Implement recursion using foldl in haskell - haskell

given the below code
pair :: [String] -> [(String,String)]
pair [] = []
pair (x:xs)= zip [x] xs ++ pair xs
how could I rewrite it using Fold to avoid repetition ?

A fold is going to be a bit messy for this particular problem because your folding function depends upon the previously visited elements in the list, with a two-value list minimum. And since folding visits elements one at a time, you have to decide what to do when there's only one element in the list.
Here is an example that creates a dummy element for the singleton list case and discards it with init.
pair :: [String] -> [(String, String)]
pair = init . foldr f []
where
f x acc =
case acc of
[] -> [(x, "discarded")]
z#(y:_) -> (x, fst y) : z
If you're tasked with learning about folds, take a minute to understand why we have to handle it in such an unsatisfactory way. Otherwise, if you're looking to do this in the least amount of code, see #DavideSpataro's answer above of zip xs (tail xs).

Related

Create a list of lists for each possible one-change-alteration of a list

I am sorry for not being able to really formulate this question well in the title; I have already asked the same question about triples and have decided to opt for a list after all, so here is the explanation. Thank you for the patience and great help received here!
I need to create a function that is capable of doing the following, yet am quite a newby to Haskell and find myself in need of passing states that is just not in the functional paradigm (nor do I want a semi imperative solution, I just want to know how to do it the functional way). The functionality is as follows:
specialFunc :: [a] -> a -> [[a]]
specialFunc [1,2,3] 0
=> [[0,2,3],[1,0,3],[1,2,0]]
I am trying to create the function by mapping over the list supplied as an argument, but find myself at a loss when I try and figure out how to replace a specific value, add the resulting list to the results and continue working with the next item but with the original list (if that makes sense). Any help is definitely welcome, thank you!
You can define this in a recursive way. If the list is empty (1), then you return an empty list, so [] maps to []. If the list is non-empty (2), then we generate a list where the first item is the tail of the non-empty list, prepended with the value, and we recurse on the tail of the list, and need to prepend the head of the list.
So we can define a function that looks like:
specialFunc :: [a] -> a -> [[a]]
specialFunc xs x = go xs
where go [] = … -- (1)
go (h:hs) = … -- (2)
You can make use of map :: (a -> b) -> [a] -> [b] to prepend the value h to the lists you generate through recursion.
The solution, with many credits to #WillemVanOnsem:
specialFunc :: [a] -> a -> [[a]]
specialFunc xs x = go xs
where go [] = []
go (h:hs) = (x:hs): map (h:) (go hs)
Just to give you another idea of how this could be done, you might turn on the ParallelListComp extension and zip up the result of inits and tails appropriately:
{-# Language ParallelListComp #-}
import Data.List
specialFunc xs x = [pre ++ [x] ++ suf | pre <- inits xs | _:suf <- tails xs]
The same idea can also be done without an extension, of course, though I think it's not quite as pretty:
import Data.List
specialFunc xs x = zipWith (\pre suf -> pre ++ [x] ++ suf) (inits xs) (tail (tails xs))

Intermediate value in simple Haskell function

I need a function to double every other number in a list. This does the trick:
doubleEveryOther :: [Integer] -> [Integer]
doubleEveryOther [] = []
doubleEveryOther (x:[]) = [x]
doubleEveryOther (x:(y:zs)) = x : 2 * y : doubleEveryOther zs
However, the catch is that I need to double every other number starting from the right - so if the length of the list is even, the first one will be doubled, etc.
I understand that in Haskell it's tricky to operate on lists backwards, so my plan was to reverse the list, apply my function, then output the reverse again. I have a reverseList function:
reverseList :: [Integer] -> [Integer]
reverseList [] = []
reverseList xs = last xs : reverseList (init xs)
But I'm not quite sure how to implant it inside my original function. I got to something like this:
doubleEveryOther :: [Integer] -> [Integer]
doubleEveryOther [] = []
doubleEveryOther (x:[]) = [x]
doubleEveryOther (x:(y:zs)) =
| rev_list = reverseList (x:(y:zs))
| rev_list = [2 * x, y] ++ doubleEveryOther zs
I'm not exactly sure of the syntax of a function that includes intermediate values like this.
In case it's relevant, this is for Exercise 2 in CIS 194 HW 1.
This is a very simple combination of the two functions you've already created:
doubleEveryOtherFromRight = reverseList . doubleEveryOther . reverseList
Note that your reverseList is actually already defined in the standard Prelude as reverse. so you didn't need to define it yourself.
I'm aware that the above solution isn't very efficient, because both uses of reverse need to pass through the entire list. I'll leave it to others to suggest more efficient versions, but hopefully this illustrates the power of function composition to build more complex computations out of simpler ones.
As Lorenzo points out, you can make one pass to determine if the list has an odd or even length, then a second pass to actually construct the new list. It might be simpler, though, to separate the two tasks.
doubleFromRight ls = zipWith ($) (cycle fs) ls -- [f0 ls0, f1 ls1, f2 ls2, ...]
where fs = if odd (length ls)
then [(*2), id]
else [id, (*2)]
So how does this work? First, we observe that to create the final result, we need to apply one of two function (id or (*2)) to each element of ls. zipWith can do that if we have a list of appropriate functions. The interesting part of its definition is basically
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
When f is ($), we're just applying a function from one list to the corresponding element in the other list.
We want to zip ls with an infinite alternating list of id and (*2). The question is, which function should that list start with? It should always end with (*2), so the starting item is determined by the length of ls. An odd-length requires us to start with (*2); an even one, id.
Most of the other solutions show you how to either use the building blocks you already have or building blocks available in the standard library to build your function. I think it's also instructive to see how you might build it from scratch, so in this answer I discuss one idea for that.
Here's the plan: we're going to walk all the way to the end of the list, then walk back to the front. We'll build our new list during our walk back from the end. The way we'll build it as we walk back is by alternating between (multiplicative) factors of 1 and 2, multiplying our current element by our current factor and then swapping factors for the next step. At the end we'll return both the final factor and the new list. So:
doubleFromRight_ :: Num a => [a] -> (a, [a])
doubleFromRight_ [] = (1, [])
doubleFromRight_ (x:xs) =
-- not at the end yet, keep walking
let (factor, xs') = doubleFromRight_ xs
-- on our way back to the front now
in (3-factor, factor*x:xs')
If you like, you can write a small wrapper that throws away the factor at the end.
doubleFromRight :: Num a => [a] -> [a]
doubleFromRight = snd . doubleFromRight_
In ghci:
> doubleFromRight [1..5]
[1,4,3,8,5]
> doubleFromRight [1..6]
[2,2,6,4,10,6]
Modern practice would be to hide the helper function doubleFromRight_ inside a where block in doubleFromRight; and since the slightly modified name doesn't actually tell you anything new, we'll use the community standard name internally. Those two changes might land you here:
doubleFromRight :: Num a => [a] -> [a]
doubleFromRight = snd . go where
go [] = (1, [])
go (x:xs) = let (factor, xs') = go xs in (3-factor, factor*x:xs')
An advanced Haskeller might then notice that go fits into the shape of a fold and write this:
doubleFromRight :: Num a => [a] -> [a]
doubleFromRight = snd . foldr (\x (factor, xs) -> (3-factor, factor*x:xs)) (1,[])
But I think it's perfectly fine in this case to stop one step earlier with the explicit recursion; it may even be more readable in this case!
If we really want to avoid calculating the length, we can define
doubleFromRight :: Num a => [a] -> [a]
doubleFromRight xs = zipWith ($)
(foldl' (\a _ -> drop 1 a) (cycle [(2*), id]) xs)
xs
This pairs up the input list with the cycled infinite list of functions, [(*2), id, (*2), id, .... ]. then it skips along them both. when the first list is finished, the second is in the appropriate state to be - again - applied, pairwise, - on the second! This time, for real.
So in effect it does measure the length (of course), it just doesn't count in integers but in the list elements so to speak.
If the length of the list is even, the first element will be doubled, otherwise the second, as you've specified in the question:
> doubleFromRight [1..4]
[2,2,6,4]
> doubleFromRight [1..5]
[1,4,3,8,5]
The foldl' function processes the list left-to-right. Its type is
foldl' :: (b -> a -> b) -> b -> [a] -> b
-- reducer_func acc xs result
Whenever you have to work on consecutive terms in a list, zip with a list comprehension is an easy way to go. It takes two lists and returns a list of tuples, so you can either zip the list with its tail or make it indexed. What i mean is
doubleFromRight :: [Int] -> [Int]
doubleFromRight ls = [if (odd i == oddness) then 2*x else x | (i,x) <- zip [1..] ls]
where
oddness = odd . length $ ls
This way you count every element, starting from 1 and if the index has the same parity as the last element in the list (both odd or both even), then you double the element, else you leave it as is.
I am not 100% sure this is more efficient, though, if anyone could point it out in the comments that would be great

Fast powerset implementation with complement set

I would like to have a function
powersetWithComplements :: [a] -> [([a], [a])]
Such that for example:
powersetWithComplements [1,2,3] = [([],[1,2,3]),([3],[1,2]),([2],[1,3]),([2,3],[1]),([1],[2,3]),([1,3],[2]),([1,2],[3]),([1,2,3],[])]
It is easy to obtain some implementation, for example
powerset :: [a] -> [[a]]
powerset = filterM (const [False, True])
powersetWithComplements s = let p = powerset s in zip p (reverse p)
Or
powersetWithComplements s = [ (x, s \\ x) | x <- powerset s]
But I estimate that the performance of both these would be really poor. What would be an optimal approach? It is possible to use different data structure than the [] list.
Well you should see a powerset like this: you enumerate over the items of the set, and you decide whether you put these in the "selection" (first item of the tuple), or not (second item of the tuple). By enumerating over these selections exhaustively, we get the powerset.
So we can do the same, for instance using recursion:
import Control.Arrow(first, second)
powersetWithComplements [] = [([],[])]
powersetWithComplements (x:xs) = map (second (x:)) rec ++ map (first (x:)) rec
where rec = powersetWithComplements xs
So here the map (second (x:) prepends all the second items of the tuples of the rec with x, and the map (second (x:) does the same for the first item of the tuples of rec. where rec is the recursion on the tail of the items.
Prelude Control.Arrow> powersetWithComplements [1,2,3]
[([],[1,2,3]),([3],[1,2]),([2],[1,3]),([2,3],[1]),([1],[2,3]),([1,3],[2]),([1,2],[3]),([1,2,3],[])]
The advantage of this approach is that we do not generate a complement list for every list we generate: we concurrently build the selection, and complement. Furthermore we can reuse the lists we construct in the recursion, which will reduce the memory footprint.
In both time complexity and memory complexity, the powersetWithComplements function will be equal (note that this is complexity, of course in terms of processing time it will require more time, since we do an extra amount of work) like the powerset function, since prepending a list is usually done in O(1)), and we now build two lists (and a tuple) for every original list.
Since you are looking for a "fast" implementation, I thought I would share some benchmark experiments I did with Willem's solution.
I thought using a DList instead of a plain list would be a big improvement, since DLists have constant-time append, whereas appending lists is linear in the size of the left argument.
psetDL :: [a] -> [([a],[a])]
psetDL = toList . go
where
go [] = DList.singleton ([],[])
go (x:xs) = (second (x:) <$> rec) <> (first (x:) <$> rec)
where
rec = go xs
But that did not have a significant effect.
I suspected this is because we are traversing both sublists anyway because of the fmap (<$>). We can avoid the traversal by doing something similar to CPS-converting the function, passing down the accumulated sets as parameters rather than returning them.
psetTail :: [a] -> [([a],[a])]
psetTail = go [] []
where
go a b [] = [(a,b)]
go a b (x:xs) = go a (x:b) xs <> go (x:a) b xs
This yielded a 220% improvement on a list of size 20. Now since we aren't traversing the lists from fmapping, we can get rid of the append traversal by using a DList:
psetTailDL :: [a] -> [([a],[a])]
psetTailDL = toList . go [] []
where
go a b [] = DList.singleton (a,b)
go a b (x:xs) = go a (x:b) xs <> go (x:a) b xs
Which yields an additional 20% improvement.
I guess the best is inspired by your reverse discovery
partitions s=filterM(const[False,True])s
`zip`filterM(const[True,False])s
rather than a likely stackoverflower
partitions[]=[([],[])]
partitions(x:xs)=[p|(f,t)<-partitions xs,p<-[(l,x:r),(x:l,r)]]
or a space-and-time-efficient finite list indexer
import Data.Array
import Data.Bits
import Data.List
partitions s=[(map(a!)f,map(a!)t)
|n<-[length s],a<-[listArray(0,n-1)s],
m<-[0..2^n-1],(f,t)<-[partition(testBit m)[0..n-1]]]

Generating subsets of set. Laziness?

I have written a function generating subsets of subset. It caused stack overflow when I use in the following way subsets [1..]. And it is "normal" behaviour when it comes to "normal" (no-lazy) languages. And now, I would like to improve my function to be lazy.
P.S. I don't understand laziness ( And I try to understand it) so perhaps my problem is strange for you- please explain. :)
P.S. 2 Feel free to say me something about my disability in Haskell ;)
subsets :: [a] -> [[a]]
subsets (x:xs) = (map (\ e -> x:e) (subsets xs)) ++ (subsets xs)
subsets [] = [[]]
There's two problems with that function. First, it recurses twice, which makes it exponentially more ineffiecient than necessary (if we disregard the exponential number of results...), because each subtree is recalculated every time for all overlapping subsets; this can be fixed by leting the recursive call be the same value:
subsets' :: [a] -> [[a]]
subsets' [] = [[]]
subsets' (x:xs) = let s = subsets' xs
in map (x:) s ++ s
This will already allow you to calculate length $ subsets' [1..25] in a few seconds, while length $ subsets [1..25] takes... well, I didn't wait ;)
The other issue is that with your version, when you give it an infinite list, it will recurse on the infinite tail of that list first. To generate all finite subsets in a meaningful way, we need to ensure two things: first, we must build up each set from smaller sets (to ensure termination), and second, we should ensure a fair order (ie., not generate the list [[1], [2], ...] first and never get to the rest). For this, we start from [[]] and recursively add the current element to everything we have already generated, and then remember the new list for the next step:
subsets'' :: [a] -> [[a]]
subsets'' l = [[]] ++ subs [[]] l
where subs previous (x:xs) = let next = map (x:) previous
in next ++ subs (previous ++ next) xs
subs _ [] = []
Which results in this order:
*Main> take 100 $ subsets'' [1..]
[[],[1],[2],[2,1],[3],[3,1],[3,2],[3,2,1],[4],[4,1],[4,2],[4,2,1],[4,3],[4,3,1],[4,3,2],[4,3,2,1],[5],[5,1],[5,2],[5,2,1],[5,3],[5,3,1],[5,3,2],[5,3,2,1],[5,4],[5,4,1],[5,4,2],[5,4,2,1],[5,4,3],[5,4,3,1],[5,4,3,2],[5,4,3,2,1],[6],[6,1],[6,2],[6,2,1],[6,3],[6,3,1],[6,3,2],[6,3,2,1],[6,4],[6,4,1],[6,4,2],[6,4,2,1],[6,4,3],[6,4,3,1],[6,4,3,2],[6,4,3,2,1],[6,5],[6,5,1],[6,5,2],[6,5,2,1],[6,5,3],[6,5,3,1],[6,5,3,2],[6,5,3,2,1],[6,5,4],[6,5,4,1],[6,5,4,2],[6,5,4,2,1],[6,5,4,3],[6,5,4,3,1],[6,5,4,3,2],[6,5,4,3,2,1],[7],[7,1],[7,2],[7,2,1],[7,3],[7,3,1],[7,3,2],[7,3,2,1],[7,4],[7,4,1],[7,4,2],[7,4,2,1],[7,4,3],[7,4,3,1],[7,4,3,2],[7,4,3,2,1],[7,5],[7,5,1],[7,5,2],[7,5,2,1],[7,5,3],[7,5,3,1],[7,5,3,2],[7,5,3,2,1],[7,5,4],[7,5,4,1],[7,5,4,2],[7,5,4,2,1],[7,5,4,3],[7,5,4,3,1],[7,5,4,3,2],[7,5,4,3,2,1],[7,6],[7,6,1],[7,6,2],[7,6,2,1]]
You can't generate all the subsets of an infinite set: they form an uncountable set. Cardinality makes it impossible.
At most, you can try to generate all the finite subsets. For that, you can't proceed by induction, from [] onwards, since you'll never reach []. You need to proceed inductively from the beginning of the list, instead of the end.
A right fold solution would be:
powerset :: Foldable t => t a -> [[a]]
powerset xs = []: foldr go (const []) xs [[]]
where go x f a = let b = (x:) <$> a in b ++ f (a ++ b)
then:
\> take 8 $ powerset [1..]
[[],[1],[2],[2,1],[3],[3,1],[3,2],[3,2,1]]

How do I split a list into sublists at certain points?

How do I manually split [1,2,4,5,6,7] into [[1],[2],[3],[4],[5],[6],[7]]? Manually means without using break.
Then, how do I split a list into sublists according to a predicate? Like so
f even [[1],[2],[3],[4],[5],[6],[7]] == [[1],[2,3],[4,5],[6,7]]
PS: this is not homework, and I've tried for hours to figure it out on my own.
To answer your first question, this is rather an element-wise transformation than a split. The appropriate function to do this is
map :: (a -> b) -> [a] -> [b]
Now, you need a function (a -> b) where b is [a], as you want to transform an element into a singleton list containing the same type. Here it is:
mkList :: a -> [a]
mkList a = [a]
so
map mkList [1,2,3,4,5,6,7] == [[1],[2],...]
As for your second question: If you are not allowed (homework?) to use break, are you then allowed to use takeWhile and dropWhile which form both halves of the result of break.
Anyway, for a solution without them ("manually"), just use simple recursion with an accumulator:
f p [] = []
f p (x:xs) = go [x] xs
where go acc [] = [acc]
go acc (y:ys) | p y = acc : go [y] ys
| otherwise = go (acc++[y]) ys
This will traverse your entire list tail recursively, always remembering what the current sublist is, and when you reach an element where p applies, outputting the current sublist and starting a new one.
Note that go first receives [x] instead of [] to provide for the case where the first element already satisfies p x and we don't want an empty first sublist to be output.
Also, this operates on the original list ([1..7]) instead of [[1],[2]...]. But you can use it on the transformed one as well:
> map concat $ f (odd . head) [[1],[2],[3],[4],[5],[6],[7]]
[[1,2],[3,4],[5,6],[7]]
For the first, you can use a list comprehension:
>>> [[x] | x <- [1,2,3,4,5,6]]
[[1], [2], [3], [4], [5], [6]]
For the second problem, you can use the Data.List.Split module provided by the split package:
import Data.List.Split
f :: (a -> Bool) -> [[a]] -> [[a]]
f predicate = split (keepDelimsL $ whenElt predicate) . concat
This first concats the list, because the functions from split work on lists and not list of lists. The resulting single list is the split again using functions from the split package.
First:
map (: [])
Second:
f p xs =
let rs = foldr (\[x] ~(a:r) -> if (p x) then ([]:(x:a):r) else ((x:a):r))
[[]] xs
in case rs of ([]:r) -> r ; _ -> rs
foldr's operation is easy enough to visualize:
foldr g z [a,b,c, ...,x] = g a (g b (g c (.... (g x z) ....)))
So when writing the combining function, it is expecting two arguments, 1st of which is "current element" of a list, and 2nd is "result of processing the rest". Here,
g [x] ~(a:r) | p x = ([]:(x:a):r)
| otherwise = ((x:a):r)
So visualizing it working from the right, it just adds into the most recent sublist, and opens up a new sublist if it must. But since lists are actually accessed from the left, we keep it lazy with the lazy pattern, ~(a:r). Now it works even on infinite lists:
Prelude> take 9 $ f odd $ map (:[]) [1..]
[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
The pattern for the 1st argument reflects the peculiar structure of your expected input lists.

Resources