operation on this dataset I am getting following error.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1517)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1505)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1504)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1504)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1732)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1687)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1676)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2861)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2150)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2150)
at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2842)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2841)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2150)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2363)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:241)
at org.apache.spark.sql.Dataset.show(Dataset.scala:637)
at org.apache.spark.sql.Dataset.show(Dataset.scala:596)
at org.apache.spark.sql.Dataset.show(Dataset.scala:605)
Caused by: java.lang.NullPointerException
at org.apache.spark.sql.SparkSession$$anonfun$3.apply(SparkSession.scala:469)
at org.apache.spark.sql.SparkSession$$anonfun$3.apply(SparkSession.scala:469)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:235)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Am I doing anything wrong here?
Please suggest.
Can you post the schema for dataframe? Issue is with schema string you are using and separator that you are using to split the schema string.

H2O sparkling water error from large Spark Dataframe to H2O Dataframe

When I try to convert from spark dataframe to H2O data frame I get the error below. This seems to have to do with the size of the dataframe because when I make it smaller the converter between spark and H2O works well.
Are there any configurations that need to be changed in order to convert large spark dataframes to H2O using sparkling water? In my configuration I am allowing max memory to the driver and executor so this is not a memory issue.
I am using R here the code is:
training<-as_h2o_frame(sc, final1, strict_version_check = FALSE)
Error:
Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 4 in stage 95.1 failed 4 times, most recent failure: Lost task 4.3 in stage 95.1 (TID 4050, 10.0.0.9): java.lang.ArrayIndexOutOfBoundsException: 65535
at water.DKV.get(DKV.java:202)
at water.DKV.get(DKV.java:175)
at water.Key.get(Key.java:83)
at water.fvec.Frame.createNewChunks(Frame.java:896)
at water.fvec.FrameUtils$class.createNewChunks(FrameUtils.scala:43)
at water.fvec.FrameUtils$.createNewChunks(FrameUtils.scala:70)
at org.apache.spark.h2o.backends.internal.InternalWriteConverterCtx.createChunks(InternalWriteConverterCtx.scala:29)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$.org$apache$spark$h2o$converters$SparkDataFrameConverter$$perSQLPartition(SparkDataFrameConverter.scala:95)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$$anonfun$toH2OFrame$1$$anonfun$apply$2.apply(SparkDataFrameConverter.scala:74)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$$anonfun$toH2OFrame$1$$anonfun$apply$2.apply(SparkDataFrameConverter.scala:74)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1873)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1886)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1906)
at org.apache.spark.h2o.converters.WriteConverterCtxUtils$.convert(WriteConverterCtxUtils.scala:83)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$.toH2OFrame(SparkDataFrameConverter.scala:74)
at org.apache.spark.h2o.H2OContext.asH2OFrame(H2OContext.scala:145)
at org.apache.spark.h2o.H2OContext.asH2OFrame(H2OContext.scala:143)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at sparklyr.Invoke$.invoke(invoke.scala:102)
at sparklyr.StreamHandler$.handleMethodCall(stream.scala:89)
at sparklyr.StreamHandler$.read(stream.scala:54)
at sparklyr.BackendHandler.channelRead0(handler.scala:49)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ArrayIndexOutOfBoundsException: 65535
at water.DKV.get(DKV.java:202)
at water.DKV.get(DKV.java:175)
at water.Key.get(Key.java:83)
at water.fvec.Frame.createNewChunks(Frame.java:896)
at water.fvec.FrameUtils$class.createNewChunks(FrameUtils.scala:43)
at water.fvec.FrameUtils$.createNewChunks(FrameUtils.scala:70)
at org.apache.spark.h2o.backends.internal.InternalWriteConverterCtx.createChunks(InternalWriteConverterCtx.scala:29)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$.org$apache$spark$h2o$converters$SparkDataFrameConverter$$perSQLPartition(SparkDataFrameConverter.scala:95)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$$anonfun$toH2OFrame$1$$anonfun$apply$2.apply(SparkDataFrameConverter.scala:74)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$$anonfun$toH2OFrame$1$$anonfun$apply$2.apply(SparkDataFrameConverter.scala:74)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
... 1 more
going to repost Jakub's comment so it is more easily found:
It seems like your H2O cloud is not properly initialized. Please check the readme here github.com/h2oai/rsparkling#spark-connection

Spark. ~100 million rows. Size exceeds Integer.MAX_VALUE?

(This is with Spark 2.0 running on a small three machine Amazon EMR cluster)
I have a PySpark job that loads some large text files into a Spark RDD, does count() which successfully returns 158,598,155.
Then the job parses each row into a pyspark.sql.Row instance, builds a DataFrame, and does another count. This second count() on the DataFrame causes an exception in Spark internal code Size exceeds Integer.MAX_VALUE. This works with smaller volumes of data. Can someone explain why/how this would happen?
org.apache.spark.SparkException: Job aborted due to stage failure: Task 22 in stage 1.0 failed 4 times, most recent failure: Lost task 22.3 in stage 1.0 (TID 77, ip-172-31-97-24.us-west-2.compute.internal): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:869)
at org.apache.spark.storage.DiskStore$$anonfun$getBytes$2.apply(DiskStore.scala:103)
at org.apache.spark.storage.DiskStore$$anonfun$getBytes$2.apply(DiskStore.scala:91)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1287)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:105)
at org.apache.spark.storage.BlockManager.getLocalValues(BlockManager.scala:439)
at org.apache.spark.storage.BlockManager.get(BlockManager.scala:604)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:661)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:281)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
PySpark code:
raw_rdd = spark_context.textFile(full_source_path)
# DEBUG: This call to count() is expensive
# This count succeeds and returns 158,598,155
logger.info("raw_rdd count = %d", raw_rdd.count())
logger.info("completed getting raw_rdd count!!!!!!!")
row_rdd = raw_rdd.map(row_parse_function).filter(bool)
data_frame = spark_sql_context.createDataFrame(row_rdd, MySchemaStructType)
data_frame.cache()
# This will trigger the Spark internal error
logger.info("row count = %d", data_frame.count())
The error comes not from the data_frame.count() itself but rather because parsing the rows via row_parse_function yields some integers which don't fit into the specified integer type in MySchemaStructType.
Try to increase the integer types in your schema to pyspark.sql.types.LongType() or alternatively let spark infer the types by omitting the schema (this however can slow down the evaluation).

DSE Graph with Java Driver, how to add edges

I want to build a graph completely with the Datastax Java Driver. I managed to insert vertices, but I have no clue how to add edges to existing vertices.
When I run the following code
session.executeGraph("parent = g.V().has('businessId','sys-1').next()");
session.executeGraph("child = g.V().has('businessId','sys-2').next()");
session.executeGraph("parent.addEdge('consistsOf', child)");
I get an exception
Exception in thread "main" com.datastax.driver.core.exceptions.InvalidQueryException: No such property: parent for class: Script285
at com.datastax.driver.core.exceptions.InvalidQueryException.copy(InvalidQueryException.java:50)
at com.datastax.driver.dse.DriverThrowables.propagateCause(DriverThrowables.java:29)
at com.datastax.driver.dse.DefaultDseSession.executeGraph(DefaultDseSession.java:77)
at com.datastax.driver.dse.DefaultDseSession.executeGraph(DefaultDseSession.java:64)
at de.pratho.valpro.tools.Main.main(Main.java:41)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
Caused by: com.datastax.driver.core.exceptions.InvalidQueryException: No such property: parent for class: Script285
at com.datastax.driver.core.Responses$Error.asException(Responses.java:136)
at com.datastax.driver.core.DefaultResultSetFuture.onSet(DefaultResultSetFuture.java:179)
at com.datastax.driver.core.RequestHandler.setFinalResult(RequestHandler.java:173)
at com.datastax.driver.core.RequestHandler.access$2500(RequestHandler.java:43)
at com.datastax.driver.core.RequestHandler$SpeculativeExecution.setFinalResult(RequestHandler.java:788)
at com.datastax.driver.core.RequestHandler$SpeculativeExecution.onSet(RequestHandler.java:607)
at com.datastax.driver.core.Connection$Dispatcher.channelRead0(Connection.java:1012)
at com.datastax.driver.core.Connection$Dispatcher.channelRead0(Connection.java:935)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:318)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:304)
at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:266)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:318)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:304)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:318)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:304)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:276)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:263)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:318)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:304)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:112)
at java.lang.Thread.run(Thread.java:745)
When I run the gremlin statements in the gremlin_console_window it is working fine. So I think variables like parent and child are not working within a Java DseSession?
Unfortunately, I was not able to find much information about how to work with the Java Driver properly.
It looks like you have to create it within the context of the same script, i.e:
DseCluster dseCluster = DseCluster.builder()
.addContactPoint("127.0.0.1")
.withGraphOptions(new GraphOptions().setGraphName("demo"))
.build();
DseSession dseSession = dseCluster.newSession();
SimpleGraphStatement s = new SimpleGraphStatement(
"def v1 = g.V(id1).next()\n" +
"def v2 = g.V(id2).next()\n" +
"v1.addEdge('relates', v2)");
dseSession.executeGraph(s);
I think the reason for this is that these commands are just interpreted as independent gremlin queries.
I believe this set of documentation may be helpful to you.

Resources