pymc3 / theano error when using power function - theano

I am trying to recreate this example of bayesian PK/PD modelling using pymc3.....
The video shows the WinBUGS code and I am trying to convert to pymc3
https://www.youtube.com/watch?v=AQDXRoBan6Y
model here....
http://imgur.com/ckoKPRF
WinBUGS code is here ....
http://imgur.com/TsViyBC
My code is ....
from pymc3 import Model, Normal, Lognormal, Uniform
import numpy as np
import pandas as pd
data = pd.read_csv('/Users/Home/Documents/pymc3/fxa.data.csv' )
cobs = np.array(data['cobs'])
fxa = np.array(data['fxa.inh.obs'])
pkpd_model = Model()
with pkpd_model:
# Priors for unknown model parameters
emax = Uniform ('emax', lower =0, upper =100)
ec50 = Lognormal('ec50', mu=0, tau = 100000)
gamma = Uniform('gamma', lower=0, upper =10)
sigma = Uniform('sigma', lower = 0, upper = 1000 )
# Expected value of outcome
fxaMean = emax*(np.power(cobs, gamma)) / (np.power(ec50, gamma) + np.power(cobs, gamma))
# Likelihood (sampling distribution) of observations
fxa = Normal('fxa', mu=fxaMean, sd=sigma, observed=fxa )
But when I run the code I get the following error, which seems to relate to the way theano is interpreting the np.power function.
I am not sure how to proceed as I am a noob to pymc3 and theano and PK/PD modelling too!
Thanks in advance
Applied interval-transform to emax and added transformed emax_interval to model.
Applied log-transform to ec50 and added transformed ec50_log to model.
Applied interval-transform to gamma and added transformed gamma_interval to model.
Applied interval-transform to sigma and added transformed sigma_interval to model.
---------------------------------------------------------------------------
AsTensorError Traceback (most recent call last)
<ipython-input-28-1fa311a15ed0> in <module>()
14
15 # Likelihood (sampling distribution) of observations
---> 16 fxa = Normal('fxa', mu=fxaMean, sd=sigma, observed=fxa )
//anaconda/lib/python2.7/site-packages/pymc3/distributions/distribution.pyc in __new__(cls, name, *args, **kwargs)
23 data = kwargs.pop('observed', None)
24 dist = cls.dist(*args, **kwargs)
---> 25 return model.Var(name, dist, data)
26 elif name is None:
27 return object.__new__(cls) # for pickle
//anaconda/lib/python2.7/site-packages/pymc3/model.pyc in Var(self, name, dist, data)
282 self.named_vars[v.name] = v
283 else:
--> 284 var = ObservedRV(name=name, data=data, distribution=dist, model=self)
285 self.observed_RVs.append(var)
286 if var.missing_values:
//anaconda/lib/python2.7/site-packages/pymc3/model.pyc in __init__(self, type, owner, index, name, data, distribution, model)
556 self.missing_values = data.missing_values
557
--> 558 self.logp_elemwiset = distribution.logp(data)
559 self.model = model
560 self.distribution = distribution
//anaconda/lib/python2.7/site-packages/pymc3/distributions/continuous.pyc in logp(self, value)
191 sd = self.sd
192 mu = self.mu
--> 193 return bound((-tau * (value - mu)**2 + T.log(tau / np.pi / 2.)) / 2.,
194 tau > 0, sd > 0)
195
//anaconda/lib/python2.7/site-packages/theano/tensor/var.pyc in __radd__(self, other)
232 # ARITHMETIC - RIGHT-OPERAND
233 def __radd__(self, other):
--> 234 return theano.tensor.basic.add(other, self)
235
236 def __rsub__(self, other):
//anaconda/lib/python2.7/site-packages/theano/gof/op.pyc in __call__(self, *inputs, **kwargs)
609 """
610 return_list = kwargs.pop('return_list', False)
--> 611 node = self.make_node(*inputs, **kwargs)
612
613 if config.compute_test_value != 'off':
//anaconda/lib/python2.7/site-packages/theano/tensor/elemwise.pyc in make_node(self, *inputs)
541 using DimShuffle.
542 """
--> 543 inputs = list(map(as_tensor_variable, inputs))
544 shadow = self.scalar_op.make_node(
545 *[get_scalar_type(dtype=i.type.dtype).make_variable()
//anaconda/lib/python2.7/site-packages/theano/tensor/basic.pyc in as_tensor_variable(x, name, ndim)
206 except Exception:
207 str_x = repr(x)
--> 208 raise AsTensorError("Cannot convert %s to TensorType" % str_x, type(x))
209
210 # this has a different name, because _as_tensor_variable is the
AsTensorError: ('Cannot convert [Elemwise{mul,no_inplace}.0 Elemwise{mul,no_inplace}.0\n Elemwise{mul,no_inplace}.0 ..., Elemwise{mul,no_inplace}.0\n Elemwise{mul,no_inplace}.0 Elemwise{mul,no_inplace}.0] to TensorType', <type 'numpy.ndarray'>)

Doh - replaced np.power with ** ! working fine!

Related

Dask dataframe valueError

I have several parquet files (dataframes), which I load as one dask dataframe graph and sample.
Afterwards I perform some computations based on the original data in the dataframe and append the new columns to my dask dataframe.
Finally, I want to compute the mean() and std() for all columns in and do get a ValueError that I am not sure where it comes from or what I'm doing wrong.
import pandas as pd
import numpy as np
import tensorflow as tf
import os
from os.path import join
import dask
import dask.dataframe as dd
import dask.array as da
# read in the data
data_pq = dd.read_parquet(join(path_to_data,'filter_width_*_DNN_train.parquet'),chunksize='4GB')
print('Convert to single precission and sample')
data_pq = data_pq.astype(np.float32).sample(frac=0.1)
# ## compute the additional quantites (tensors)
# compute tensors R, S mag(U) etc.
mag_U = da.sqrt(data_pq['U_bar'].values**2 + data_pq['V_bar'].values**2 +data_pq['W_bar'].values**2)
mag_grad_c = da.sqrt(data_pq['grad_c_x_LES'].values**2 + data_pq['grad_c_y_LES'].values**2 +data_pq['grad_c_z_LES'].values**2)
sum_U = data_pq['U_bar'].values + data_pq['V_bar']+data_pq['W_bar'].values
sum_c = da.absolute(data_pq['grad_c_x_LES'].values) + da.absolute(data_pq['grad_c_y_LES'].values) +da.absolute(data_pq['grad_c_z_LES'].values)
grad_U = da.sqrt(data_pq['grad_U_x_LES'].values**2 + data_pq['grad_U_y_LES'].values**2 +data_pq['grad_U_z_LES'].values**2)
grad_V = da.sqrt(data_pq['grad_V_x_LES'].values**2 + data_pq['grad_V_y_LES'].values**2 +data_pq['grad_V_z_LES'].values**2)
grad_W = da.sqrt(data_pq['grad_W_x_LES'].values**2 + data_pq['grad_W_y_LES'].values**2 +data_pq['grad_W_z_LES'].values**2)
mag_grad_U = da.sqrt(grad_U**2 + grad_V**2 +grad_W**2)
sum_grad_U = da.absolute(grad_U) + da.absolute(grad_V) +da.absolute(grad_W)
print('Computing gradient_tensor')
gradient_tensor = da.array([
[data_pq['grad_U_x_LES'],data_pq['grad_V_x_LES'],data_pq['grad_W_x_LES']],
[data_pq['grad_U_y_LES'],data_pq['grad_V_y_LES'],data_pq['grad_W_y_LES']],
[data_pq['grad_U_z_LES'],data_pq['grad_V_z_LES'],data_pq['grad_W_z_LES']]
])
print('Computing S and R')
# symetric strain
Strain = 0.5*(gradient_tensor + da.transpose(gradient_tensor,(1,0,2)))
#anti symetric strain
Anti = 0.5*(gradient_tensor - da.transpose(gradient_tensor,(1,0,2)))
print('Computing lambdas')
lambda_1 = da.trace(Strain**2)
lambda_2 = da.trace(Anti**2)
lambda_3 = da.trace(Strain**3)
lambda_4 = da.trace(Anti**2 * Strain)
lambda_5 = da.trace(Anti**2 * Strain**2)
# Add to the dask dataframe
data_pq['mag_grad_c'] = mag_grad_c
data_pq['mag_U'] = mag_U
data_pq['sum_c'] = sum_c
data_pq['sum_U'] = sum_U
data_pq['sum_grad_U'] = sum_grad_U
data_pq['mag_grad_U'] = mag_grad_U
# REPARTITON
data_pq = data_pq.repartition(npartitions=lambda_1.npartitions)
data_pq['lambda_1'] = lambda_1
data_pq['lambda_2'] = lambda_2
data_pq['lambda_3'] = lambda_3
data_pq['lambda_4'] = lambda_4
data_pq['lambda_5'] = lambda_5
print('Done with feature computation')
# reindex and compute mean and std
data_pq = data_pq.reset_index().drop('index',axis=1)
# compute the mean and std
data_mean, data_std = dask.compute(data_pq.mean(),data_pq.std())
Not sure where it comes from. It says the indexes do not match.
This is the error message I get:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) ~/Python/Data_driven_models/DASK_processing/Dask_parquet.py in <module>
119 data_pq = data_pq.reset_index().drop('index',axis=1)
120
--> 121 data_mean, data_std = dask.compute(data_pq.mean(),data_pq.std())
122
~/.local/lib/python3.6/site-packages/dask/base.py in compute(*args,
**kwargs)
450 postcomputes.append(x.__dask_postcompute__())
451
--> 452 results = schedule(dsk, keys, **kwargs)
453 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)])
454
~/.local/lib/python3.6/site-packages/dask/threaded.py in get(dsk, result, cache, num_workers, pool, **kwargs)
82 get_id=_thread_get_id,
83 pack_exception=pack_exception,
---> 84 **kwargs
85 )
86
~/.local/lib/python3.6/site-packages/dask/local.py in get_async(apply_async, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, **kwargs)
484 _execute_task(task, data) # Re-execute locally
485 else:
--> 486 raise_exception(exc, tb)
487 res, worker_id = loads(res_info)
488 state["cache"][key] = res
~/.local/lib/python3.6/site-packages/dask/local.py in reraise(exc, tb)
314 if exc.__traceback__ is not tb:
315 raise exc.with_traceback(tb)
--> 316 raise exc
317
318
~/.local/lib/python3.6/site-packages/dask/local.py in execute_task(key, task_info, dumps, loads, get_id, pack_exception)
220 try:
221 task, data = loads(task_info)
--> 222 result = _execute_task(task, data)
223 id = get_id()
224 result = dumps((result, id))
~/.local/lib/python3.6/site-packages/dask/core.py in
_execute_task(arg, cache, dsk)
119 # temporaries by their reference count and can execute certain
120 # operations in-place.
--> 121 return func(*(_execute_task(a, cache) for a in args))
122 elif not ishashable(arg):
123 return arg
~/.local/lib/python3.6/site-packages/pandas/core/series.py in
__init__(self, data, index, dtype, name, copy, fastpath)
312 if len(index) != len(data):
313 raise ValueError(
--> 314 f"Length of passed values is {len(data)}, "
315 f"index implies {len(index)}."
316 )
ValueError: Length of passed values is 3728270, index implies 2135992.

how to fix ImportError: DLL load failed

I am running Python 3.8 on Windows 10 Pro. I am attempting to fit a multinomial fixed effects model to some data. All the packages appear to load fine, the data loads and can be manipulated and viewed. But I get an error when I call a module that my collaborator wrote to fit the model (called contactai).
Here is the code for contactai:
Note: tt stands for theano.tensor and pm stands for pymc3
def fixed_effects_model(X, y):
Parameters
X : array contains covariates
Design matrix n x p
y : array or shared theano variable
Multinomial response variable, n x 3
Returns
pymc3 model object containing fitted model
yarray = y.eval()
else:
yarray = y
if type(X) == tt.sharedvar.TensorSharedVariable:
Xmat = X.eval()
else:
Xmat = X
model = pm.Model()
with model:
# Transformed coefficients
betaD = pm.Normal('betad', mu=0, sd=5, shape=(Xmat.shape[1], 1))
betaI = pm.Normal('betai', mu=0, sd=5, shape=(Xmat.shape[1], 1))
# Softmax transformation with no contact as baseline
etad = tt.exp(tt.dot(X, betaD))
etai = tt.exp(tt.dot(X, betaI))
p_d = etad / (1 + etad + etai)
p_i = etai / (1 + etad + etai)
p_n = 1 - p_d - p_i
ps = tt.stack([p_n, p_d, p_i], axis=1).reshape((len(yarray), 3)) # Stack column-wise
Y_obs = pm.Multinomial("Y_obs", n=1, p=ps, observed=y)
return(model)
When I call contaciai.py in my jupyter notebook using
test_mod = contactai.fixed_effects_model(Xmat1, Yres.values)
I get this error message:
ImportError Traceback (most recent call last)
<ipython-input-6-275ca67d4b63> in <module>
1 # Run Fixed Effects model
----> 2 test_mod = contactai.fixed_effects_model(Xmat1, Yres.values)
3 niter = 1000
4
5 with test_mod:
~\dropbox\Brooke\ai_multinomial_model\contactai.py in fixed_effects_model(X, y)
50 # Transformed coefficients, what are D and I? In other examples this is where priors are
51 #specified.
---> 52 betaD = pm.Normal('betad', mu=0, sd=5, shape=(Xmat.shape[1], 1))
53 betaI = pm.Normal('betai', mu=0, sd=5, shape=(Xmat.shape[1], 1))
54 # First argument is the name of the random variable
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\pymc3\distributions\distribution.py in __new__(cls, name, *args, **kwargs)
44 raise TypeError("observed needs to be data but got: {}".format(type(data)))
45 total_size = kwargs.pop('total_size', None)
---> 46 dist = cls.dist(*args, **kwargs)
47 return model.Var(name, dist, data, total_size)
48 else:
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\pymc3\distributions\distribution.py in dist(cls, *args, **kwargs)
55 def dist(cls, *args, **kwargs):
56 dist = object.__new__(cls)
---> 57 dist.__init__(*args, **kwargs)
58 return dist
59
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\pymc3\distributions\continuous.py in __init__(self, mu, sigma, tau, sd, **kwargs)
468
469 self.mean = self.median = self.mode = self.mu = mu = tt.as_tensor_variable(floatX(mu))
--> 470 self.variance = 1. / self.tau
471
472 assert_negative_support(sigma, 'sigma', 'Normal')
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\tensor\var.py in __rtruediv__(self, other)
204
205 def __rtruediv__(self, other):
--> 206 return theano.tensor.basic.true_div(other, self)
207
208 def __rfloordiv__(self, other):
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\op.py in __call__(self, *inputs, **kwargs)
667
668 # compute output value once with test inputs to validate graph
--> 669 thunk = node.op.make_thunk(node, storage_map, compute_map,
670 no_recycling=[])
671 thunk.inputs = [storage_map[v] for v in node.inputs]
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\op.py in make_thunk(self, node, storage_map, compute_map, no_recycling, impl)
952 compute_map=compute_map, impl='c')
953 try:
--> 954 return self.make_c_thunk(node, storage_map, compute_map,
955 no_recycling)
956 except (NotImplementedError, utils.MethodNotDefined):
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\op.py in make_c_thunk(self, node, storage_map, compute_map, no_recycling)
855 raise NotImplementedError("float16")
856 _logger.debug('Trying CLinker.make_thunk')
--> 857 outputs = cl.make_thunk(input_storage=node_input_storage,
858 output_storage=node_output_storage)
859 thunk, node_input_filters, node_output_filters = outputs
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\cc.py in make_thunk(self, input_storage, output_storage, storage_map, keep_lock)
1213 """
1214 init_tasks, tasks = self.get_init_tasks()
-> 1215 cthunk, module, in_storage, out_storage, error_storage = self.__compile__(
1216 input_storage, output_storage, storage_map,
1217 keep_lock=keep_lock)
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\cc.py in __compile__(self, input_storage, output_storage, storage_map, keep_lock)
1151 input_storage = tuple(input_storage)
1152 output_storage = tuple(output_storage)
-> 1153 thunk, module = self.cthunk_factory(error_storage,
1154 input_storage,
1155 output_storage,
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\cc.py in cthunk_factory(self, error_storage, in_storage, out_storage, storage_map, keep_lock)
1621 for node in self.node_order:
1622 node.op.prepare_node(node, storage_map, None, 'c')
-> 1623 module = get_module_cache().module_from_key(
1624 key=key, lnk=self, keep_lock=keep_lock)
1625
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\cmodule.py in module_from_key(self, key, lnk, keep_lock)
1187 try:
1188 location = dlimport_workdir(self.dirname)
-> 1189 module = lnk.compile_cmodule(location)
1190 name = module.__file__
1191 assert name.startswith(location)
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\cc.py in compile_cmodule(self, location)
1518 try:
1519 _logger.debug("LOCATION %s", str(location))
-> 1520 module = c_compiler.compile_str(
1521 module_name=mod.code_hash,
1522 src_code=src_code,
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\cmodule.py in compile_str(module_name, src_code, location, include_dirs, lib_dirs, libs, preargs, py_module, hide_symbols)
2418 open(os.path.join(location, "__init__.py"), 'w').close()
2419 assert os.path.isfile(lib_filename)
-> 2420 return dlimport(lib_filename)
2421
2422
c:\users\webblab\appdata\local\programs\python\python38-32\lib\site-packages\theano\gof\cmodule.py in dlimport(fullpath, suffix)
315 warnings.filterwarnings("ignore",
316 message="numpy.ndarray size changed")
--> 317 rval = __import__(module_name, {}, {}, [module_name])
318 t1 = time.time()
319 import_time += t1 - t0
ImportError: DLL load failed while importing m54e1ce4760689129b813fce15fee7f8d468afbe167bc036205eea6bd301309d7: The specified module could not be found.
My collaborator does not get this error when running identical code on their macbook so the issue is not with the code. I installed all packages with pip. Any help would be greatly appreciated, this has brought me to a standstill on this project.

skLearn fitting data input fails even though numpy data shape is correct

I am trying to fit some (numpy) data into python skLearn modules, but keep getting error messages.
When I use the example data-set from iris, where I load it as per below
from sklearn import datasets
iris = datasets.load_diabetes() # load pseudo test data
print(np.shape(iris.data))
print(np.shape(iris.target))
(442, 10)
(442,)
It works fine. But when I use my own data-set which I convert to numpy array, it fails. I cannot figure out why, as I've explicitly converted it into the same shape type as iris
fileLoc = 'C:\\Users\\2018_signal.csv'
data = pd.read_csv(fileLoc)
fl_data = data[['signal', 'sig_dig', 'std_prx']].values
fl_target = data[['actual']].actual.values
ml_data = fl_data[0:int(fraction * len(fl_data))]
ml_target = fl_target[0:int(fraction * len(fl_target))]
print(np.shape(ml_data))
print(np.shape(ml_target))
(6663, 3)
(6663,)
The skLearn code as per below
start_time = time.time()
SKknn_pred = KNeighborsClassifier(n_neighbors=1, algorithm='ball_tree', metric = 'euclidean').fit(ml_data, ml_target).predict(ml_data)
print("knn --- %s seconds ---" % (time.time() - start_time))
print("Number of mislabeled points out of a total %d points : %d" % (fl_data.shape[0],(fl_target != SKknn_pred).sum()))
l_time.append(['knn', 1000 * (time.time() - start_time)])
I get the error message below... Help!!!!!
ValueError Traceback (most recent call last)
<ipython-input-96-91e2b93e2580> in <module>()
57
58 start_time = time.time()
---> 59 SKgnb_pred = GaussianNB().fit(ml_data, ml_target).predict(fl_data)
60 print("gnb --- %s seconds ---" % (time.time() - start_time))
61 print("Number of mislabeled points out of a total %d points : %d" % (fl_data.shape[0],(fl_target != SKgnb_pred).sum()))
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\naive_bayes.py in fit(self, X, y, sample_weight)
183 X, y = check_X_y(X, y)
184 return self._partial_fit(X, y, np.unique(y), _refit=True,
--> 185 sample_weight=sample_weight)
186
187 #staticmethod
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\naive_bayes.py in _partial_fit(self, X, y, classes, _refit, sample_weight)
348 self.classes_ = None
349
--> 350 if _check_partial_fit_first_call(self, classes):
351 # This is the first call to partial_fit:
352 # initialize various cumulative counters
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\multiclass.py in _check_partial_fit_first_call(clf, classes)
319 else:
320 # This is the first call to partial_fit
--> 321 clf.classes_ = unique_labels(classes)
322 return True
323
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\multiclass.py in unique_labels(*ys)
95 _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None)
96 if not _unique_labels:
---> 97 raise ValueError("Unknown label type: %s" % repr(ys))
98
99 ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys))
ValueError: Unknown label type: (array([-78.375, -67.625, -66.75 , ..., 71.375, 76.75 , 78.1 ]),)
A way to use python to correct for your own error.
from sklearn import preprocessing
from sklearn import utils
ml_target = lab_enc.fit_transform(ml_target)
print(utils.multiclass.type_of_target(ml_target))
print(utils.multiclass.type_of_target(ml_target.astype('float')))
print(utils.multiclass.type_of_target(ml_target))
The skLearn module fits the data after the transform above

Tensorflow: function.defun with a a while loop in the body is throwing shape error

I am using a while loop to calculate a cost function for memory reasons. When calculating the gradient, tensorflow will store Nm tensors where Nm is the number of iterations in my while loop (this cuases the same memory issues I had with the original energy functions). I do not want that as I don't have enough memory. So I want to register a new op along with a gradient function that both use a while loop. However I am having issues with using function.defun and a while loop. To simplify things, I have a small test example below:
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.framework import function
def _run(tensor):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
res = sess.run(tensor)
return res
#function.Defun(tf.float32,tf.float32,func_name ='tf_test_log')#,grad_func=tf_test_logGrad)
def tf_test_log(t_x,t_y):
#N = t_x.shape[0].value
condition = lambda i,m1: i<N
def body(index,x):
#return[(index+1),tf.concat([x, tf.expand_dims(tf.exp( tf.add( t_x[:,index],t_y[:,index]) ),1) ],1 ) ]
return[(index+1),tf.add(x, tf.exp( tf.add( t_x[:,0],t_y[:,0]) ) ) ]
i0 = tf.constant(0,dtype=tf.int32)
m0 = tf.zeros([N,1],dType)
ijk_0 = [i0,m0]
L,t_log_x = tf.while_loop(condition,body,ijk_0,
shape_invariants=[i0.get_shape(),
tf.TensorShape([N,None])]
)
return t_log_x
dType = tf.float32
N = np.int32(100)
t_N = tf.constant(N,dtype = tf.int32)
t_x = tf.constant(np.random.randn(N,N),dtype = dType)
t_y = tf.constant(np.random.randn(N,N),dtype = dType)
ys = _run(tf_test_log(t_x,t_y))
I then try to test the new op:
I get a Value error: The shape for while/Merge_1:0 is not an invariant for the loop. It enters the loop with shape (100, ?), but has shape after one iteration. Provide shape invariants using either the shape_invariants argument of tf.while_loop or set_shape() on the loop variables.
Note that calling
If i use a concatenate operation (instead of the add operation that gets returned by my while loop), I do not get any issues.
However, If I do not set N as a global variable (i.e. I do N = t_x.shape[0]) inside the body of the tf_test_log function, I get a Value error.
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 1)
What is wrong with my code? Any help is greatly appreciated!
I am using python 3.5 on ubuntu 16.04 and tensorflow 1.4
full output:
ValueError Traceback (most recent call last)
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in <module>()
51 t_x = tf.constant(np.random.randn(N,N),dtype = dType)
52 t_y = tf.constant(np.random.randn(N,N),dtype = dType)
---> 53 ys = _run(tf_test_log(t_x,t_y))
54
55
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in __call__(self, *args, **kwargs)
503
504 def __call__(self, *args, **kwargs):
--> 505 self.add_to_graph(ops.get_default_graph())
506 args = [ops.convert_to_tensor(_) for _ in args] + self._extra_inputs
507 ret, op = _call(self._signature, *args, **kwargs)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in add_to_graph(self, g)
484 def add_to_graph(self, g):
485 """Adds this function into the graph g."""
--> 486 self._create_definition_if_needed()
487
488 # Adds this function into 'g'.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed(self)
319 """Creates the function definition if it's not created yet."""
320 with context.graph_mode():
--> 321 self._create_definition_if_needed_impl()
322
323 def _create_definition_if_needed_impl(self):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed_impl(self)
336 # Call func and gather the output tensors.
337 with vs.variable_scope("", custom_getter=temp_graph.getvar):
--> 338 outputs = self._func(*inputs)
339
340 # There is no way of distinguishing between a function not returning
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in tf_test_log(t_x, t_y)
39 L,t_log_x = tf.while_loop(condition,body,ijk_0,
40 shape_invariants=[i0.get_shape(),
---> 41 tf.TensorShape([N,None])]
42 )
43 return t_log_x
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in while_loop(cond, body, loop_vars, shape_invariants, parallel_iterations, back_prop, swap_memory, name)
2814 loop_context = WhileContext(parallel_iterations, back_prop, swap_memory) # pylint: disable=redefined-outer-name
2815 ops.add_to_collection(ops.GraphKeys.WHILE_CONTEXT, loop_context)
-> 2816 result = loop_context.BuildLoop(cond, body, loop_vars, shape_invariants)
2817 return result
2818
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in BuildLoop(self, pred, body, loop_vars, shape_invariants)
2638 self.Enter()
2639 original_body_result, exit_vars = self._BuildLoop(
-> 2640 pred, body, original_loop_vars, loop_vars, shape_invariants)
2641 finally:
2642 self.Exit()
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in _BuildLoop(self, pred, body, original_loop_vars, loop_vars, shape_invariants)
2619 for m_var, n_var in zip(merge_vars, next_vars):
2620 if isinstance(m_var, ops.Tensor):
-> 2621 _EnforceShapeInvariant(m_var, n_var)
2622
2623 # Exit the loop.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in _EnforceShapeInvariant(merge_var, next_var)
576 "Provide shape invariants using either the `shape_invariants` "
577 "argument of tf.while_loop or set_shape() on the loop variables."
--> 578 % (merge_var.name, m_shape, n_shape))
579 else:
580 if not isinstance(var, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
ValueError: The shape for while/Merge_1:0 is not an invariant for the loop. It enters the loop with shape (100, ?), but has shape <unknown> after one iteration. Provide shape invariants using either the `shape_invariants` argument of tf.while_loop or set_shape() on the loop variables.
Thanks #Alexandre Passos for the suggestion in the comment above!
The following piece of code is a modification of the original with a set_shape function added inside the body.
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.framework import function
def _run(tensor):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
res = sess.run(tensor)
return res
#function.Defun(tf.float32,tf.float32,tf.float32,func_name ='tf_test_logGrad')
def tf_test_logGrad(t_x,t_y,grad):
return grad
#function.Defun(tf.float32,tf.float32,func_name ='tf_test_log')#,grad_func=tf_test_logGrad)
def tf_test_log(t_x,t_y):
#N = t_x.shape[0].value
condition = lambda i,m1: i<N
def body(index,x):
#return[(index+1),tf.concat([x, tf.expand_dims(tf.exp( tf.add( t_x[:,index],t_y[:,index]) ),1) ],1 ) ]
x = tf.add(x, tf.exp( tf.add( t_x[:,0],t_y[:,0]) ) )
x.set_shape([N])
return[(index+1), x]
i0 = tf.constant(0,dtype=tf.int32)
m0 = tf.zeros([N],dType)
ijk_0 = [i0,m0]
L,t_log_x = tf.while_loop(condition,body,ijk_0,
shape_invariants=[i0.get_shape(),
tf.TensorShape([N])]
)
return t_log_x
dType = tf.float32
N = np.int32(100)
t_N = tf.constant(N,dtype = tf.int32)
t_x = tf.constant(np.random.randn(N,N),dtype = dType)
t_y = tf.constant(np.random.randn(N,N),dtype = dType)
ys = _run(tf_test_log(t_x,t_y))
The Issue of global N still persists.
You still need to set the shape of the loop tensors as a global variable outside of the defun decorator. If you try to get it from the shape of the inputs of the defun decorator, you get:
TypeError Traceback (most recent call last)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py in zeros(shape, dtype, name)
1438 shape = tensor_shape.as_shape(shape)
-> 1439 output = constant(zero, shape=shape, dtype=dtype, name=name)
1440 except (TypeError, ValueError):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name, verify_shape)
207 tensor_util.make_tensor_proto(
--> 208 value, dtype=dtype, shape=shape, verify_shape=verify_shape))
209 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape)
379 # exception when dtype is set to np.int64
--> 380 if shape is not None and np.prod(shape, dtype=np.int64) == 0:
381 nparray = np.empty(shape, dtype=np_dt)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/numpy/core/fromnumeric.py in prod(a, axis, dtype, out, keepdims)
2517 return _methods._prod(a, axis=axis, dtype=dtype,
-> 2518 out=out, **kwargs)
2519
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/numpy/core/_methods.py in _prod(a, axis, dtype, out, keepdims)
34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):
---> 35 return umr_prod(a, axis, dtype, out, keepdims)
36
TypeError: __int__ returned non-int (type NoneType)
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in <module>()
52 t_x = tf.constant(np.random.randn(N,N),dtype = dType)
53 t_y = tf.constant(np.random.randn(N,N),dtype = dType)
---> 54 ys = _run(tf_test_log(t_x,t_y))
55
56
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in __call__(self, *args, **kwargs)
503
504 def __call__(self, *args, **kwargs):
--> 505 self.add_to_graph(ops.get_default_graph())
506 args = [ops.convert_to_tensor(_) for _ in args] + self._extra_inputs
507 ret, op = _call(self._signature, *args, **kwargs)
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in add_to_graph(self, g)
484 def add_to_graph(self, g):
485 """Adds this function into the graph g."""
--> 486 self._create_definition_if_needed()
487
488 # Adds this function into 'g'.
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed(self)
319 """Creates the function definition if it's not created yet."""
320 with context.graph_mode():
--> 321 self._create_definition_if_needed_impl()
322
323 def _create_definition_if_needed_impl(self):
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed_impl(self)
336 # Call func and gather the output tensors.
337 with vs.variable_scope("", custom_getter=temp_graph.getvar):
--> 338 outputs = self._func(*inputs)
339
340 # There is no way of distinguishing between a function not returning
~/Documents/TheEffingPhDHatersGonnaHate/PAM/defun_while.py in tf_test_log(t_x, t_y)
33
34 i0 = tf.constant(0,dtype=tf.int32)
---> 35 m0 = tf.zeros([N],dType)
36
37
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py in zeros(shape, dtype, name)
1439 output = constant(zero, shape=shape, dtype=dtype, name=name)
1440 except (TypeError, ValueError):
-> 1441 shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
1442 output = fill(shape, constant(zero, dtype=dtype), name=name)
1443 assert output.dtype.base_dtype == dtype
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, preferred_dtype)
834 name=name,
835 preferred_dtype=preferred_dtype,
--> 836 as_ref=False)
837
838
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx)
924
925 if ret is None:
--> 926 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
927
928 if ret is NotImplemented:
~/environments/tf_1_4_gpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py in _tensor_shape_tensor_conversion_function(s, dtype, name, as_ref)
248 if not s.is_fully_defined():
249 raise ValueError(
--> 250 "Cannot convert a partially known TensorShape to a Tensor: %s" % s)
251 s_list = s.as_list()
252 int64_value = 0
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?,)

sklearn RidgeCV with sample_weight

I'm trying to do a weighted Ridge Regression with sklearn. However, the code breaks when I call the fit method. The exception I get is :
Exception: Data must be 1-dimensional
But I'm sure (by checking through print-statements) that the data I'm passing has the right shapes.
print temp1.shape #(781, 21)
print temp2.shape #(781,)
print weights.shape #(781,)
result=RidgeCV(normalize=True).fit(temp1,temp2,sample_weight=weights)
What could be going wrong ??
Here's the whole output :
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-65-a5b1eba5d9cf> in <module>()
22
23
---> 24 result=RidgeCV(normalize=True).fit(temp2,temp1, sample_weight=weights)
25
26
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/ridge.pyc in fit(self, X, y, sample_weight)
868 gcv_mode=self.gcv_mode,
869 store_cv_values=self.store_cv_values)
--> 870 estimator.fit(X, y, sample_weight=sample_weight)
871 self.alpha_ = estimator.alpha_
872 if self.store_cv_values:
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/ridge.pyc in fit(self, X, y, sample_weight)
793 else alpha)
794 if error:
--> 795 out, c = _errors(weighted_alpha, y, v, Q, QT_y)
796 else:
797 out, c = _values(weighted_alpha, y, v, Q, QT_y)
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/ridge.pyc in _errors(self, alpha, y, v, Q, QT_y)
685 w = 1.0 / (v + alpha)
686 c = np.dot(Q, self._diag_dot(w, QT_y))
--> 687 G_diag = self._decomp_diag(w, Q)
688 # handle case where y is 2-d
689 if len(y.shape) != 1:
/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/ridge.pyc in _decomp_diag(self, v_prime, Q)
672 def _decomp_diag(self, v_prime, Q):
673 # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
--> 674 return (v_prime * Q ** 2).sum(axis=-1)
675
676 def _diag_dot(self, D, B):
/usr/local/lib/python2.7/dist-packages/pandas/core/ops.pyc in wrapper(left, right, name)
531 return left._constructor(wrap_results(na_op(lvalues, rvalues)),
532 index=left.index, name=left.name,
--> 533 dtype=dtype)
534 return wrapper
535
/usr/local/lib/python2.7/dist-packages/pandas/core/series.pyc in __init__(self, data, index, dtype, name, copy, fastpath)
209 else:
210 data = _sanitize_array(data, index, dtype, copy,
--> 211 raise_cast_failure=True)
212
213 data = SingleBlockManager(data, index, fastpath=True)
/usr/local/lib/python2.7/dist-packages/pandas/core/series.pyc in _sanitize_array(data, index, dtype, copy, raise_cast_failure)
2683 elif subarr.ndim > 1:
2684 if isinstance(data, np.ndarray):
-> 2685 raise Exception('Data must be 1-dimensional')
2686 else:
2687 subarr = _asarray_tuplesafe(data, dtype=dtype)
Exception: Data must be 1-dimensional
The error seems to be due to sample_weights being a Pandas series rather than a numpy array:
from sklearn.linear_model import RidgeCV
temp1 = pd.DataFrame(np.random.rand(781, 21))
temp2 = pd.Series(temp1.sum(1))
weights = pd.Series(1 + 0.1 * np.random.rand(781))
result = RidgeCV(normalize=True).fit(temp1, temp2,
sample_weight=weights)
# Exception: Data must be 1-dimensional
If you use a numpy array instead, the error goes away:
result = RidgeCV(normalize=True).fit(temp1, temp2,
sample_weight=weights.values)
This seems to be a bug; I've opened a scikit-learn issue to report this.

Resources