Make an event handler seamless? - ms-office

I have written an event handler under Excel online add-in. It is activated by a button activate, then when a user clicks on another cell or range, the address will be written on a text area myTextArea. The whole thing works.
However, once a new cell is selected, a green loading symbol is shown near the focus; WORKING... is shown on the bottom of Excel; it takes almost 0.5 second.
I am just surprised that it takes time for such a simple action. Does anyone know if it is possible to make this event hander faster? Otherwise, is there any other mean than event handling to make this seamless?
(function() {
"use strict";
Office.initialize = function(reason) {
$(document).ready(function() {
app.initialize();
$('#activate').click(addSelectionChangedEventHandler);
});
}
;
function addSelectionChangedEventHandler() {
Office.context.document.addHandlerAsync(Office.EventType.DocumentSelectionChanged, MyHandler);
}
function MyHandler(eventArgs) {
doStuffWithNewSelection();
}
function doStuffWithNewSelection() {
Excel.run(function(ctx) {
var selectedRange = ctx.workbook.getSelectedRange();
selectedRange.load(["address"]);
return ctx.sync().then(function() {
write(selectedRange.address)
})
}).then(function() {
console.log("done");
}).catch(function(error) {
...
});
}
function write(message) {
document.getElementById("myTextarea").value = message;
}
})();

What you're seeing is network lag. The selection changed event -- once registered -- originates on the server, and triggers the code if Office.js that fires your event handler. Your event handler, in turn, creates a local request for getting the selection Range object and its address, sends it over to the server as part of ctx.sync(), and then waits to hear back from the server before firing the .then.
There's not anything you can do to optimize this flow -- you will pay a pretty high per-transaction cost on Excel Online, and event handlers only add one extra step to that cost. On the other hand, the good news is that the Excel.run/ctx-based model does allow you to batch multiple requests into one, drastically reducing the number of roundtrips that would otherwise be required. That is, fetching the values of 10 different ranges is almost identical in speed to fetching just one; whereas it would be 10 times more expensive if each call were made individually.
Hope this helps!
~ Michael Zlatkovsky, developer on Office Extensibility team, MSFT

Related

Chrome extension declarativeNetRequest: get notified on request blocked

The new manifest version 3 of Chrome extension API offers a new function setExtensionActionOptions which allows a typical content blocker to display the number of blocked HTTP requests for a particular tab. The question is: when to call this API? How do I get notified that a request was just blocked and I need to call it with "increment: 1"? I'm looking for the event "onRequestBlocked" or some workaround.
The alarm API is no good because it fires once per minute. Ideally, I'd like to have this number updated in real time, as it is possible with the old MV2.
Another potential solution is to keep the service worker always running which kind of defeats the fruit of moving to MV3 at all.
There's no way to get notification outside of debugging in unpacked mode via onRuleMatchedDebug event.
You can enable automatic display of the number of the blocked requests on the icon badge.
For example, do it when the extension is installed/updated:
chrome.runtime.onInstalled.addListener(() => {
chrome.declarativeNetRequest.setExtensionActionOptions({
displayActionCountAsBadgeText: true,
});
});
You can also provide an explicit increment using tabUpdate property at any time you want:
chrome.runtime.onMessage.addListener((msg, sender, sendResponse) => {
if (msg.type === 'block') {
chrome.declarativeNetRequest.setExtensionActionOptions({
tabUpdate: {
tabId: sender.tab.id,
increment: msg.count, // Negative values will decrement the count
},
});
}
});
For future seekers: I've been able to find the following solution
chrome.webRequest.onErrorOccurred.addListener(
(details) => {
chrome.declarativeNetRequest.setExtensionActionOptions({
tabUpdate: {
tabId: details.tabId,
increment: 0
}
});
},
{
urls: ["<all_urls>"]
}
);
Yes, this also counts requests that are blocked by other extensions, but in practice I believe this is not so much of a problem. Another thing that's hard for me to explain, is this increment: 0 parameter. For some reason, the action count is actually incremented by increment + 1, not increment when the tabUpdate argument is provided. So, bizarre enough but works for me quite well this far.

Querying DB2 every 15 seconds causing memory leak in NodeJS

I have an application which checks for new entries in DB2 every 15 seconds on the iSeries using IBM's idb-connector. I have async functions which return the result of the query to socket.io which emits an event with the data included to the front end. I've narrowed down the memory leak to the async functions. I've read multiple articles on common memory leak causes and how to diagnose them.
MDN: memory management
Rising Stack: garbage collection explained
Marmelab: Finding And Fixing Node.js Memory Leaks: A Practical Guide
But I'm still not seeing where the problem is. Also, I'm unable to get permission to install node-gyp on the system which means most memory management tools are off limits as memwatch, heapdump and the like need node-gyp to install. Here's an example of what the functions basic structure is.
const { dbconn, dbstmt } = require('idb-connector');// require idb-connector
async function queryDB() {
const sSql = `SELECT * FROM LIBNAME.TABLE LIMIT 500`;
// create new promise
let promise = new Promise ( function(resolve, reject) {
// create new connection
const connection = new dbconn();
connection.conn("*LOCAL");
const statement = new dbstmt(connection);
statement.exec(sSql, (rows, err) => {
if (err) {
throw err;
}
let ticks = rows;
statement.close();
connection.disconn();
connection.close();
resolve(ticks.length);// resolve promise with varying data
})
});
let result = await promise;// await promise
return result;
};
async function getNewData() {
const data = await queryDB();// get new data
io.emit('newData', data)// push to front end
setTimeout(getNewData, 2000);// check again in 2 seconds
};
Any ideas on where the leak is? Am i using async/await incorrectly? Or else am i creating/destroying DB connections improperly? Any help on figuring out why this code is leaky would be much appreciated!!
Edit: Forgot to mention that i have limited control on the backend processes as they are handled by another team. I'm only retrieving the data they populate the DB with and adding it to a web page.
Edit 2: I think I've narrowed it down to the DB connections not being cleaned up properly. But, as far as i can tell I've followed the instructions suggested on their github repo.
I don't know the answer to your specific question, but instead of issuing a query every 15 seconds, I might go about this in a different way. Reason being that I don't generally like fishing expeditions when the environment can tell me an event occurred.
So in that vein, you might want to try a database trigger that loads the key to the row into a data queue on add, or even change or delete if necessary. Then you can just put in an async call to wait for a record on the data queue. This is more real time, and the event handler is only called when a record shows up. The handler can get the specific record from the database since you know it's key. Data queues are much faster than database IO, and place little overhead on the trigger.
I see a couple of potential advantages with this method:
You aren't issuing dozens of queries that may or may not return data.
The event would fire the instant a record is added to the table, rather than 15 seconds later.
You don't have to code for the possibility of one or more new records, it will always be 1, the one mentioned in the data queue.
yes you have to close connection.
Don't make const data. you don't need promise by default statement.exec is async and handles it via return result;
keep setTimeout(getNewData, 2000);// check again in 2 seconds
line outside getNewData otherwise it becomes recursive infinite loop.
Sample code
const {dbconn, dbstmt} = require('idb-connector');
const sql = 'SELECT * FROM QIWS.QCUSTCDT';
const connection = new dbconn(); // Create a connection object.
connection.conn('*LOCAL'); // Connect to a database.
const statement = new dbstmt(dbconn); // Create a statement object of the connection.
statement.exec(sql, (result, error) => {
if (error) {
throw error;
}
console.log(`Result Set: ${JSON.stringify(result)}`);
statement.close(); // Clean up the statement object.
connection.disconn(); // Disconnect from the database.
connection.close(); // Clean up the connection object.
return result;
});
*async function getNewData() {
const data = await queryDB();// get new data
io.emit('newData', data)// push to front end
setTimeout(getNewData, 2000);// check again in 2 seconds
};*
change to
**async function getNewData() {
const data = await queryDB();// get new data
io.emit('newData', data)// push to front end
};
setTimeout(getNewData, 2000);// check again in 2 seconds**
First thing to notice is possible open database connection in case of an error.
if (err) {
throw err;
}
Also in case of success connection.disconn(); and connection.close(); return boolean values that tell is operation successful (according to documentation)
Always possible scenario is to pile up connection objects in 3rd party library.
I would check those.
This was confirmed to be a memory leak in the idb-connector library that i was using. Link to github issue Here. Basically there was a C++ array that never had it's memory deallocated. A new version was added and the commit can viewed Here.

Save the initial state of a workbook

I would like to save the initial state of a workbook (or an Excel application) in the beginning, so that I could always get back to it regardless of modification on the workbook by my Add-in.
I tried some following code in Home.js:
(function() {
"use strict";
Office.initialize = function(reason) {
$(document).ready(function() {
app.initialize();
initial();
$('#getInitial').click(getInitial);
});
};
var ctxInitial;
function initial () {
ctxInitial = new Excel.RequestContext();
}
function getInitial() {
Excel.run(function () {
var wSheetName = 'Sheet1';
var worksheet = ctxInitial.workbook.worksheets.getItem(wSheetName);
var usedRange = worksheet.getUsedRange();
usedRange.load(["values"]);
return ctxInitial.sync().then(function() {
document.getElementById("area").value += usedRange.values.toString();
});
});
}
})();
In the very beginning, my tests prints well the initial values of the worksheet. However, after some manual modification on some cell values, getInitial prints the current state of the worksheet rather than the initial values.
Does anyone know what's the best practice to realise this?
A context does not store workbook state (How could it? It's a JavaScript object that lives in a completely separate world from the document). A context is merely a pipeline (or, if you will, an accumulator of commands) of what actions to dispatch.
There is no real reason to hang on to a context object, except for using it as a way of creating two objects from the same context (e.g., range1.getIntersection(range2), since objects must be from the same context in order to interact). But beyond that, the context's life can (and generally should) be as quick as possible. That's why in Excel.run we always create a new context for you, and dispose of it at the end.
On a related note, and for the same reasoning, it makes no sense to do an Excel.run and NOT use the context that it provides (or use a different context, as you do in your example). You could just as easily run your code without an Excel.run, it gains you nothing to have it be in an Excel.run block if you're reusing an existing context (and note that you won't get the automatic object-tracking that you would have with a clean Excel.run).
Hope this helps!
~ Michael Zlatkovsky, developer on Office Extensibility team, MSFT

Run NodeJS event loop / wait for child process to finish

I first tried a general description of the problem, then some more detail why the usual approaches don't work. If you would like to read these abstracted explanations go on. In the end I explain the greater problem and the specific application, so if you would rather read that, jump to "Actual application".
I am using a node.js child-process to do some computationally intensive work. The parent process does it's work but at some point in the execution it reaches a point where it must have the information from the child process before continuing. Therefore, I am looking for a way to wait for the child-process to finish.
My current setup looks somewhat like this:
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
importantData = msg.data;
} else if (msg.type === "error") {
importantData = null;
} else {
throw new Error("Unknown message from dataGenerator!");
}
});
and somewhere else
function getImportantData() {
while (importantData === undefined) {
// wait for the importantDataGenerator to finish
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
So when the parent process starts, it executes the first bit of code, spawning a child process to calculate the data and goes on doing it's own bit of work. When the time comes that it needs the result from the child process to continue it calls getImportantData(). So the idea is that getImportantData() blocks until the data is calculated.
However, the way I used doesn't work. I think this is due to me preventing the event loop from executing by using the while-loop. And since the Event-Loop does not execute no message from the child-process can be received and thus the condition of the while-loop can not change, making it an infinite loop.
Of course, I don't really want to use this kind of while-loop. What I would rather do is tell node.js "execute one iteration of the event loop, then get back to me". I would do this repeatedly, until the data I need was received and then continue the execution where I left of by returning from the getter.
I realize that his poses the danger of reentering the same function several times, but the module I want to use this in does almost nothing on the event loop except for waiting for this message from the child process and sending out other messages reporting it's progress, so that shouldn't be a problem.
Is there way to execute just one iteration of the event loop in Node.js? Or is there another way to achieve something similar? Or is there a completely different approach to achieve what I'm trying to do here?
The only solution I could think of so far is to change the calculation in such a way that I introduce yet another process. In this scenario, there would be the process calculating the important data, a process calculating the bits of data for which the important data is not needed and a parent process for these two, which just waits for data from the two child-processes and combines the pieces when they arrive. Since it does not have to do any computationally intensive work itself, it can just wait for events from the event loop (=messages) and react to them, forwarding the combined data as necessary and storing pieces of data that cannot be combined yet.
However this introduces yet another process and even more inter-process communication, which introduces more overhead, which I would like to avoid.
Edit
I see that more detail is needed.
The parent process (let's call it process 1) is itself a process spawned by another process (process 0) to do some computationally intensive work. Actually, it just executes some code over which I don't have control, so I cannot make it work asynchronously. What I can do (and have done) is make the code that is executed regularly call a function to report it's progress and provided partial results. This progress report is then send back to the original process via IPC.
But in rare cases the partial results are not correct, so they have to be modified. To do so I need some data I can calculate independently from the normal calculation. However, this calculation could take several seconds; thus, I start another process (process 2) to do this calculation and provide the result to process 1, via an IPC message. Now process 1 and 2 are happily calculating there stuff, and hopefully the corrective data calculated by process 2 is finished before process 1 needs it. But sometimes one of the early results of process 1 needs to be corrected and in that case I have to wait for process 2 to finish its calculation. Blocking the event loop of process 1 is theoretically not a problem, since the main process (process 0) would not be be affected by it. The only problem is, that by preventing the further execution of code in process 1 I am also blocking the event loop, which prevents it from ever receiving the result from process 2.
So I need to somehow pause the further execution of code in process 1 without blocking the event loop. I was hoping that there was a call like process.runEventLoopIteration that executes an iteration of the event loop and then returns.
I would then change the code like this:
function getImportantData() {
while (importantData === undefined) {
process.runEventLoopIteration();
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
thus executing the event loop until I have received the necessary data but NOT continuing the execution of the code that called getImportantData().
Basically what I'm doing in process 1 is this:
function callback(partialDataMessage) {
if (partialDataMessage.needsCorrection) {
getImportantData();
// use data to correct message
process.send(correctedMessage); // send corrected result to main process
} else {
process.send(partialDataMessage); // send unmodified result to main process
}
}
function executeCode(code) {
run(code, callback); // the callback will be called from time to time when the code produces new data
// this call is synchronous, run is blocking until the calculation is finished
// so if we reach this point we are done
// the only way to pause the execution of the code is to NOT return from the callback
}
Actual application/implementation/problem
I need this behaviour for the following application. If you have a better approach to achieve this feel free to propose it.
I want to execute arbitrary code and be notified about what variables it changes, what functions are called, what exceptions occur etc. I also need the location of these events in the code to be able to display the gathered information in the UI next to the original code.
To achieve this, I instrument the code and insert callbacks into it. I then execute the code, wrapping the execution in a try-catch block. Whenever the callback is called with some data about the execution (e.g. a variable change) I send a message to the main process telling it about the change. This way, the user is notified about the execution of the code, while it is running. The location information for the events generated by these callbacks is added to the callback call during the instrumentation, so that is not a problem.
The problem appears, when an exception occurs. I also want to notify the user about exceptions in the tested code. Therefore, I wrapped the execution of the code in a try-catch and any exceptions that get out of the execution are caught and send to the user interface. But the location of the errors is not correct. An Error object created by node.js has a complete call stack so it knows where it occurred. But this location if relative to the instrumented code, so I cannot use this location information as is, to display the error next to the original code. I need to transform this location in the instrumented code into a location in the original code. To do so, after instrumenting the code, I calculate a source map to map locations in the instrumented code to locations in the original code. However, this calculation might take several seconds. So, I figured, I would start a child process to calculate the source map, while the execution of the instrumented code is already started. Then, when an exception occurs, I check whether the source map has already been calculated, and if it hasn't I wait for the calculation to finish to be able to correct the location.
Since the code to be executed and watched can be completely arbitrary I cannot trivially rewrite it to be asynchronous. I only know that it calls the provided callback, because I instrumented the code to do so. I also cannot just store the message and return to continue the execution of the code, checking back during the next call whether the source map has been finished, because continuing the execution of the code would also block the event-loop, preventing the calculated source map from ever being received in the execution process. Or if it is received, then only after the code to execute has completely finished, which could be quite late or never (if the code to execute contains an infinite loop). But before I receive the sourceMap I cannot send further updates about the execution state. Combined, this means I would only be able to send the corrected progress messages after the code to execute has finished (which might be never) which completely defeats the purpose of the program (to enable the programmer to watch what the code does, while it executes).
Temporarily surrendering control to the event loop would solve this problem. However, that does not seem to be possible. The other idea I have is to introduce a third process which controls both the execution process and the sourceMapGeneration process. It receives progress messages from the execution process and if any of the messages needs correction it waits for the sourceMapGeneration process. Since the processes are independent, the controlling process can store the received messages and wait for the sourceMapGeneration process while the execution process continues executing, and as soon as it receives the source map, it corrects the messages and sends all of them off.
However, this would not only require yet another process (overhead) it also means I have to transfer the code once more between processes and since the code can have thousands of line that in itself can take some time, so I would like to move it around as little as possible.
I hope this explains, why I cannot and didn't use the usual "asynchronous callback" approach.
Adding a third ( :) ) solution to your problem after you clarified what behavior you seek I suggest using Fibers.
Fibers let you do co-routines in nodejs. Coroutines are functions that allow multiple entry/exit points. This means you will be able to yield control and resume it as you please.
Here is a sleep function from the official documentation that does exactly that, sleep for a given amount of time and perform actions.
function sleep(ms) {
var fiber = Fiber.current;
setTimeout(function() {
fiber.run();
}, ms);
Fiber.yield();
}
Fiber(function() {
console.log('wait... ' + new Date);
sleep(1000);
console.log('ok... ' + new Date);
}).run();
console.log('back in main');
You can place the code that does the waiting for the resource in a function, causing it to yield and then run again when the task is done.
For example, adapting your example from the question:
var pausedExecution, importantData;
function getImportantData() {
while (importantData === undefined) {
pausedExecution = Fiber.current;
Fiber.yield();
pausedExecution = undefined;
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have proper data now
return importantData;
}
}
function callback(partialDataMessage) {
if (partialDataMessage.needsCorrection) {
var theData = getImportantData();
// use data to correct message
process.send(correctedMessage); // send corrected result to main process
} else {
process.send(partialDataMessage); // send unmodified result to main process
}
}
function executeCode(code) {
// setup child process to calculate the data
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
importantData = msg.data;
} else if (msg.type === "error") {
importantData = null;
} else {
throw new Error("Unknown message from dataGenerator!");
}
if (pausedExecution) {
// execution is waiting for the data
pausedExecution.run();
}
});
// wrap the execution of the code in a Fiber, so it can be paused
Fiber(function () {
runCodeWithCallback(code, callback); // the callback will be called from time to time when the code produces new data
// this callback is synchronous and blocking,
// but it will yield control to the event loop if it has to wait for the child-process to finish
}).run();
}
Good luck! I always say it is better to solve one problem in 3 ways than solving 3 problems the same way. I'm glad we were able to work out something that worked for you. Admittingly, this was a pretty interesting question.
The rule of asynchronous programming is, once you've entered asynchronous code, you must continue to use asynchronous code. While you can continue to call the function over and over via setImmediate or something of the sort, you still have the issue that you're trying to return from an asynchronous process.
Without knowing more about your program, I can't tell you exactly how you should structure it, but by and large the way to "return" data from a process that involves asynchronous code is to pass in a callback; perhaps this will put you on the right track:
function getImportantData(callback) {
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
callback(null, msg.data);
} else if (msg.type === "error") {
callback(new Error("Data could not be generated."));
} else {
callback(new Error("Unknown message from sourceMapGenerator!"));
}
});
}
You would then use this function like this:
getImportantData(function(error, data) {
if (error) {
// handle the error somehow
} else {
// `data` is the data from the forked process
}
});
I talk about this in a bit more detail in one of my screencasts, Thinking Asynchronously.
What you are running into is a very common scenario that skilled programmers who are starting with nodejs often struggle with.
You're correct. You can't do this the way you are attempting (loop).
The main process in node.js is single threaded and you are blocking the event loop.
The simplest way to resolve this is something like:
function getImportantData() {
if(importantData === undefined){ // not set yet
setImmediate(getImportantData); // try again on the next event loop cycle
return; //stop this attempt
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
What we are doing, is that the function is re-attempting to process the data on the next iteration of the event loop using setImmediate.
This introduces a new problem though, your function returns a value. Since it will not be ready, the value you are returning is undefined. So you have to code reactively. You need to tell your code what to do when the data arrives.
This is typically done in node with a callback
function getImportantData(err,whenDone) {
if(importantData === undefined){ // not set yet
setImmediate(getImportantData.bind(null,whenDone)); // try again on the next event loop cycle
return; //stop this attempt
}
if (importantData === null) {
err("Data could not be generated.");
} else {
// we should have a proper data now
whenDone(importantData);
}
}
This can be used in the following way
getImportantData(function(err){
throw new Error(err); // error handling function callback
}, function(data){ //this is whenDone in our case
//perform actions on the important data
})
Your question (updated) is very interesting, it appears to be closely related to a problem I had with asynchronously catching exceptions. (Also Brandon and Ihad an interesting discussion with me about it! It's a small world)
See this question on how to catch exceptions asynchronously. The key concept is that you can use (assuming nodejs 0.8+) nodejs domains to constrain the scope of an exception.
This will allow you to easily get the location of the exception since you can surround asynchronous blocks with atry/catch. I think this should solve the bigger issue here.
You can find the relevant code in the linked question. The usage is something like:
atry(function() {
setTimeout(function(){
throw "something";
},1000);
}).catch(function(err){
console.log("caught "+err);
});
Since you have access to the scope of atry you can get the stack trace there which would let you skip the more complicated source-map usage.
Good luck!

How to populate mongoose with a large data set

I'm attempting to load a store catalog into MongoDb (2.2.2) using Node.js (0.8.18) and Mongoose (3.5.4) -- all on Windows 7 64bit. The data set contains roughly 12,500 records. Each data record is a JSON string.
My latest attempt looks like this:
var fs = require('fs');
var odir = process.cwd() + '/file_data/output_data/';
var mongoose = require('mongoose');
var Catalog = require('./models').Catalog;
var conn = mongoose.connect('mongodb://127.0.0.1:27017/sc_store');
exports.main = function(callback){
var catalogArray = fs.readFileSync(odir + 'pc-out.json','utf8').split('\n');
var i = 0;
Catalog.remove({}, function(err){
while(i < catalogArray.length){
new Catalog(JSON.parse(catalogArray[i])).save(function(err, doc){
if(err){
console.log(err);
} else {
i++;
}
});
if(i === catalogArray.length -1) return callback('database populated');
}
});
};
I have had a lot of problems trying to populate the database. Under previous scenarios (and this one), node pegs the processor and eventually runs out of memory. Note that in this scenario, I'm trying to allow Mongoose to save a record, and then iterate to the next record once the record saves.
But the iterator inside of the Mongoose save function never gets incremented. In addition, it never throws any errors. But if I put the iterator (i) outside of the asynchronous call to Mongoose, it will work, provided the number of records that I try to load are not too big (I have successfully loaded 2,000 this way).
So my questions are: Why isn't the iterator inside of the Mongoose save call ever incremented? And, more importantly, what is the best way to load a large data set into MongoDb using Mongoose?
Rob
i is your index to where you're pulling input data from in catalogArray, but you're also trying to use it to keep track of how many have been saved which isn't possible. Try tracking them separately like this:
var i = 0;
var saved = 0;
Catalog.remove({}, function(err){
while(i < catalogArray.length){
new Catalog(JSON.parse(catalogArray[i])).save(function(err, doc){
saved++;
if(err){
console.log(err);
} else {
if(saved === catalogArray.length) {
return callback('database populated');
}
}
});
i++;
}
});
UPDATE
If you want to add tighter flow control to the process, you can use the async module's forEachLimit function to limit the number of outstanding save operations to whatever you specify. For example, to limit it to one outstanding save at a time:
Catalog.remove({}, function(err){
async.forEachLimit(catalogArray, 1, function (catalog, cb) {
new Catalog(JSON.parse(catalog)).save(function (err, doc) {
if (err) {
console.log(err);
}
cb(err);
});
}, function (err) {
callback('database populated');
});
}
Rob,
The short answer:
You created an infinite loop. You're thinking synchronously and with blocking, Javascript functions asynchronously and without blocking. What you are trying to do is like trying to directly turn the feeling of hunger into a sandwich. You can't. The closest thing is you use the feeling of hunger to motivate you to go to the kitchen and make it. Don't try to make Javascript block. It won't work. Now, learn async.forEachLimit. It will work for what you want to do here.
You should probably review asynchronous design patterns and understand what it means on a deeper level. Callbacks are not simply an alternative to return values. They are fundamentally different in how and when they are executed. Here is a good primer: http://cs.brown.edu/courses/csci1680/f12/handouts/async.pdf
The long answer:
There is an underlying problem here, and that is your lack of understanding of what non-blocking IO and asynchronous means. Im not sure if you are breaking into node development, or this is just a one-off project, but if you do plan to continue using node (or any asynchronous language) then it is worth the time to understand the difference between synchronous and asynchronous design patterns, and what motivations there are for them. So, that is why you have a logic error putting the loop invariant increment inside an asynchronous callback which is creating an infinite loop.
In non-computer science, that means that your increment to i will never occur. The reason is because Javascript executes a single block of code to completion before any asynchronous callbacks are called. So in your code, your loop will run over and over, without i ever incrementing. And, in the background, you are storing the same document in mongo over and over. Each iteration of the loop starts sending document with index 0 to mongo, the callback can't fire until your loop ends, and all other code outside the loop runs to completion. So, the callback queues up. But, your loop runs again since i++ is never executed (remember, the callback is queued until your code finishes), inserting record 0 again, queueing another callback to execute AFTER your loop is complete. This goes on and on until your memory is filled with callbacks waiting to inform your infinite loop that document 0 has been inserted millions of times.
In general, there is no way to make Javascript block without doing something really really bad. For example, something paramount to setting your kitchen on fire to fry some eggs for that sandwich I talked about in the "short answer".
My advice is to take advantage of libs like async. https://github.com/caolan/async JohnnyHK mentioned it here, and he was correct for doing so.

Resources