Spherical triangle side lengths - geometry

I have to solve an assignment question which deals a spherical triangle determined by the latitude/longitude coordinates A = (50, ­-41), B = (51, ­-41), and C = (51, ­-40). Does this mean AC = sqrt(2), BC = AB = 1 and angle(B) = 90 deg?

Look at the map with meridians and parallels, read about spherical trigonometry
The only true is AB = 1

Related

How to generate two sets of distinct points on a sphere in julia language?

I need to apply the PCA at different points of a spherical cap, but I don’t know how to build these sets of different points, I need at least 2 sets.
Here is a picture with the idea of what I need.
Spherical Cap
If I correctly understand, here is how I would do in R.
library(uniformly)
library(pracma)
library(rgl)
# sample points on a spherical cap
points_on_cap1 <- runif_on_sphericalCap(300, r = 2, h = 0.5)
# convert to spherical coordinates
sphcoords1 <- cart2sph(points_on_cap1)
# sample points on a spherical cap
points_on_cap2 <- runif_on_sphericalCap(300, r = 2, h = 0.5)
# rotate them, because this is the same spherical cap as before
points_on_cap2 <- rotate3d(points_on_cap2, 3*pi/4, 1, 1, 1)
# convert to spherical coordinates
sphcoords2 <- cart2sph(points_on_cap2)
# 3D plot
spheres3d(0, 0, 0, radius = 2, alpha = 0.5, color = "yellow")
points3d(points_on_cap1, color = "blue")
points3d(points_on_cap2, color = "red")
# 2D plot (of the spherical coordinates)
plot(
sphcoords1[, 1:2], xlim = c(-pi, pi), ylim = c(-pi/2, pi/2),
pch = 19, col = "blue"
)
points(sphcoords2[, 1:2], pch = 19, col = "red")
Do I understand?
Here is the function runif_on_sphericalCap:
function(n, r = 1, h){
stopifnot(h > 0, h < 2*r)
xy <- runif_in_sphere(n, 2L, 1)
k <- h * apply(xy, 1L, crossprod)
s <- sqrt(h * (2*r - k))
cbind(s*xy, r-k)
}
It always samples on a spherical cap with symmetry axis joining the center of the sphere to the North pole. That is why I do a rotation, to get another spherical cap.
Say me if I understand and I'll try to help you to convert the code to Julia.
EDIT: Julia code
using Random, Distributions, LinearAlgebra
function runif_in_sphere(n::I, d::I, r::R) where {I<:Integer, R<:Number}
G = Normal()
sims = rand(G, n, d)
norms = map(norm, eachrow(sims))
u = rand(n) .^ (1/d)
return r .* u .* broadcast(*, 1 ./ norms, sims)
end
function runif_on_sphericalCap(n::I, r::Number, h::Number) where {I<:Integer}
if h <= 0 || h >= 2*r
error("")
end
xy = runif_in_sphere(n, 2, 1.0)
k = h .* map(x -> dot(x,x), eachrow(xy))
s = sqrt.(h .* (2*r .- k))
return hcat(broadcast(*, s, xy), r .- k)
end

How to count scattered points in Julia

I would like to count the scattered red points inside the circle.
my code is:
using PyPlot # Here I define the circle
k = 100
ϕ = range(0,stop=2*π,length=k)
c = cos.(ϕ)
d = sin.(ϕ)
# Here I defined the scattered points with the circle
function scatterpoints(x,y)
n = 1000
x = -n:n
x = x / n
y = rand(2*n+1)
scatter(-x, -y;c="red",s=1)
scatter(x, y;c="red", s=1)
plot(c,d)
end
scatterpoints(x,y)
My approach (pseudocode) would be something like this:
using LinearAlgebra
if norm < radius of circle then
amount of points in circle = amount of points in circle + 1
end
Unfortunately I am not sure how to implement this in Julia.
your pretty much here with your pseudocode
using LinearAlgebra
n = 1000
N = 2n+1
x = range(-1, 1, length=N)
y = rand(N)
center = (0,0)
radius = 1
n_in_circle = 0
for i in 1:N
if norm((x[i], y[i]) .- center) < radius
n_in_circle += 1
end
end
println(n_in_circle) # 1565
println(pi*N/4) # 1571.581724958294

Sphere-Sphere Intersection

I have two spheres that are intersecting, and I'm trying to find the intersection point nearest in the direction of the point (0,0,1)
My first sphere's (c1) center is at (c1x = 0, c1y = 0, c1z = 0) and has a radius of r1 = 2.0
My second sphere's (c2) center is at (c2x = 2, c2y = 0, c2z = 0) and has a radius of r2 = 2.0
I've been following the logic on this identical question for the 'Typical intersections' part, but was having some trouble understanding it and was hoping someone could help me.
First I'm finding the center of intersection c_i and radius of the intersecting circle r_i:
Here the first sphere has center c_1 and radius r_1, the second c_2 and r_2, and their intersection has center c_i and radius r_i. Let d = ||c_2 - c_1||, the distance between the spheres.
So sphere1 has center c_1 = (0,0,0) with r_1 = 2. Sphere2 has c_2 = (2,0,0) with r_2 = 2.0.
d = ||c_2 - c_1|| = 2
h = 1/2 + (r_1^2 - r_2^2)/(2* d^2)
So now I solve the function of h like so and get 0.5:
h = .5 + (2^2 - 2^2)/(2*2^2)
h = .5 + (0)/(8)
h = 0.5
We can sub this into our formula for c_i above to find the center of the circle of intersections.
c_i = c_1 + h * (c_2 - c_1)
(this equation was my original question, but a comment on this post helped me understand to solve it for each x,y,z)
c_i_x = c_1_x + h * (c_2_x - c_1_x)
c_i_x = 0 + 0.5 * (2 - 0) = 0.5 * 2
1 = c_i_x
c_i_y = c_1_y + h * (c_2_y - c_1_y)
c_i_y = 0 + 0.5 * (0- 0)
0 = c_i_y
c_i_z = c_1_z + h * (c_2_z - c_1_z)
c_i_z = 0 + 0.5 * (0 - 0)
0 = c_i_z
c_i = (c_i_x, c_i_z, c_i_z) = (1, 0, 0)
Then, reversing one of our earlier Pythagorean relations to find r_i:
r_i = sqrt(r_1*r_1 - hhd*d)
r_i = sqrt(4 - .5*.5*2*2)
r_i = sqrt(4 - 1)
r_i = sqrt(3)
r_i = 1.73205081
So if my calculations are correct, I know the circle where my two spheres intersect is centered at (1, 0, 0) and has a radius of 1.73205081
I feel somewhat confident about all the calculations above, the steps make sense as long as I didn't make any math mistakes. I know I'm getting closer but my understanding begins to weaken starting at this point. My end goal is to find an intersection point nearest to (0,0,1), and I have the circle of intersection, so I think what I need to do is find a point on that circle which is nearest to (0,0,1) right?
The next step from this solutionsays:
So, now we have the center and radius of our intersection. Now we can revolve this around the separating axis to get our full circle of solutions. The circle lies in a plane perpendicular to the separating axis, so we can take n_i = (c_2 - c_1)/d as the normal of this plane.
So finding the normal of the plane involves n_i = (c_2 - c_1)/d, do I need to do something similar for finding n_i for x, y, and z again?
n_i_x = (c_2_x - c_1_x)/d = (2-0)/2 = 2/2 = 1
n_i_y = (c_2_y - c_1_y)/d = (0-0)/2 = 0/2 = 0
n_i_z = (c_2_z - c_1_z)/d = (0-0)/2 = 0/2 = 0
After choosing a tangent and bitangent t_i and b_i perpendicular to this normal and each other, you can write any point on this circle as: p_i(theta) = c_i + r_i * (t_i * cos(theta) + b_i sin(theta));
Could I choose t_i and b_i from the point I want to be nearest to? (0,0,1)
Because of the Hairy Ball Theorem, there's no one universal way to choose the tangent/bitangent to use. My recommendation would be to pick one of the coordinate axes not parallel to n_i, and set t_i = normalize(cross(axis, n_i)), and b_i = cross(t_i, n_i) or somesuch.
c_i = c_1 + h * (c_2 - c_1)
This is vector expression, you have to write similar one for every component like this:
c_i.x = c_1.x + h * (c_2.x - c_1.x)
and similar for y and z
As a result, you'll get circle center coordinates:
c_i = (1, 0, 0)
As your citate says, choose axis not parallel to n vect0r- for example, y-axis, get it's direction vector Y_dir=(0,1,0) and multiply by n
t = Y_dir x n = (0, 0, 1)
b = n x t = (0, 1, 0)
Now you have two vectors t,b in circle plane to build circumference points.

Python shapely: How to triangulate just the inner area of the shape

I wanna convert this shape to triangles mesh using shapely in order to be used later as a 3d surface in unity3d, but the result seems is not good, because the triangles mesh cover areas outside this shape.
def get_complex_shape(nb_points = 10):
nb_shifts = 2
nb_lines = 0
shift_parameter = 2
r = 1
xy = get_points(0, 0, r, nb_points)
xy = np.array(xy)
shifts_indices = np.random.randint(0, nb_points ,nb_shifts) # choose random points
if(nb_shifts > 0):
xy[shifts_indices] = get_shifted_points(shifts_indices, nb_points, r + shift_parameter, 0, 0)
xy = np.append(xy, [xy[0]], axis = 0) # close the circle
x = xy[:,0]
y = xy[:,1]
if(nb_lines < 1): # normal circles
tck, u = interpolate.splprep([x, y], s=0)
unew = np.arange(0, 1.01, 0.01) # from 0 to 1.01 with step 0.01 [the number of points]
out = interpolate.splev(unew, tck) # a circle of 101 points
out = np.array(out).T
else: # lines and curves
out = new_add_random_lines(xy, nb_lines)
return out
enter code here
data = get_complex_shape(8)
points = MultiPoint(data)
union_points = cascaded_union(points)
triangles = triangulate(union_points)
This link is for the picture:
the blue picture is the polygon that I want to convert it to mesh of triangles, the right picture is the mesh of triangles which cover more than the inner area of the polygon. How could I cover just the inner area of the polygon?

How do you check for intersection between a line segment and a line ray emanating from a point at an angle from horizontal?

Given a line segment, that is two points (x1,y1) and (x2,y2), one point P(x,y) and an angle theta. How do we find if this line segment and the line ray that emanates from P at an angle theta from horizontal intersects or not? If they do intersect, how to find the point of intersection?
Let's label the points q = (x1, y1) and q + s = (x2, y2). Hence s = (x2 − x1, y2 − y1). Then the problem looks like this:
Let r = (cos θ, sin θ). Then any point on the ray through p is representable as p + t r (for a scalar parameter 0 ≤ t) and any point on the line segment is representable as q + u s (for a scalar parameter 0 ≤ u ≤ 1).
The two lines intersect if we can find t and u such that p + t r = q + u s:
See this answer for how to find this point (or determine that there is no such point).
Then your line segment intersects the ray if 0 ≤ t and 0 ≤ u ≤ 1.
Here is a C# code for the algorithm given in other answers:
/// <summary>
/// Returns the distance from the ray origin to the intersection point or null if there is no intersection.
/// </summary>
public double? GetRayToLineSegmentIntersection(Point rayOrigin, Vector rayDirection, Point point1, Point point2)
{
var v1 = rayOrigin - point1;
var v2 = point2 - point1;
var v3 = new Vector(-rayDirection.Y, rayDirection.X);
var dot = v2 * v3;
if (Math.Abs(dot) < 0.000001)
return null;
var t1 = Vector.CrossProduct(v2, v1) / dot;
var t2 = (v1 * v3) / dot;
if (t1 >= 0.0 && (t2 >= 0.0 && t2 <= 1.0))
return t1;
return null;
}
Thanks Gareth for a great answer. Here is the solution implemented in Python. Feel free to remove the tests and just copy paste the actual function. I have followed the write-up of the methods that appeared here, https://rootllama.wordpress.com/2014/06/20/ray-line-segment-intersection-test-in-2d/.
import numpy as np
def magnitude(vector):
return np.sqrt(np.dot(np.array(vector),np.array(vector)))
def norm(vector):
return np.array(vector)/magnitude(np.array(vector))
def lineRayIntersectionPoint(rayOrigin, rayDirection, point1, point2):
"""
>>> # Line segment
>>> z1 = (0,0)
>>> z2 = (10, 10)
>>>
>>> # Test ray 1 -- intersecting ray
>>> r = (0, 5)
>>> d = norm((1,0))
>>> len(lineRayIntersectionPoint(r,d,z1,z2)) == 1
True
>>> # Test ray 2 -- intersecting ray
>>> r = (5, 0)
>>> d = norm((0,1))
>>> len(lineRayIntersectionPoint(r,d,z1,z2)) == 1
True
>>> # Test ray 3 -- intersecting perpendicular ray
>>> r0 = (0,10)
>>> r1 = (10,0)
>>> d = norm(np.array(r1)-np.array(r0))
>>> len(lineRayIntersectionPoint(r0,d,z1,z2)) == 1
True
>>> # Test ray 4 -- intersecting perpendicular ray
>>> r0 = (0, 10)
>>> r1 = (10, 0)
>>> d = norm(np.array(r0)-np.array(r1))
>>> len(lineRayIntersectionPoint(r1,d,z1,z2)) == 1
True
>>> # Test ray 5 -- non intersecting anti-parallel ray
>>> r = (-2, 0)
>>> d = norm(np.array(z1)-np.array(z2))
>>> len(lineRayIntersectionPoint(r,d,z1,z2)) == 0
True
>>> # Test ray 6 --intersecting perpendicular ray
>>> r = (-2, 0)
>>> d = norm(np.array(z1)-np.array(z2))
>>> len(lineRayIntersectionPoint(r,d,z1,z2)) == 0
True
"""
# Convert to numpy arrays
rayOrigin = np.array(rayOrigin, dtype=np.float)
rayDirection = np.array(norm(rayDirection), dtype=np.float)
point1 = np.array(point1, dtype=np.float)
point2 = np.array(point2, dtype=np.float)
# Ray-Line Segment Intersection Test in 2D
# http://bit.ly/1CoxdrG
v1 = rayOrigin - point1
v2 = point2 - point1
v3 = np.array([-rayDirection[1], rayDirection[0]])
t1 = np.cross(v2, v1) / np.dot(v2, v3)
t2 = np.dot(v1, v3) / np.dot(v2, v3)
if t1 >= 0.0 and t2 >= 0.0 and t2 <= 1.0:
return [rayOrigin + t1 * rayDirection]
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
Note: this solution works without making vector classes or defining vector multiplication/division, but is longer to implement. It also avoids division by zero errors. If you just want a block of code and don’t care about the derivation, scroll to the bottom of the post.
Let’s say we have a ray defined by x, y, and theta, and a line defined by x1, y1, x2, and y2.
First, let’s draw two rays that point from the ray’s origin to the ends of the line segment. In pseudocode, that’s
theta1 = atan2(y1-y, x1-x);
theta2 = atan2(y2-y, x2-x);
Next we check whether the ray is inside these two new rays. They all have the same origin, so we only have to check the angles.
To make this easier, let’s shift all the angles so theta1 is on the x axis, then put everything back into a range of -pi to pi. In pseudocode that’s
dtheta = theta2-theta1; //this is where theta2 ends up after shifting
ntheta = theta-theta1; //this is where the ray ends up after shifting
dtheta = atan2(sin(dtheta), cos(dtheta))
ntheta = atan2(sin(ntheta), cos(ntheta))
(Note: Taking the atan2 of the sin and cos of the angle just resets the range of the angle to within -pi and pi without changing the angle.)
Now imagine drawing a line from theta2’s new location (dtheta) to theta1’s new location (0 radians). That’s where the line segment ended up.
The only time where the ray intersects the line segment is when theta is between theta1 and theta2, which is the same as when ntheta is between dtheta and 0 radians. Here is the corresponding pseudocode:
sign(ntheta)==sign(dtheta)&&
abs(ntheta)<=abs(dtheta)
This will tell you if the two lines intersect. Here it is in one pseudocode block:
theta1=atan2(y1-y, x1-x);
theta2=atan2(y2-y, x2-x);
dtheta=theta2-theta1;
ntheta=theta-theta1;
dtheta=atan2(sin(dtheta), cos(dtheta))
ntheta=atan2(sin(ntheta), cos(ntheta))
return (sign(ntheta)==sign(dtheta)&&
abs(ntheta)<=abs(dtheta));
Now that we know the points intersect, we need to find the point of intersection. We’ll be working from a completely clean slate here, so we can ignore any code up to this part. To find the point of intersection, you can use the following system of equations and solve for xp and yp, where lb and rb are the y-intercepts of the line segment and the ray, respectively.
y1=(y2-y1)/(x2-x1)*x1+lb
yp=(y2-y1)/(x2-x1)*xp+lb
y=sin(theta)/cos(theta)*x+rb
yp=sin(theta)/cos(theta)*x+rb
This yields the following formulas for xp and yp:
xp=(y1-(y2-y1)/(x2-x1)*x1-y+sin(theta)/cos(theta)*x)/(sin(theta)/cos(theta)-(y2-y1)/(x2-x1));
yp=sin(theta)/cos(theta)*xp+y-sin(theta)/cos(theta)*x
Which can be shortened by using lm=(y2-y1)/(x2-x1) and rm=sin(theta)/cos(theta)
xp=(y1-lm*x1-y+rm*x)/(rm-lm);
yp=rm*xp+y-rm*x;
You can avoid division by zero errors by checking if either the line or the ray is vertical then replacing every x and y with each other. Here’s the corresponding pseudocode:
if(x2-x1==0||cos(theta)==0){
let rm=cos(theta)/sin(theta);
let lm=(x2-x1)/(y2-y1);
yp=(x1-lm*y1-x+rm*y)/(rm-lm);
xp=rm*yp+x-rm*y;
}else{
let rm=sin(theta)/cos(theta);
let lm=(y2-y1)/(x2-x1);
xp=(y1-lm*x1-y+rm*x)/(rm-lm);
yp=rm*xp+y-rm*x;
}
TL;DR:
bool intersects(x1, y1, x2, y2, x, y, theta){
theta1=atan2(y1-y, x1-x);
theta2=atan2(y2-y, x2-x);
dtheta=theta2-theta1;
ntheta=theta-theta1;
dtheta=atan2(sin(dtheta), cos(dtheta))
ntheta=atan2(sin(ntheta), cos(ntheta))
return (sign(ntheta)==sign(dtheta)&&abs(ntheta)<=abs(dtheta));
}
point intersection(x1, y1, x2, y2, x, y, theta){
let xp, yp;
if(x2-x1==0||cos(theta)==0){
let rm=cos(theta)/sin(theta);
let lm=(x2-x1)/(y2-y1);
yp=(x1-lm*y1-x+rm*y)/(rm-lm);
xp=rm*yp+x-rm*y;
}else{
let rm=sin(theta)/cos(theta);
let lm=(y2-y1)/(x2-x1);
xp=(y1-lm*x1-y+rm*x)/(rm-lm);
yp=rm*xp+y-rm*x;
}
return (xp, yp);
}

Resources