I do have a spark application where in one of the spark stage took most of the time 2.5hrs + . I did a dive deep and found for majority of the tasks the GC time was pretty high 60% of total task execution time.
The question that I have is :
How do i co-relate this piece of spark task with my code ?
enter image description here
How do I identify what part of my spark code written using PySpark had caused the high GC time ? enter image description here
In general what causes high GC time for any given spark task , I want to know ?
High GC means frequent GC or GC taking long time. A few suggestions with the limited info I could gather from the screenshots:
One thing to check is are you caching big rdd/rdd's. Uncaching them as soon as they are no longer required will reduce the memory pressure. Is stage 68 part of first job, uncache unrequired data from previous jobs?
How to figure out which operation is this: Use DAG visualization link on the top of stage,job pages to understand the flow. For SQL use SQL tab on the UI.
Also there are 2000 tasks for ~ 40GB of shuffle data, each task handling 20 MB which is very small. better to have atleast ~128MB per task. tune this parallelism back to default 200 ?
If you can't optimize your code then, use more memory by adding more nodes or nodes with larger memory.
From experience, high GC time is caused by tasks requiring more than the available memory. High GC time is often also accompanied by the tasks spilling to disk (entries in the Memory Spill and Disk Spill columns).
Also, from Learning Spark:
A high GC time signals too many objects on the heap (your executors may be memory-starved).
Damji, Jules S.,Wenig, Brooke,Das, Tathagata,Lee, Denny.
In my experience, a good mitigation is to increase the number of partitions read by the given stage to reduce the memory required by the individual tasks e.g. by decreasing spark.files.maxPartitionBytes when reading files, or increasing spark.sql.shuffle.partitions when joining dataframes.
I have came across abnormal behaviour,
I have a query (inside loop) in which I have inner joins over 5 tables one with around 200MB and all other are under 10MB (All persisted at the start of loop, and unpersisted at the end of loop).
Whenever I use spark.sql.autoBroadcastJoinThreshold (tried default, 5MB, 1MB and 100KB), after running same query multiple times it keeps on adding driver memory and eventually fails because of out of memory ( WARN TaskMemoryManager: Failed to allocate a page (16777216 bytes), try again.)
But, If I try same thing with spark.sql.autoBroadcastJoinThreshold=-1, it works without any issues.
My Spark(2.0.0) config is :
driver memory : 10g
Executor memory : 20g
cores : 3
Nodes : 5
( I guess I'm giving more resources than needed, but it doesn't work even if I reduce executor memory to 4g.
It processes same number of times irrespective of memory configuration.
)
PS: I am not creating any broadcast variables manually.
and I am new to Spark.
Looking at the stacktrace it looks like the size of the dataset being broadcasted is around 16MB so you might want to set the value of broadcast threshold higher than 16MB to see if it works.
The other option that you have mentioned is to disable the broadcast but you would want to check the performance of your SQL to see if there is any adverse impact.
I'm currently developing a Spark (v 2.2.0) Streaming application and am running into issues with the way Spark seems to be allocating work across the cluster. This application is submitted to AWS EMR using client mode, so there is a driver node and a couple of worker nodes. Here is a screenshot of Ganglia that shows memory usage in the last hour:
The left-most node is the "master" or "driver" node, and the other two are worker nodes. There are spikes in the memory usage for all three nodes that correspond to workloads coming in through the stream, but the spikes are not equal (even when scaled to % memory usage). When a large workload comes in, the driver node appears to be overworked, and the job will crash with an error regarding memory:
OpenJDK 64-Bit Server VM warning: INFO: os::commit_memory(0x000000053e980000, 674234368, 0) failed; error='Cannot allocate memory' (errno=12)
I've also run into this:
Exception in thread "streaming-job-executor-10" java.lang.OutOfMemoryError: Java heap space when the master runs out of memory, which is equally confusing, as my understanding is that "client" mode would not use the driver / master node as an executor.
Pertinent details:
As mentioned earlier, this application is submitted in client mode: spark-submit --deploy-mode client --master yarn ....
Nowhere in the program am I running collect or coalesce
Any work that I suspect of being run on a single node (jdbc reads mainly) is repartition'd after completion.
There are a couple of very, very small datasets persist into memory.
1 x Driver specs: 4 cores, 16GB RAM (m4.xlarge instance)
2 x Worker specs: 4 cores, 30.5GB RAM (r3.xlarge instance)
I have tried both allowing Spark to choose executor size / cores and specifying them manually. Both cases behave the same. (I manually specified 6 executors, 1 core, 9GB RAM)
I'm certainly at a loss here. I'm not sure what is going on in the code to be triggering the driver to hog the workload like this.
The only suspect I can think of is a code snippet similar to the following:
val scoringAlgorithm = HelperFunctions.scoring(_: Row, batchTime)
val rawScored = dataToScore.map(scoringAlgorithm)
Here, a function is being loaded from a static object, and used to map over the Dataset. It is my understanding that Spark will serialize this function across the cluster (re: http://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#passing-functions-to-spark). However perhaps I am mistaken and it is simply running this transformation on the driver.
If anyone has any insight to this issue, I would love to hear it!
I ended up solving this issue. Here's how I addressed it:
I made an incorrect assertion in stating the problem: there was a collect statement at the beginning of the Spark program.
I had a transaction that required collect() to run as it was designed. My assumption was that calling repartition(n) on the resulting data would split the data back amongst the executors in the cluster. From what I can tell, this strategy does not work. Once I re-wrote this line, Spark started behaving as I expected and farming jobs out to worker nodes.
My advice to any lost soul who stumbles across this issue: don't collect unless it's the end of your Spark program. You can not recover from it. Find another way to perform your task. (I ended up switching a SQL transaction from where col in (,,,) syntax to a join on the database.)
I use spark for batch analysis.
I run Spark on a standalone Ubuntu server with 128G memory and 32-core CPU. Run spark-sumbit my_code.py without any additional configuration parameters.
In a while loop I start SparkSession, analyze data and then stop the context and this process repeats every 10 seconds.
while True:
spark = SparkSession.builder.appName("sync_task").config('spark.driver.maxResultSize' , '5g').getOrCreate()
sc = spark.sparkContext
#some process and analyze
spark.stop()
When program starts, it works perfectly.
but when it works for many hours. spark initialization take long time.
it makes 10 or 20 seconds for just initializing spark.
So what is the problem ?
You use a single-JVM local run mode. I can't explain exactly what happens in your case, but it's not surprising to see this single JVM being more and more under pressure for memory. It starts clean and over time Spark leaves some temporary objects before they get GCed.
I strongly recommend attaching jconsole to see the JVM metrics and monitor memory and CPU usage.
I'm running a 5 node Spark cluster on AWS EMR each sized m3.xlarge (1 master 4 slaves). I successfully ran through a 146Mb bzip2 compressed CSV file and ended up with a perfectly aggregated result.
Now I'm trying to process a ~5GB bzip2 CSV file on this cluster but I'm receiving this error:
16/11/23 17:29:53 WARN TaskSetManager: Lost task 49.2 in stage 6.0 (TID xxx, xxx.xxx.xxx.compute.internal): ExecutorLostFailure (executor 16 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 10.4 GB of 10.4 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.
I'm confused as to why I'm getting a ~10.5GB memory limit on a ~75GB cluster (15GB per 3m.xlarge instance)...
Here is my EMR config:
[
{
"classification":"spark-env",
"properties":{
},
"configurations":[
{
"classification":"export",
"properties":{
"PYSPARK_PYTHON":"python34"
},
"configurations":[
]
}
]
},
{
"classification":"spark",
"properties":{
"maximizeResourceAllocation":"true"
},
"configurations":[
]
}
]
From what I've read, setting the maximizeResourceAllocation property should tell EMR to configure Spark to fully utilize all resources available on the cluster. Ie, I should have ~75GB of memory available... So why am I getting a ~10.5GB memory limit error?
Here is the code I'm running:
def sessionize(raw_data, timeout):
# https://www.dataiku.com/learn/guide/code/reshaping_data/sessionization.html
window = (pyspark.sql.Window.partitionBy("user_id", "site_id")
.orderBy("timestamp"))
diff = (pyspark.sql.functions.lag(raw_data.timestamp, 1)
.over(window))
time_diff = (raw_data.withColumn("time_diff", raw_data.timestamp - diff)
.withColumn("new_session", pyspark.sql.functions.when(pyspark.sql.functions.col("time_diff") >= timeout.seconds, 1).otherwise(0)))
window = (pyspark.sql.Window.partitionBy("user_id", "site_id")
.orderBy("timestamp")
.rowsBetween(-1, 0))
sessions = (time_diff.withColumn("session_id", pyspark.sql.functions.concat_ws("_", "user_id", "site_id", pyspark.sql.functions.sum("new_session").over(window))))
return sessions
def aggregate_sessions(sessions):
median = pyspark.sql.functions.udf(lambda x: statistics.median(x))
aggregated = sessions.groupBy(pyspark.sql.functions.col("session_id")).agg(
pyspark.sql.functions.first("site_id").alias("site_id"),
pyspark.sql.functions.first("user_id").alias("user_id"),
pyspark.sql.functions.count("id").alias("hits"),
pyspark.sql.functions.min("timestamp").alias("start"),
pyspark.sql.functions.max("timestamp").alias("finish"),
median(pyspark.sql.functions.collect_list("foo")).alias("foo"),
)
return aggregated
spark_context = pyspark.SparkContext(appName="process-raw-data")
spark_session = pyspark.sql.SparkSession(spark_context)
raw_data = spark_session.read.csv(sys.argv[1],
header=True,
inferSchema=True)
# Windowing doesn't seem to play nicely with TimestampTypes.
#
# Should be able to do this within the ``spark.read.csv`` call, I'd
# think. Need to look into it.
convert_to_unix = pyspark.sql.functions.udf(lambda s: arrow.get(s).timestamp)
raw_data = raw_data.withColumn("timestamp",
convert_to_unix(pyspark.sql.functions.col("timestamp")))
sessions = sessionize(raw_data, SESSION_TIMEOUT)
aggregated = aggregate_sessions(sessions)
aggregated.foreach(save_session)
Basically, nothing more than windowing and a groupBy to aggregate the data.
It starts with a few of those errors, and towards halting increases in the amount of the same error.
I've tried running spark-submit with --conf spark.yarn.executor.memoryOverhead but that doesn't seem to solve the problem either.
I feel your pain..
We had similar issues of running out of memory with Spark on YARN. We have five 64GB, 16 core VMs and regardless of what we set spark.yarn.executor.memoryOverhead to, we just couldn't get enough memory for these tasks -- they would eventually die no matter how much memory we would give them. And this as a relatively straight-forward Spark application that was causing this to happen.
We figured out that the physical memory usage was quite low on the VMs but the virtual memory usage was extremely high (despite the logs complaining about physical memory). We set yarn.nodemanager.vmem-check-enabled in yarn-site.xml to false and our containers were no longer killed, and the application appeared to work as expected.
Doing more research, I found the answer to why this happens here: http://web.archive.org/web/20190806000138/https://mapr.com/blog/best-practices-yarn-resource-management/
Since on Centos/RHEL 6 there are aggressive allocation of virtual memory due to OS behavior, you should disable virtual memory checker or increase yarn.nodemanager.vmem-pmem-ratio to a relatively larger value.
That page had a link to a very useful page from IBM: https://web.archive.org/web/20170703001345/https://www.ibm.com/developerworks/community/blogs/kevgrig/entry/linux_glibc_2_10_rhel_6_malloc_may_show_excessive_virtual_memory_usage?lang=en
In summary, glibc > 2.10 changed its memory allocation. And although huge amounts of virtual memory being allocated isn't the end of the world, it doesn't work with the default settings of YARN.
Instead of setting yarn.nodemanager.vmem-check-enabled to false, you could also play with setting the MALLOC_ARENA_MAX environment variable to a low number in hadoop-env.sh. This bug report has helpful information about that: https://issues.apache.org/jira/browse/HADOOP-7154
I recommend reading through both pages -- the information is very handy.
If you're not using spark-submit, and you're looking for another way to specify the yarn.nodemanager.vmem-check-enabled parameter mentioned by Duff, here are 2 other ways:
Method 2
If you're using a JSON Configuration file (that you pass to the AWS CLI or to your boto3 script), you'll have to add the following configuration:
[{
"Classification": "yarn-site",
"Properties": {
"yarn.nodemanager.vmem-check-enabled": "false"
}
}]
Method 3
If you use the EMR console, add the following configuration:
classification=yarn-site,properties=[yarn.nodemanager.vmem-check-enabled=false]
See,
I had the same problem in a huge cluster that I'm working now. The problem will not be solved to adding memory to the worker. Sometimes in process aggregation spark will use more memory than it has and the spark jobs will start to use off-heap memory.
One simple example is:
If you have a dataset that you need to reduceByKey it will, sometimes, agregate more data in one worker than other, and if this data exeeds the memory of one worker you get that error message.
Adding the option spark.yarn.executor.memoryOverhead will help you if you set for 50% of the memory used for the worker (just for test, and see if it works, you can add less with more tests).
But you need to understand how Spark works with the Memory Allocation in the cluster:
The more common way Spark uses 75% of the machine memory. The rest goes to SO.
Spark has two types of memory during the execution. One part is for execution and the other is the storage. Execution is used for Shuffles, Joins, Aggregations and Etc. The storage is used for caching and propagating data accross the cluster.
One good thing about memory allocation, if you are not using cache in your execution you can set the spark to use that sotorage space to work with execution to avoid in part the OOM error. As you can see this in documentation of spark:
This design ensures several desirable properties. First, applications that do not use caching can use the entire space for execution, obviating unnecessary disk spills. Second, applications that do use caching can reserve a minimum storage space (R) where their data blocks are immune to being evicted. Lastly, this approach provides reasonable out-of-the-box performance for a variety of workloads without requiring user expertise of how memory is divided internally.
But how can we use that?
You can change some configurations, Add the MemoryOverhead configuration to your job call but, consider add this too: spark.memory.fraction change for 0.8 or 0.85 and reduce the spark.memory.storageFraction to 0.35 or 0.2.
Other configurations can help, but it need to check in your case. Se all these configuration here.
Now, what helps in My case.
I have a cluster with 2.5K workers and 2.5TB of RAM. And we were facing OOM error like yours. We just increase the spark.yarn.executor.memoryOverhead to 2048. And we enable the dynamic allocation. And when we call the job, we don't set the memory for the workers, we leave that for the Spark to decide. We just set the Overhead.
But for some tests for my small cluster, changing the size of execution and storage memory. That solved the problem.
Try repartition. It works in my case.
The dataframe was not so big at the very beginning when it was loaded with write.csv(). The data file amounted to be 10 MB or so, as may required say totally several 100 MB memory for each processing task in executor.
I checked the number of partitions to be 2 at the time.
Then it grew like a snowball during the following operations joining with other tables, adding new columns. And then I ran into the memory exceeding limits issue at a certain step.
I checked the number of partitions, it was still 2, derived from the original data frame I guess.
So I tried to repartition it at the very beginning, and there was no problem anymore.
I have not read many materials about Spark and YARN yet. What I do know is that there are executors in nodes. An executor could handle many tasks depending on the resources. My guess is one partition would be atomically mapped to one task. And its volume determines the resource usage. Spark could not slice it if one partition grows too big.
A reasonable strategy is to determine the nodes and container memory first, either 10GB or 5GB. Ideally, both could serve any data processing job, just a matter of time. Given the 5GB memory setting, the reasonable row for one partition you find, say is 1000 after testing (it won't fail any steps during the processing), we could do it as the following pseudo code:
RWS_PER_PARTITION = 1000
input_df = spark.write.csv("file_uri", *other_args)
total_rows = input_df.count()
original_num_partitions = input_df.getNumPartitions()
numPartitions = max(total_rows/RWS_PER_PARTITION, original_num_partitions)
input_df = input_df.repartition(numPartitions)
Hope it helps!
I had the same issue on small cluster running relatively small job on spark 2.3.1.
The job reads parquet file, removes duplicates using groupBy/agg/first then sorts and writes new parquet. It processed 51 GB of parquet files on 4 nodes (4 vcores, 32Gb RAM).
The job was constantly failing on aggregation stage. I wrote bash script watch executors memory usage and found out that in the middle of the stage one random executor starts taking double memory for a few seconds. When I correlated time of this moment with GC logs it matched with full GC that empties big amount of memory.
At last I understood that the problem is related somehow to GC. ParallelGC and G1 causes this issue constantly but ConcMarkSweepGC improves the situation. The issue appears only with small amount of partitions. I ran the job on EMR where OpenJDK 64-Bit (build 25.171-b10) was installed. I don't know the root cause of the issue, it could be related to JVM or operating system. But it is definitely not related to heap or off-heap usage in my case.
UPDATE1
Tried Oracle HotSpot, the issue is reproduced.