Performance issue on Oracle Linux with VB6 client application - linux

I have a Linux server which is hosting a Oracle database and there are around 500 client applications written in VB6 that connect to this Linux server. When the number of users are down to lets say under 20 the application runs Fast enough for all the clients but as the number of users grow the applications becomes slower and slower to a stage where it is almost unusable. I have debugged the application and it looks like database /server is the bottle neck. How can I debug the exact issue and resolve?

Related

Diagnosing Sporadic Lockups in Website Running on IIS

Goal
Determine the cause of the sporadic lock ups of our web application running on IIS.
Problem
An application we are running on IIS sporadically locks up throughout the day. When it locks up it will lock up on all workers and on all load balanced instance.
Environment and Application
The application is running on 4 different Windows Server 2016 machines. The machines are load balanced using ha-proxy using a round robin load balancing scheme. The IIS application pools this website is hosted in are configured to have 4 workers each and the application it hosts is a 32-bit application. The IIS instances are not using a shared configuration file but the application pools for this application are all configured the same.
This application is the only application in the IIS application pool. The application is an ASP.NET web API and is using .NET 4.6.1. The application is not creating threads of its own.
Theory
My theory for why this is happening is that we have requests that are coming in that are taking ~5-30 minutes to complete. Every machine gets tied up servicing these requests so they look "locked up". The company rolled their own logging mechanism and from that I can tell we have requests that are taking ~5-30 minutes to complete. The team responsible for the application has cleaned up many of these but I am still seeing ~5 minute requests in the log.
I do not have access to the machines personally so our systems team has gotten memory dumps of the application when this happens. In the dumps I generally will see ~50 threads running and all of them are in our code. These threads will be all over our application and do not seem to be stopped on any common piece of code. When the application is running correctly the dumps have 3-4 threads running. Also I have looked at performance counters like the ASP.NET\Requests Queued but it never seems to have any requests queued. During these times the CPU, Memory, Disk and Network usage look normal. Using windbg none of the threads seem to have a high CPU time other than the finalizer thread which as far as I know should live the entire time.
Conclusion
I am looking for a means to prove or disprove my theory as to why we are locking up as well as any metrics or tools I should look at.
So this issue came down to our application using query in stitch on a table with 2,000,000 records in it to another table. Memory would become so fragmented that the Garbage Collector was spending more time trying to find places to put objects and moving them around than it was running our code. This is why it appeared that our application was still working and why their was no exceptions. Oddly IIS would time out the requests but would continue processing the threads.

I'm not sure how to correctly configure my server setup

This is kind of a multi-tiered question in which my end goal is to establish the best way to setup my server which will be hosting a website as well as a service (using Socket.io) for an iOS (and eventually an Android) app. Both the app service and the website are going to be written in node.js as I need high concurrency and scaling for the app server and I figured whilst I'm at it may as well do the website in node because it wouldn't be that much different in terms of performance than something different like Apache (from my understanding).
Also the website has a lower priority than the app service, the app service should receive significantly higher traffic than the website (but in the long run this may change). Money isn't my greatest priority here, but it is a limiting factor, I feel that having a service that has 99.9% uptime (as 100% uptime appears to be virtually impossible in the long run) is more important than saving money at the compromise of having more down time.
Firstly I understand that having one node process per cpu core is the best way to fully utilise a multi-core cpu. I now understand after researching that running more than one per core is inefficient due to the fact that the cpu has to do context switching between the multiple processes. How come then whenever I see code posted on how to use the in-built cluster module in node.js, the master worker creates a number of workers equal to the number of cores because that would mean you would have 9 processes on an 8 core machine (1 master process and 8 worker processes)? Is this because the master process usually is there just to restart worker processes if they crash or end and therefore does so little it doesnt matter that it shares a cpu core with another node process?
If this is the case then, I am planning to have the workers handle providing the app service and have the master worker handle the workers but also host a webpage which would provide statistical information on the server's state and all other relevant information (like number of clients connected, worker restart count, error logs etc). Is this a bad idea? Would it be better to have this webpage running on a separate worker and just leave the master worker to handle the workers?
So overall I wanted to have the following elements; a service to handle the request from the app (my main point of traffic), a website (fairly simple, a couple of pages and a registration form), an SQL database to store user information, a webpage (probably locally hosted on the server machine) which only I can access that hosts information about the server (users connected, worker restarts, server logs, other useful information etc) and apparently nginx would be a good idea where I'm handling multiple node processes accepting connection from the app. After doing research I've also found that it would probably be best to host on a VPS initially. I was thinking at first when the amount of traffic the app service would be receiving will most likely be fairly low, I could run all of those elements on one VPS. Or would it be best to have them running on seperate VPS's except for the website and the server status webpage which I could run on the same one? I guess this way if there is a hardware failure and something goes down, not everything does and I could run 2 instances of the app service on 2 different VPS's so if one goes down the other one is still functioning. Would this just be overkill? I doubt for a while I would need multiple app service instances to support the traffic load but it would help reduce the apparent down time for users.
Maybe this all depends on what I value more and have the time to do? A more complex server setup that costs more and maybe a little unnecessary but guarantees a consistent and reliable service, or a cheaper and simpler setup that may succumb to downtime due to coding errors and server hardware issues.
Also it's worth noting I've never had any real experience with production level servers so in some ways I've jumped in the deep end a little with this. I feel like I've come a long way in the past half a year and feel like I'm getting a fairly good grasp on what I need to do, I could just do with some advice from someone with experience that has an idea with what roadblocks I may come across along the way and whether I'm causing myself unnecessary problems with this kind of setup.
Any advice is greatly appreciated, thanks for taking the time to read my question.

How do you allow a large number of connections from a client in IIS?

I am trying to do some performance testing on an ASP.NET application where I suspect most of the stress is currently on the database. I want to test entire round trips with the system to find the bottle necks, so I am starting a test application to hit my web service that starts up multiple threads to simulate multiple clients. However, IIS (7 on windows 7) seems to have a default limit per client of 5 concurrent connections.
I know that this limit is there for good reasons (like preventing DOS attacks), but is there a way to bump this up for my testing environment?

Scaling Node.JS across multiple cores / servers

Ok so I have an idea I want to peruse but before I do I need to understand a few things fully.
Firstly the way I think im going to go ahead with this system is to have 3 Server which are described below:
The First Server will be my web Front End, this is the server that will be listening for connection and responding to clients, this server will have 8 cores and 16GB Ram.
The Second Server will be the Database Server, pretty self explanatory really, connect to the host and set / get data.
The Third Server will be my storage server, this will be where downloadable files are stored.
My first questions is:
On my front end server, I have 8 cores, what's the best way to scale node so that the load is distributed across the cores?
My second question is:
Is there a system out there I can drop into my application framework that will allow me to talk to the other cores and pass messages around to save I/O.
and final question:
Is there any system I can use to help move the content from my storage server to the request on the front-end server with as little overhead as possible, speed is a concern here as we would have 500+ clients downloading and uploading concurrently at peak times.
I have finally convinced my employer that node.js is extremely fast and its the latest in programming technology, and we should invest in a platform for our Intranet system, but he has requested detailed documentation on how this could be scaled across the current hardware we have available.
On my front end server, I have 8
cores, what's the best way to scale
node so that the load is distributed
across the cores?
Try to look at node.js cluster module which is a multi-core server manager.
Firstly, I wouldn't describe the setup you propose as 'scaling', it's more like 'spreading'. You only have one app server serving the requests. If you add more app servers in the future, then you will have a scaling problem then.
I understand that node.js is single-threaded, which implies that it can only use a single core. Not my area of expertise on how to/if you can scale it, will leave that part to someone else.
I would suggest NFS mounting a directory on the storage server to the app server. NFS has relatively low overhead. Then you can access the files as if they were local.
Concerning your first question: use cluster (we already use it in a production system, works like a charm).
When it comes to worker messaging, i cannot really help you out. But your best bet is cluster too. Maybe there will be some functionality that provides "inter-core" messaging accross all cluster workers in the future (don't know the roadmap of cluster, but it seems like an idea).
For your third requirement, i'd use a low-overhead protocol like NFS or (if you can go really crazy when it comes to infrastructure) a high-speed SAN backend.
Another advice: use MongoDB as your database backend. You can start with low-end hardware and scale up your database instance with ease using MongoDB's sharding/replication set features (if that is some kind of requirement).

Linux vs Win runtime timings

I have an application which was ported from Windows to Linux. Now the same code compiles on VS C++ and g++, but there is a difference in performance when it's running on Win and when it's running on Linux. The scope of this application is caching. It's a node between a server and a client, and it's caching client requests and server response in a list, so that any other client which makes requests that was already processed by the server, this node will response instead of forwarding it to server.
When this node runs on Windows, the client gets all it needs in about 7 seconds. But when same node is running on Linux (Ubuntu 9.04), the client starts up in 35 seconds. Every test is from scratch. I'm trying to understand why is this timing difference. A weird scenario is when the node is running on Linux but in a Virtual Machine, hosted by Win. In this case, load time is around 7 seconds, just like it was running Win natively. So, my impression is that there is a problem with networking.
This node is using UDP protocol for sending and receiving network data, and it's using boost::asio as implementation. I tried to change all supported socket flags, changed buffer size, but nothing.
Does someone know why is this happening, or any network settings related with UDP that might influence the performance?
Thanks.
If you suspect a network problem take a network capture (Wireshark is great for this kind of problem) and look at the traffic.
Find out where the time is being spent, either based on the network capture or based on the output of a profiler.
Once you know that you're half way to a solution.
These timing differences can depend on many factors, but the first one coming to mind is that you are using a modern Windows version. XP already had features to keep recently used applications in memory, but in Vista this was much better optimized. For each application you load, a special load file is created that is equal to how it looks in memory. Next time you load your application, it should go a lot faster.
I don't know about Linux, but it is very well possible that it needs to load your app completely each time. You can test the difference in performance between the two systems much better if you compare performance when running. Leave your application open (if it is possible with your design) and compare again.
These differences in how the system optimizes memory are backed up by your scenario using the VM approach.
Basically, if you rule out other running applications and if you run your application in high priority mode, the performance should be close to equal, but it depends on whether you use operating system specific code, how you access the file system, how you you use the UDP protocol etc etc.

Resources