What is the difference between -f and -e in shell? - linux

What is the difference between -f and -e in shell?
I know that
-e : To check if the file name exists
-f : To check if a file exists
But, what is difference among them?
EDIT:
I am looking in particular at this snippet of code:
if [ -e test.sh ]; then
echo "Yes";
else
echo "No";
fi
if [ -f test.sh ]; then
echo "Yes";
else
echo "No";
fi
Both print Yes.

-f is like -e but it additionally checks that the name refers to a plain file (as opposed to a directory, socket, etc.).
See the description of st_mode / S_IFMT in man 2 stat for a list of possible file types.

Related

Is there a way to pipe user input within a bash script into the cat command and have it save at a destination of my choosing as a text file

Something similar to this maybe:
#! /bin/bash
echo What is your name?
read name | cat > ~/Documents/file.txt
if [[ $name==Bob ]]
echo something
fi
The command creates an empty file on manjaro mint.
Your problem is that read doesn't create any output.
And you have a syntax error further down the line, it would be a good idea to put your script(s) through shellcheck.
#! /bin/bash
echo What is your name?
read -r name
echo "$name" > ~/Documents/file.txt
if [[ "$name" == "Bob" ]]; then
echo something
fi

check to see if filepath exists bash linux script [duplicate]

What command checks if a directory exists or not within a Bash shell script?
To check if a directory exists:
if [ -d "$DIRECTORY" ]; then
echo "$DIRECTORY does exist."
fi
To check if a directory does not exist:
if [ ! -d "$DIRECTORY" ]; then
echo "$DIRECTORY does not exist."
fi
However, as Jon Ericson points out, subsequent commands may not work as intended if you do not take into account that a symbolic link to a directory will also pass this check.
E.g. running this:
ln -s "$ACTUAL_DIR" "$SYMLINK"
if [ -d "$SYMLINK" ]; then
rmdir "$SYMLINK"
fi
Will produce the error message:
rmdir: failed to remove `symlink': Not a directory
So symbolic links may have to be treated differently, if subsequent commands expect directories:
if [ -d "$LINK_OR_DIR" ]; then
if [ -L "$LINK_OR_DIR" ]; then
# It is a symlink!
# Symbolic link specific commands go here.
rm "$LINK_OR_DIR"
else
# It's a directory!
# Directory command goes here.
rmdir "$LINK_OR_DIR"
fi
fi
Take particular note of the double-quotes used to wrap the variables. The reason for this is explained by 8jean in another answer.
If the variables contain spaces or other unusual characters it will probably cause the script to fail.
Always wrap variables in double quotes when referencing them in a Bash script.
if [ -d "$DIRECTORY" ]; then
# Will enter here if $DIRECTORY exists, even if it contains spaces
fi
Kids these days put spaces and lots of other funny characters in their directory names. (Spaces! Back in my day, we didn't have no fancy spaces!)
One day, one of those kids will run your script with $DIRECTORY set to "My M0viez" and your script will blow up. You don't want that. So use double quotes.
Note the -d test can produce some surprising results:
$ ln -s tmp/ t
$ if [ -d t ]; then rmdir t; fi
rmdir: directory "t": Path component not a directory
File under: "When is a directory not a directory?" The answer: "When it's a symlink to a directory." A slightly more thorough test:
if [ -d t ]; then
if [ -L t ]; then
rm t
else
rmdir t
fi
fi
You can find more information in the Bash manual on Bash conditional expressions and the [ builtin command and the [[ compound commmand.
I find the double-bracket version of test makes writing logic tests more natural:
if [[ -d "${DIRECTORY}" && ! -L "${DIRECTORY}" ]] ; then
echo "It's a bona-fide directory"
fi
Shorter form:
# if $DIR is a directory, then print yes
[ -d "$DIR" ] && echo "Yes"
A simple script to test if a directory or file is present or not:
if [ -d /home/ram/dir ] # For file "if [ -f /home/rama/file ]"
then
echo "dir present"
else
echo "dir not present"
fi
A simple script to check whether the directory is present or not:
mkdir tempdir # If you want to check file use touch instead of mkdir
ret=$?
if [ "$ret" == "0" ]
then
echo "dir present"
else
echo "dir not present"
fi
The above scripts will check if the directory is present or not
$? if the last command is a success it returns "0", else a non-zero value.
Suppose tempdir is already present. Then mkdir tempdir will give an error like below:
mkdir: cannot create directory ‘tempdir’: File exists
To check if a directory exists you can use a simple if structure like this:
if [ -d directory/path to a directory ] ; then
# Things to do
else #if needed #also: elif [new condition]
# Things to do
fi
You can also do it in the negative:
if [ ! -d directory/path to a directory ] ; then
# Things to do when not an existing directory
Note: Be careful. Leave empty spaces on either side of both opening and closing braces.
With the same syntax you can use:
-e: any kind of archive
-f: file
-h: symbolic link
-r: readable file
-w: writable file
-x: executable file
-s: file size greater than zero
You can use test -d (see man test).
-d file True if file exists and is a directory.
For example:
test -d "/etc" && echo Exists || echo Does not exist
Note: The test command is same as conditional expression [ (see: man [), so it's portable across shell scripts.
[ - This is a synonym for the test builtin, but the last argument must, be a literal ], to match the opening [.
For possible options or further help, check:
help [
help test
man test or man [
Or for something completely useless:
[ -d . ] || echo "No"
Here's a very pragmatic idiom:
(cd $dir) || return # Is this a directory,
# and do we have access?
I typically wrap it in a function:
can_use_as_dir() {
(cd ${1:?pathname expected}) || return
}
Or:
assert_dir_access() {
(cd ${1:?pathname expected}) || exit
}
The nice thing about this approach is that I do not have to think of a good error message.
cd will give me a standard one line message to standard error already. It will also give more information than I will be able to provide. By performing the cd inside a subshell ( ... ), the command does not affect the current directory of the caller. If the directory exists, this subshell and the function are just a no-op.
Next is the argument that we pass to cd: ${1:?pathname expected}. This is a more elaborate form of parameter substitution which is explained in more detail below.
Tl;dr: If the string passed into this function is empty, we again exit from the subshell ( ... ) and return from the function with the given error message.
Quoting from the ksh93 man page:
${parameter:?word}
If parameter is set and is non-null then substitute its value;
otherwise, print word and exit from the shell (if not interactive).
If word is omitted then a standard message is printed.
and
If the colon : is omitted from the above expressions, then the
shell only checks whether parameter is set or not.
The phrasing here is peculiar to the shell documentation, as word may refer to any reasonable string, including whitespace.
In this particular case, I know that the standard error message 1: parameter not set is not sufficient, so I zoom in on the type of value that we expect here - the pathname of a directory.
A philosophical note:
The shell is not an object oriented language, so the message says pathname, not directory. At this level, I'd rather keep it simple - the arguments to a function are just strings.
if [ -d "$Directory" -a -w "$Directory" ]
then
#Statements
fi
The above code checks if the directory exists and if it is writable.
More features using find
Check existence of the folder within sub-directories:
found=`find -type d -name "myDirectory"`
if [ -n "$found" ]
then
# The variable 'found' contains the full path where "myDirectory" is.
# It may contain several lines if there are several folders named "myDirectory".
fi
Check existence of one or several folders based on a pattern within the current directory:
found=`find -maxdepth 1 -type d -name "my*"`
if [ -n "$found" ]
then
# The variable 'found' contains the full path where folders "my*" have been found.
fi
Both combinations. In the following example, it checks the existence of the folder in the current directory:
found=`find -maxdepth 1 -type d -name "myDirectory"`
if [ -n "$found" ]
then
# The variable 'found' is not empty => "myDirectory"` exists.
fi
DIRECTORY=/tmp
if [ -d "$DIRECTORY" ]; then
echo "Exists"
fi
Try online
Actually, you should use several tools to get a bulletproof approach:
DIR_PATH=`readlink -f "${the_stuff_you_test}"` # Get rid of symlinks and get abs path
if [[ -d "${DIR_PATH}" ]] ; Then # Now you're testing
echo "It's a dir";
fi
There isn't any need to worry about spaces and special characters as long as you use "${}".
Note that [[]] is not as portable as [], but since most people work with modern versions of Bash (since after all, most people don't even work with command line :-p), the benefit is greater than the trouble.
Have you considered just doing whatever you want to do in the if rather than looking before you leap?
I.e., if you want to check for the existence of a directory before you enter it, try just doing this:
if pushd /path/you/want/to/enter; then
# Commands you want to run in this directory
popd
fi
If the path you give to pushd exists, you'll enter it and it'll exit with 0, which means the then portion of the statement will execute. If it doesn't exist, nothing will happen (other than some output saying the directory doesn't exist, which is probably a helpful side-effect anyways for debugging).
It seems better than this, which requires repeating yourself:
if [ -d /path/you/want/to/enter ]; then
pushd /path/you/want/to/enter
# Commands you want to run in this directory
popd
fi
The same thing works with cd, mv, rm, etc... if you try them on files that don't exist, they'll exit with an error and print a message saying it doesn't exist, and your then block will be skipped. If you try them on files that do exist, the command will execute and exit with a status of 0, allowing your then block to execute.
[[ -d "$DIR" && ! -L "$DIR" ]] && echo "It's a directory and not a symbolic link"
N.B: Quoting variables is a good practice.
Explanation:
-d: check if it's a directory
-L: check if it's a symbolic link
To check more than one directory use this code:
if [ -d "$DIRECTORY1" ] && [ -d "$DIRECTORY2" ] then
# Things to do
fi
Check if the directory exists, else make one:
[ -d "$DIRECTORY" ] || mkdir $DIRECTORY
[ -d ~/Desktop/TEMPORAL/ ] && echo "DIRECTORY EXISTS" || echo "DIRECTORY DOES NOT EXIST"
Using the -e check will check for files and this includes directories.
if [ -e ${FILE_PATH_AND_NAME} ]
then
echo "The file or directory exists."
fi
This answer wrapped up as a shell script
Examples
$ is_dir ~
YES
$ is_dir /tmp
YES
$ is_dir ~/bin
YES
$ mkdir '/tmp/test me'
$ is_dir '/tmp/test me'
YES
$ is_dir /asdf/asdf
NO
# Example of calling it in another script
DIR=~/mydata
if [ $(is_dir $DIR) == "NO" ]
then
echo "Folder doesnt exist: $DIR";
exit;
fi
is_dir
function show_help()
{
IT=$(CAT <<EOF
usage: DIR
output: YES or NO, depending on whether or not the directory exists.
)
echo "$IT"
exit
}
if [ "$1" == "help" ]
then
show_help
fi
if [ -z "$1" ]
then
show_help
fi
DIR=$1
if [ -d $DIR ]; then
echo "YES";
exit;
fi
echo "NO";
As per Jonathan's comment:
If you want to create the directory and it does not exist yet, then the simplest technique is to use mkdir -p which creates the directory — and any missing directories up the path — and does not fail if the directory already exists, so you can do it all at once with:
mkdir -p /some/directory/you/want/to/exist || exit 1
if [ -d "$DIRECTORY" ]; then
# Will enter here if $DIRECTORY exists
fi
This is not completely true...
If you want to go to that directory, you also need to have the execute rights on the directory. Maybe you need to have write rights as well.
Therefore:
if [ -d "$DIRECTORY" ] && [ -x "$DIRECTORY" ] ; then
# ... to go to that directory (even if DIRECTORY is a link)
cd $DIRECTORY
pwd
fi
if [ -d "$DIRECTORY" ] && [ -w "$DIRECTORY" ] ; then
# ... to go to that directory and write something there (even if DIRECTORY is a link)
cd $DIRECTORY
touch foobar
fi
In kind of a ternary form,
[ -d "$directory" ] && echo "exist" || echo "not exist"
And with test:
test -d "$directory" && echo "exist" || echo "not exist"
file="foo"
if [[ -e "$file" ]]; then echo "File Exists"; fi;
The ls command in conjunction with -l (long listing) option returns attributes information about files and directories.
In particular the first character of ls -l output it is usually a d or a - (dash). In case of a d the one listed is a directory for sure.
The following command in just one line will tell you if the given ISDIR variable contains a path to a directory or not:
[[ $(ls -ld "$ISDIR" | cut -c1) == 'd' ]] &&
echo "YES, $ISDIR is a directory." ||
echo "Sorry, $ISDIR is not a directory"
Practical usage:
[claudio#nowhere ~]$ ISDIR="$HOME/Music"
[claudio#nowhere ~]$ ls -ld "$ISDIR"
drwxr-xr-x. 2 claudio claudio 4096 Aug 23 00:02 /home/claudio/Music
[claudio#nowhere ~]$ [[ $(ls -ld "$ISDIR" | cut -c1) == 'd' ]] &&
echo "YES, $ISDIR is a directory." ||
echo "Sorry, $ISDIR is not a directory"
YES, /home/claudio/Music is a directory.
[claudio#nowhere ~]$ touch "empty file.txt"
[claudio#nowhere ~]$ ISDIR="$HOME/empty file.txt"
[claudio#nowhere ~]$ [[ $(ls -ld "$ISDIR" | cut -c1) == 'd' ]] &&
echo "YES, $ISDIR is a directory." ||
echo "Sorry, $ISDIR is not a directoy"
Sorry, /home/claudio/empty file.txt is not a directory
There are great solutions out there, but ultimately every script will fail if you're not in the right directory. So code like this:
if [ -d "$LINK_OR_DIR" ]; then
if [ -L "$LINK_OR_DIR" ]; then
# It is a symlink!
# Symbolic link specific commands go here
rm "$LINK_OR_DIR"
else
# It's a directory!
# Directory command goes here
rmdir "$LINK_OR_DIR"
fi
fi
will execute successfully only if at the moment of execution you're in a directory that has a subdirectory that you happen to check for.
I understand the initial question like this: to verify if a directory exists irrespective of the user's position in the file system. So using the command 'find' might do the trick:
dir=" "
echo "Input directory name to search for:"
read dir
find $HOME -name $dir -type d
This solution is good because it allows the use of wildcards, a useful feature when searching for files/directories. The only problem is that, if the searched directory doesn't exist, the 'find' command will print nothing to standard output (not an elegant solution for my taste) and will have nonetheless a zero exit. Maybe someone could improve on this.
The below find can be used,
find . -type d -name dirname -prune -print
One Liner:
[[ -d $Directory ]] && echo true
(1)
[ -d Piyush_Drv1 ] && echo ""Exists"" || echo "Not Exists"
(2)
[ `find . -type d -name Piyush_Drv1 -print | wc -l` -eq 1 ] && echo Exists || echo "Not Exists"
(3)
[[ -d run_dir && ! -L run_dir ]] && echo Exists || echo "Not Exists"
If an issue is found with one of the approaches provided above:
With the ls command; the cases when a directory does not exists - an error message is shown
[[ `ls -ld SAMPLE_DIR| grep ^d | wc -l` -eq 1 ]] && echo exists || not exists
-ksh: not: not found [No such file or directory]

Linux: Reading the output of readlink /proc/pid/exe within a Bash Script

So I am writing a bash script which will run through all of the process ids in /proc/[pid] and read the executable that was used to run it.
From what I have had a looked at, the /proc filesystem contains the /proc/[pid]/exe symbolic link. Within the bash script I am trying work out how to read the value of "readlink /proc/[pid]/exe" to check if (deleted) or nothing is returned to find out whether the original executable exists on the disk or not.
Is there a way of doing this, so far I have?
#!/bin/bash
pid = "0"
while [ $pid -lt 32769 ]
do
if [-d /proc/$pid]; then
if [-f /proc/$pid/exe]; then
echo $pid
readlink /proc/$pid/exe
fi
fi
pid = $[$pid+1]
done
This fails to work and always returns nothing.I am trying to list all of the processes that no longer have their executables available on disk.
Will this work for you?
#!/bin/bash
for i in $(ls /proc | awk '/^[[:digit:]]+/{print $1}'); do
if [ -h /proc/$i/exe ]; then
echo -n "$i: "
if readlink /proc/$i/exe >/dev/null 2>&1 ; then
echo "executable exists"
else
echo "executable not found"
fi
fi
done
I've updated your script to make it work. Notice that -f checks whether a file name represents a regular file. I would return false for a symbolic link:
pid="0"
while [ $pid -lt 32769 ]
do
if [ -d /proc/$pid ]; then
if [ -h /proc/$pid/exe ]; then
echo $pid
readlink /proc/$pid/exe
fi
fi
pid=$[$pid+1]
done
you can read returned value after any command in shell by printing $? variable:
readlink
echo $?
if link is invalid, $? will be bigger than 0.
however if link exist and actual file is deleted, you can use something like:
ls `readlink somelink`
readlink -f `ls --dereference /proc/$pid/exe`

Symlink check - Linux Bash Script

I'm trying to create a script that searches through a directory to find symlinks that point to non-existing objects.
I have a file in a directory with a deleted symlink, but for some reason when i run the below script It says file exists.
#!/bin/bash
ls -l $1 |
if [ -d $1 ]
then
while read file
do
if test -e $1
then
echo "file exists"
else
echo "file does not exist"
fi
done
else
echo "No directory given"
fi
Thanks
Check this page. It has a test for broken links. It uses the -h operator to identify a symlink and the -e operator to check existance.
From that page:
linkchk () {
for element in $1/*; do
[ -h "$element" -a ! -e "$element" ] && echo \"$element\"
[ -d "$element" ] && linkchk $element
# Of course, '-h' tests for symbolic link, '-d' for directory.
done
}
# Send each arg that was passed to the script to the linkchk() function
#+ if it is a valid directoy. If not, then print the error message
#+ and usage info.
##################
for directory in $directorys; do
if [ -d $directory ]
then linkchk $directory
else
echo "$directory is not a directory"
echo "Usage: $0 dir1 dir2 ..."
fi
done
exit $?
You can test whether link is valid or not using:
[[ -f "$link" ]] && echo "points to a valid file"
To check if it is indeed a link use -L:
[[ -L "$link" ]] && echo "it's a link"
There seems to be a program named symlinks that does, among other things, what you're looking for.

Bash: Create a file if it does not exist, otherwise check to see if it is writeable

I have a bash program that will write to an output file. This file may or may not exist, but the script must check permissions and fail early. I can't find an elegant way to make this happen. Here's what I have tried.
set +e
touch $file
set -e
if [ $? -ne 0 ]; then exit;fi
I keep set -e on for this script so it fails if there is ever an error on any line. Is there an easier way to do the above script?
Why complicate things?
file=exists_and_writeable
if [ ! -e "$file" ] ; then
touch "$file"
fi
if [ ! -w "$file" ] ; then
echo cannot write to $file
exit 1
fi
Or, more concisely,
( [ -e "$file" ] || touch "$file" ) && [ ! -w "$file" ] && echo cannot write to $file && exit 1
Rather than check $? on a different line, check the return value immediately like this:
touch file || exit
As long as your umask doesn't restrict the write bit from being set, you can just rely on the return value of touch
You can use -w to check if a file is writable (search for it in the bash man page).
if [[ ! -w $file ]]; then exit; fi
Why must the script fail early? By separating the writable test and the file open() you introduce a race condition. Instead, why not try to open (truncate/append) the file for writing, and deal with the error if it occurs? Something like:
$ echo foo > output.txt
$ if [ $? -ne 0 ]; then die("Couldn't echo foo")
As others mention, the "noclobber" option might be useful if you want to avoid overwriting existing files.
Open the file for writing. In the shell, this is done with an output redirection. You can redirect the shell's standard output by putting the redirection on the exec built-in with no argument.
set -e
exec >shell.out # exit if shell.out can't be opened
echo "This will appear in shell.out"
Make sure you haven't set the noclobber option (which is useful interactively but often unusable in scripts). Use > if you want to truncate the file if it exists, and >> if you want to append instead.
If you only want to test permissions, you can run : >foo.out to create the file (or truncate it if it exists).
If you only want some commands to write to the file, open it on some other descriptor, then redirect as needed.
set -e
exec 3>foo.out
echo "This will appear on the standard output"
echo >&3 "This will appear in foo.out"
echo "This will appear both on standard output and in foo.out" | tee /dev/fd/3
(/dev/fd is not supported everywhere; it's available at least on Linux, *BSD, Solaris and Cygwin.)

Resources