Timeout in async/await - node.js

I'm with Node.js and TypeScript and I'm using async/await.
This is my test case:
async function doSomethingInSeries() {
const res1 = await callApi();
const res2 = await persistInDB(res1);
const res3 = await doHeavyComputation(res1);
return 'simle';
}
I'd like to set a timeout for the overall function. I.e. if res1 takes 2 seconds, res2 takes 0.5 seconds, res3 takes 5 seconds I'd like to have a timeout that after 3 seconds let me throw an error.
With a normal setTimeout call is a problem because the scope is lost:
async function doSomethingInSeries() {
const timerId = setTimeout(function() {
throw new Error('timeout');
});
const res1 = await callApi();
const res2 = await persistInDB(res1);
const res3 = await doHeavyComputation(res1);
clearTimeout(timerId);
return 'simle';
}
And I cannot catch it with normal Promise.catch:
doSomethingInSeries().catch(function(err) {
// errors in res1, res2, res3 will be catched here
// but the setTimeout thing is not!!
});
Any ideas on how to resolve?

You can use Promise.race to make a timeout:
Promise.race([
doSomethingInSeries(),
new Promise((_, reject) => setTimeout(() => reject(new Error('timeout')), 11.5e3))
]).catch(function(err) {
// errors in res1, res2, res3 and the timeout will be caught here
})
You cannot use setTimeout without wrapping it in a promise.

Ok I found this way:
async function _doSomethingInSeries() {
const res1 = await callApi();
const res2 = await persistInDB(res1);
const res3 = await doHeavyComputation(res1);
return 'simle';
}
async function doSomethingInSeries(): Promise<any> {
let timeoutId;
const delay = new Promise(function(resolve, reject){
timeoutId = setTimeout(function(){
reject(new Error('timeout'));
}, 1000);
});
// overall timeout
return Promise.race([delay, _doSomethingInSeries()])
.then( (res) => {
clearTimeout(timeoutId);
return res;
});
}
Anyone errors?
The things that smells a bit to me is that using Promises as asynchronicity strategy will send us to allocate too many object that some other strategy needs but this is off-topic.

Problem with #Bergi answer that doSomethingInSeries continues executing even if you already rejected the promise. It is much better to cancel it.
LATEST ANSWER
You can try use AbortController for that. Check the old answer to see how to use it - api is similar.
Keep in mind that task is not cancelled immediately, so continuation (awaiting, then or catch) is not called exactly after timeout.
To guarantee that you can combine this and #Bergi approach.
OLD ANSWER
This is how it should look like:
async const doSomethingInSeries = (cancellationToken) => {
cancellationToken.throwIfCancelled();
const res1 = await callApi();
cancellationToken.throwIfCancelled();
const res2 = await persistInDB(res1);
cancellationToken.throwIfCancelled();
const res3 = await doHeavyComputation(res1);
cancellationToken.throwIfCancelled();
return 'simle';
}
Here is simple implementation:
const makeCancellationToken = (tag) => {
let cancelled = false;
return {
isCancelled: () => cancelled,
cancel: () => {
cancelled = true;
},
throwIfCancelled: () => {
if (cancelled) {
const error = new Error(`${tag ?? 'Task'} cancelled`);
error.cancelled = true;
throw error;
}
}
}
}
And finally usage:
const cancellationToken = makeCancellationToken('doSomething')
setTimeout(cancellationToken.cancel, 5000);
try {
await doSomethingInSeries(cancellationToken);
} catch (error) {
if (error.cancelled) {
// handle cancellation
}
}
Keep in mind that task is not cancelled immediately, so continuation (awaiting, then or catch) is not called exactly after 5 secs.
To guarantee that you can combine this and #Bergi approach.

Related

Await doesn't wait for the function to end + Node.js

I'm new to Node.js and was trying to get a lease from azure blob.
const leaseID = await acquireLease(container,blobName);
const result = await download(blob);
and acquireLease method is
const acquireLease = async function(container,blobName){
var leaseID;
blobService.acquireLease(container,blobName ,function(error,result,response){
if(!error) {
// Got lease
leaseID = result.id;
}
})
return(leaseID);
}
exports.acquireLease = acquireLease;
but before the acquireLease method gets completed and leaseID is got, the next main method
const result = await download(blob);
gets executed.
I tried promises but couldn't succeed.
const acquireLease = async function(container,blobName){
var leaseID;
return new Promise((resolve,reject)=>{
blobSvc.acquireLease(container,blobName ,function(error,result,response){
if(!error) {
// Got lease
leaseID = result.id;
}
})
resolve(leaseID);
})
}
exports.acquireLease = acquireLease;
Any suggestions or help appreciated.
You were really close with your Promise version! You just need to call resolve and reject at the right times.
Presumably, if error is truthy, then you should reject. Otherwise, it's safe to assume your result is valid and you can resolve the promise with result.id. There is no need for a leaseID variable. Also, if the function just returns a Promise, there's no need to mark it async.
const acquireLease = function (container, blobName) {
return new Promise((resolve, reject) => {
blobSvc.acquireLease(container, blobName, function (error, result, response) {
if (error) {
reject(error)
} else {
resolve(result.id)
}
})
})
}
exports.acquireLease = acquireLease;

Why are my promises (running in parallel and running in serial) completing at the same time

I am trying to see the difference in processing time between running promises in parallel and in serial order. But in the below code, I get the output from both functions at the same time. Ideally, the parallel function result should come up much quicker. Is there anything wrong I am doing here.
const timeout = 10000
const function1 = new Promise((resolve, reject) => {
setTimeout(() => {
resolve("hello1")
}, timeout);
})
const function2 = new Promise((resolve, reject) => {
setTimeout(() => {
resolve("hello2")
}, timeout);
})
const parallel = async () => {
const result1 = function1
const result2 = function2
const result = await Promise.all([result1, result2])
console.log(result)
}
const serial = async () => {
const result1 = await function1
const result2 = await function2
console.log("result", result1 + " : "+result2)
}
parallel()
serial()
There are two key things here:
Promises don't "run" at all. A promise is a way of observing the completion of something that's running, they don't run anything. You aren't the only one who's confused by this. :-) It's a very common misunderstanding.
Your function1 and function2 aren't functions, they're constants containing promises. As soon as you call new Promise, your code in the promise executor runs, which starts your timer. The promise executor is called synchronously by the Promise constructor to start whatever async operation the promise is going to report the completion of.
This is why you're seeing the result you're seeing: You're starting all of your timers at the same time, so they all fire at the same time. It doesn't matter whether you're observing those completions in parallel or in series.
If you want to see the difference, wait to start your operation:
const timeout = 1000; // <== Changed to 1s
const function1 = () => new Promise((resolve, reject) => {
// Note the −−−−−−^^^^^−−− change, I've made `function1` actually a function
setTimeout(() => {
resolve("hello1");
}, timeout);
});
// Note the change, I've made `function2` actually a function
const function2 = () => new Promise((resolve, reject) => {
// Note the −−−−−−^^^^^−−− change, I've made `function2` actually a function
setTimeout(() => {
resolve("hello2");
}, timeout);
});
const parallel = async () => {
const result1 = function1(); // <== Calling the function starts the timer
const result2 = function2(); // <== Calling the function starts the timer
const result = await Promise.all([result1, result2]);
console.log(result);
};
const serial = async () => {
const result1 = await function1(); // <== Calling the function starts the timer
const result2 = await function2(); // <== Calling the function starts the timer
console.log("result", result1 + " : " + result2);
};
parallel();
serial();

Asynchronous function not waiting for Promise

I've written following asynchronious node.js function, which accesses to my database via Mongoose and thus is an async function):
function getWindSpeed(householdID){
return new Promise(async function (resolve, _){
const household = await Household.findById(householdID)
resolve(stoch.norm(household.windSimulation.mu, household.windSimulation.sigma, 1))
})
}
In the other hand, I have following function, which is also async because both accesses to the database and uses the previous function for each element in the database:
async function getMeanWindSpeed() {
return new Promise(async function (resolve, reject){
let numberOfHouseholds = 0
let averageWind = 0.0
console.log('Begin')
await Household.find({}, async function (error, households) {
if(error){
reject(error)
}else{
numberOfHouseholds = households.length
for(let i = 0; i < households.length; i++){
const speed = await wind.getWindSpeed(households[i].id)
console.log(speed)
averageWind += speed
}
}
})
averageWind = averageWind / numberOfHouseholds
console.log('Finish')
resolve(averageWind)
})
}
As you can see, I iterate over all the elements in the collection and apply the getWindSpeed() function, however it doesn't wait for its completion, as I get the following trace based on the console.log(...) debug messaged:
Begin
Finish
12.2322
23.1123
(more speeds)
...
Some more information that may be usefuk:
I'm awaiting for the result of getMeanWindSpeed() in another async function
I tried to return one hardcoded value for each element in the database (instead of calling getWindSpeed() and it worked fined, so I guess the problem is in that function.
Thanks in advance
If we don't pass a callback to .find() we'll get a promise returned, this makes the code a lot easier to read.
We could further simplify the function getMeanWindspeed since it becomes a simple wrapper for getAverageWindSpeed();
For example:
async function getAverageWindspeed() {
let numberOfHouseholds = 0
let averageWind = 0.0
let households = await Household.find({});
numberOfHouseholds = households.length
for(let i = 0; i < households.length; i++){
const speed = await wind.getWindSpeed(households[i].id)
console.log(speed)
averageWind += speed
}
return averageWind / numberOfHouseholds;
}
async function getMeanWindSpeed() {
console.log('Begin')
let averageWind = await getAverageWindspeed();
console.log('Finish')
return averageWind;
}
Why you are mixing await with promise. It is bad practice. If you can do same thing using await and async. See the below example.
const fakeDelay = () => new Promise(r => {
setTimeout(() => r("data"), 1000);
})
const Household = {
findById: () => fakeDelay()
}
async function getWindSpeed(householdID){
const household = await Household.findById(householdID)
console.log()
//stoch.norm(household.windSimulation.mu, household.windSimulation.sigma, 1)
return household;
}
const main = async () =>{
getWindSpeed().then(console.log)
}
main()
// notice
async function getWindSpeed
will be by default promise

How to setTimeout on async await call node

How can I add a setTimeout to my async await function call?
I have
request = await getProduct(productids[i]);
where
const getProduct = async productid => {
return requestPromise(url + productid);
};
I've tried
request = await setTimeout((getProduct(productids[i])), 5000);
and got the error TypeError: "callback" argument must be a function which makes sense. The request is inside of a loop which is making me hit the rate limit on an api call.
exports.getProducts = async (req, res) => {
let request;
for (let i = 0; i <= productids.length - 1; i++) {
request = await getProduct(productids[i]);
//I want to wait 5 seconds before making another call in this loop!
}
};
You can use a simple little function that returns a promise that resolves after a delay:
function delay(t, val) {
return new Promise(function(resolve) {
setTimeout(function() {
resolve(val);
}, t);
});
}
// or a more condensed version
const delay = (t, val) => new Promise(resolve => setTimeout(resolve, t, val));
And, then await that inside your loop:
exports.getProducts = async (req, res) => {
let request;
for (let id of productids) {
request = await getProduct(id);
await delay(5000);
}
};
Note: I also switched your for loop to use for/of which is not required, but is a bit cleaner than what you had.
Or, in modern versions of nodejs, you can use timersPromises.setTimeout() which is a built-in timer that returns a promise (as of nodejs v15):
const setTimeoutP = require('timers/promises').setTimeout;
exports.getProducts = async (req, res) => {
let request;
for (let id of productids) {
request = await getProduct(id);
await setTimeoutP(5000);
}
};
Actually, I have a pretty standard chunk of code that I use to do that:
function PromiseTimeout(delayms) {
return new Promise(function (resolve, reject) {
setTimeout(resolve, delayms);
});
}
Usage:
await PromiseTimeout(1000);
If you're using Bluebird promises, then it's built in as Promise.timeout.
More to your problem: Have you checked API docs? Some APIs tell you how much you have to wait before next request. Or allow downloading data in larger bulk.
As of node v15 you can use the Timers Promises API:
const timersPromises = require('timers/promises');
async function test() {
await timersPromises.setTimeout(1000);
}
test();
Note that this feature is experimental and may change in future versions.
Since Node 15 and above, there is the new Timers Promises API that let you to avoid to build the wrapping:
import {
setTimeout,
setImmediate,
setInterval,
} from 'timers/promises';
console.log('before')
await setTimeout(1000)
console.log('after 1 sec')
So your issues you could write it with async iterator:
import {
setTimeout
} from 'timers/promises'
async function getProducts (req, res) {
const productids = [1, 2, 3]
for await (const product of processData(productids)) {
console.log(product)
}
}
async function * processData (productids) {
while (productids.length > 0) {
const id = productids.pop()
const product = { id }
yield product
await setTimeout(5000)
}
}
getProducts()
I have done api delay test as below.
It is possible to delay it as if by hanging setTimeout.
sleep(ms) {
const wakeUpTime = Date.now() + ms;
while (Date.now() < wakeUpTime) {}
}
callAPI = async() => {
... // Execute api logic
await this.sleep(2147483647);
... // Execute api logic
}
await callAPI();

(node.js version 7 or above, not C#) multiple await call with node.js [duplicate]

As far as I understand, in ES7/ES2016 putting multiple await's in code will work similar to chaining .then() with promises, meaning that they will execute one after the other rather than in parallel. So, for example, we have this code:
await someCall();
await anotherCall();
Do I understand it correctly that anotherCall() will be called only when someCall() is completed? What is the most elegant way of calling them in parallel?
I want to use it in Node, so maybe there's a solution with async library?
EDIT: I'm not satisfied with the solution provided in this question: Slowdown due to non-parallel awaiting of promises in async generators, because it uses generators and I'm asking about a more general use case.
You can await on Promise.all():
await Promise.all([someCall(), anotherCall()]);
To store the results:
let [someResult, anotherResult] = await Promise.all([someCall(), anotherCall()]);
Note that Promise.all fails fast, which means that as soon as one of the promises supplied to it rejects, then the entire thing rejects.
const happy = (v, ms) => new Promise((resolve) => setTimeout(() => resolve(v), ms))
const sad = (v, ms) => new Promise((_, reject) => setTimeout(() => reject(v), ms))
Promise.all([happy('happy', 100), sad('sad', 50)])
.then(console.log).catch(console.log) // 'sad'
If, instead, you want to wait for all the promises to either fulfill or reject, then you can use Promise.allSettled. Note that Internet Explorer does not natively support this method.
const happy = (v, ms) => new Promise((resolve) => setTimeout(() => resolve(v), ms))
const sad = (v, ms) => new Promise((_, reject) => setTimeout(() => reject(v), ms))
Promise.allSettled([happy('happy', 100), sad('sad', 50)])
.then(console.log) // [{ "status":"fulfilled", "value":"happy" }, { "status":"rejected", "reason":"sad" }]
Note: If you use Promise.all actions that managed to finish before rejection happen are not rolled back, so you may need to take care of such situation. For example
if you have 5 actions, 4 quick, 1 slow and slow rejects. Those 4
actions may be already executed so you may need to roll back. In such situation consider using Promise.allSettled while it will provide exact detail which action failed and which not.
TL;DR
Use Promise.all for the parallel function calls, the answer behaviors not correctly when the error occurs.
First, execute all the asynchronous calls at once and obtain all the Promise objects. Second, use await on the Promise objects. This way, while you wait for the first Promise to resolve the other asynchronous calls are still progressing. Overall, you will only wait for as long as the slowest asynchronous call. For example:
// Begin first call and store promise without waiting
const someResult = someCall();
// Begin second call and store promise without waiting
const anotherResult = anotherCall();
// Now we await for both results, whose async processes have already been started
const finalResult = [await someResult, await anotherResult];
// At this point all calls have been resolved
// Now when accessing someResult| anotherResult,
// you will have a value instead of a promise
JSbin example: http://jsbin.com/xerifanima/edit?js,console
Caveat: It doesn't matter if the await calls are on the same line or on different lines, so long as the first await call happens after all of the asynchronous calls. See JohnnyHK's comment.
Update: this answer has a different timing in error handling according to the #bergi's answer, it does NOT throw out the error as the error occurs but after all the promises are executed.
I compare the result with #jonny's tip: [result1, result2] = Promise.all([async1(), async2()]), check the following code snippet
const correctAsync500ms = () => {
return new Promise(resolve => {
setTimeout(resolve, 500, 'correct500msResult');
});
};
const correctAsync100ms = () => {
return new Promise(resolve => {
setTimeout(resolve, 100, 'correct100msResult');
});
};
const rejectAsync100ms = () => {
return new Promise((resolve, reject) => {
setTimeout(reject, 100, 'reject100msError');
});
};
const asyncInArray = async (fun1, fun2) => {
const label = 'test async functions in array';
try {
console.time(label);
const p1 = fun1();
const p2 = fun2();
const result = [await p1, await p2];
console.timeEnd(label);
} catch (e) {
console.error('error is', e);
console.timeEnd(label);
}
};
const asyncInPromiseAll = async (fun1, fun2) => {
const label = 'test async functions with Promise.all';
try {
console.time(label);
let [value1, value2] = await Promise.all([fun1(), fun2()]);
console.timeEnd(label);
} catch (e) {
console.error('error is', e);
console.timeEnd(label);
}
};
(async () => {
console.group('async functions without error');
console.log('async functions without error: start')
await asyncInArray(correctAsync500ms, correctAsync100ms);
await asyncInPromiseAll(correctAsync500ms, correctAsync100ms);
console.groupEnd();
console.group('async functions with error');
console.log('async functions with error: start')
await asyncInArray(correctAsync500ms, rejectAsync100ms);
await asyncInPromiseAll(correctAsync500ms, rejectAsync100ms);
console.groupEnd();
})();
Update:
The original answer makes it difficult (and in some cases impossible) to correctly handle promise rejections. The correct solution is to use Promise.all:
const [someResult, anotherResult] = await Promise.all([someCall(), anotherCall()]);
Original answer:
Just make sure you call both functions before you await either one:
// Call both functions
const somePromise = someCall();
const anotherPromise = anotherCall();
// Await both promises
const someResult = await somePromise;
const anotherResult = await anotherPromise;
There is another way without Promise.all() to do it in parallel:
First, we have 2 functions to print numbers:
function printNumber1() {
return new Promise((resolve,reject) => {
setTimeout(() => {
console.log("Number1 is done");
resolve(10);
},1000);
});
}
function printNumber2() {
return new Promise((resolve,reject) => {
setTimeout(() => {
console.log("Number2 is done");
resolve(20);
},500);
});
}
This is sequential:
async function oneByOne() {
const number1 = await printNumber1();
const number2 = await printNumber2();
}
//Output: Number1 is done, Number2 is done
This is parallel:
async function inParallel() {
const promise1 = printNumber1();
const promise2 = printNumber2();
const number1 = await promise1;
const number2 = await promise2;
}
//Output: Number2 is done, Number1 is done
I've created a gist testing some different ways of resolving promises, with results. It may be helpful to see the options that work.
Edit: Gist content as per Jin Lee's comment
// Simple gist to test parallel promise resolution when using async / await
function promiseWait(time) {
return new Promise((resolve, reject) => {
setTimeout(() => {
resolve(true);
}, time);
});
}
async function test() {
return [
await promiseWait(1000),
await promiseWait(5000),
await promiseWait(9000),
await promiseWait(3000),
]
}
async function test2() {
return {
'aa': await promiseWait(1000),
'bb': await promiseWait(5000),
'cc': await promiseWait(9000),
'dd': await promiseWait(3000),
}
}
async function test3() {
return await {
'aa': promiseWait(1000),
'bb': promiseWait(5000),
'cc': promiseWait(9000),
'dd': promiseWait(3000),
}
}
async function test4() {
const p1 = promiseWait(1000);
const p2 = promiseWait(5000);
const p3 = promiseWait(9000);
const p4 = promiseWait(3000);
return {
'aa': await p1,
'bb': await p2,
'cc': await p3,
'dd': await p4,
};
}
async function test5() {
return await Promise.all([
await promiseWait(1000),
await promiseWait(5000),
await promiseWait(9000),
await promiseWait(3000),
]);
}
async function test6() {
return await Promise.all([
promiseWait(1000),
promiseWait(5000),
promiseWait(9000),
promiseWait(3000),
]);
}
async function test7() {
const p1 = promiseWait(1000);
const p2 = promiseWait(5000);
const p3 = promiseWait(9000);
return {
'aa': await p1,
'bb': await p2,
'cc': await p3,
'dd': await promiseWait(3000),
};
}
let start = Date.now();
test().then((res) => {
console.log('Test Done, elapsed', (Date.now() - start) / 1000, res);
start = Date.now();
test2().then((res) => {
console.log('Test2 Done, elapsed', (Date.now() - start) / 1000, res);
start = Date.now();
test3().then((res) => {
console.log('Test3 Done, elapsed', (Date.now() - start) / 1000, res);
start = Date.now();
test4().then((res) => {
console.log('Test4 Done, elapsed', (Date.now() - start) / 1000, res);
start = Date.now();
test5().then((res) => {
console.log('Test5 Done, elapsed', (Date.now() - start) / 1000, res);
start = Date.now();
test6().then((res) => {
console.log('Test6 Done, elapsed', (Date.now() - start) / 1000, res);
});
start = Date.now();
test7().then((res) => {
console.log('Test7 Done, elapsed', (Date.now() - start) / 1000, res);
});
});
});
});
});
});
/*
Test Done, elapsed 18.006 [ true, true, true, true ]
Test2 Done, elapsed 18.009 { aa: true, bb: true, cc: true, dd: true }
Test3 Done, elapsed 0 { aa: Promise { <pending> },
bb: Promise { <pending> },
cc: Promise { <pending> },
dd: Promise { <pending> } }
Test4 Done, elapsed 9 { aa: true, bb: true, cc: true, dd: true }
Test5 Done, elapsed 18.008 [ true, true, true, true ]
Test6 Done, elapsed 9.003 [ true, true, true, true ]
Test7 Done, elapsed 12.007 { aa: true, bb: true, cc: true, dd: true }
*/
In my case, I have several tasks I want to execute in parallel, but I need to do something different with the result of those tasks.
function wait(ms, data) {
console.log('Starting task:', data, ms);
return new Promise(resolve => setTimeout(resolve, ms, data));
}
var tasks = [
async () => {
var result = await wait(1000, 'moose');
// do something with result
console.log(result);
},
async () => {
var result = await wait(500, 'taco');
// do something with result
console.log(result);
},
async () => {
var result = await wait(5000, 'burp');
// do something with result
console.log(result);
}
]
await Promise.all(tasks.map(p => p()));
console.log('done');
And the output:
Starting task: moose 1000
Starting task: taco 500
Starting task: burp 5000
taco
moose
burp
done
(async function(){
function wait(ms, data) {
console.log('Starting task:', data, ms);
return new Promise(resolve => setTimeout(resolve, ms, data));
}
var tasks = [
async () => {
var result = await wait(1000, 'moose');
// do something with result
console.log(result);
},
async () => {
var result = await wait(500, 'taco');
// do something with result
console.log(result);
},
async () => {
var result = await wait(5000, 'burp');
// do something with result
console.log(result);
}
]
await Promise.all(tasks.map(p => p()));
console.log('done');
})();
await Promise.all([someCall(), anotherCall()]); as already mention will act as a thread fence (very common in parallel code as CUDA), hence it will allow all the promises in it to run without blocking each other, but will prevent the execution to continue until ALL are resolved.
another approach that is worth to share is the Node.js async that will also allow you to easily control the amount of concurrency that is usually desirable if the task is directly linked to the use of limited resources as API call, I/O operations, etc.
// create a queue object with concurrency 2
var q = async.queue(function(task, callback) {
console.log('Hello ' + task.name);
callback();
}, 2);
// assign a callback
q.drain = function() {
console.log('All items have been processed');
};
// add some items to the queue
q.push({name: 'foo'}, function(err) {
console.log('Finished processing foo');
});
q.push({name: 'bar'}, function (err) {
console.log('Finished processing bar');
});
// add some items to the queue (batch-wise)
q.push([{name: 'baz'},{name: 'bay'},{name: 'bax'}], function(err) {
console.log('Finished processing item');
});
// add some items to the front of the queue
q.unshift({name: 'bar'}, function (err) {
console.log('Finished processing bar');
});
Credits to the Medium article autor (read more)
You can call multiple asynchronous functions without awaiting them. This will execute them in parallel. While doing so, save the returned promises in variables, and await them at some point either individually or using Promise.all() and process the results.
You can also wrap the function calls with try...catch to handle failures of individual asynchronous actions and provide fallback logic.
Here's an example:
Observe the logs, the logs printed at the beginning of execution of the individual asynchronous functions get printed immediately even though the first function takes 5 seconds to resolve.
function someLongFunc () {
return new Promise((resolve, reject)=> {
console.log('Executing function 1')
setTimeout(resolve, 5000)
})
}
function anotherLongFunc () {
return new Promise((resolve, reject)=> {
console.log('Executing function 2')
setTimeout(resolve, 5000)
})
}
async function main () {
let someLongFuncPromise, anotherLongFuncPromise
const start = Date.now()
try {
someLongFuncPromise = someLongFunc()
}
catch (ex) {
console.error('something went wrong during func 1')
}
try {
anotherLongFuncPromise = anotherLongFunc()
}
catch (ex) {
console.error('something went wrong during func 2')
}
await someLongFuncPromise
await anotherLongFuncPromise
const totalTime = Date.now() - start
console.log('Execution completed in ', totalTime)
}
main()
// A generic test function that can be configured
// with an arbitrary delay and to either resolve or reject
const test = (delay, resolveSuccessfully) => new Promise((resolve, reject) => setTimeout(() => {
console.log(`Done ${ delay }`);
resolveSuccessfully ? resolve(`Resolved ${ delay }`) : reject(`Reject ${ delay }`)
}, delay));
// Our async handler function
const handler = async () => {
// Promise 1 runs first, but resolves last
const p1 = test(10000, true);
// Promise 2 run second, and also resolves
const p2 = test(5000, true);
// Promise 3 runs last, but completes first (with a rejection)
// Note the catch to trap the error immediately
const p3 = test(1000, false).catch(e => console.log(e));
// Await all in parallel
const r = await Promise.all([p1, p2, p3]);
// Display the results
console.log(r);
};
// Run the handler
handler();
/*
Done 1000
Reject 1000
Done 5000
Done 10000
*/
Whilst setting p1, p2 and p3 is not strictly running them in parallel, they do not hold up any execution and you can trap contextual errors with a catch.
This can be accomplished with Promise.allSettled(), which is similar to Promise.all() but without the fail-fast behavior.
async function Promise1() {
throw "Failure!";
}
async function Promise2() {
return "Success!";
}
const [Promise1Result, Promise2Result] = await Promise.allSettled([Promise1(), Promise2()]);
console.log(Promise1Result); // {status: "rejected", reason: "Failure!"}
console.log(Promise2Result); // {status: "fulfilled", value: "Success!"}
Note: This is a bleeding edge feature with limited browser support, so I strongly recommend including a polyfill for this function.
I create a helper function waitAll, may be it can make it sweeter.
It only works in nodejs for now, not in browser chrome.
//const parallel = async (...items) => {
const waitAll = async (...items) => {
//this function does start execution the functions
//the execution has been started before running this code here
//instead it collects of the result of execution of the functions
const temp = [];
for (const item of items) {
//this is not
//temp.push(await item())
//it does wait for the result in series (not in parallel), but
//it doesn't affect the parallel execution of those functions
//because they haven started earlier
temp.push(await item);
}
return temp;
};
//the async functions are executed in parallel before passed
//in the waitAll function
//const finalResult = await waitAll(someResult(), anotherResult());
//const finalResult = await parallel(someResult(), anotherResult());
//or
const [result1, result2] = await waitAll(someResult(), anotherResult());
//const [result1, result2] = await parallel(someResult(), anotherResult());
I vote for:
await Promise.all([someCall(), anotherCall()]);
Be aware of the moment you call functions, it may cause unexpected result:
// Supposing anotherCall() will trigger a request to create a new User
if (callFirst) {
await someCall();
} else {
await Promise.all([someCall(), anotherCall()]); // --> create new User here
}
But following always triggers request to create new User
// Supposing anotherCall() will trigger a request to create a new User
const someResult = someCall();
const anotherResult = anotherCall(); // ->> This always creates new User
if (callFirst) {
await someCall();
} else {
const finalResult = [await someResult, await anotherResult]
}

Resources