I have an application that perform only inserts/deletes in cassandra. All write operations (inserts/deletes) application perform using consistency level QUORUM, read operation currently is executed using QUORUM as well, but i`m wondering if in this case (when there is no updates to data) consistency level ONE would give same results as QUORUM.
Not necessarily. It could be that your read request goes to the one node which has not (yet) received/applied the updates. The QUORUM consistency level does allow for some nodes to not have the updated data just yet; by using a consistency level of ONE for your read, you might read stale data. Perhaps your application can deal with this situation -- that's for you to decide. But you should know that a consistency level of ONE for reads may not return the data you expect in your situation.
Hope this helps!
Related
While going through Datastax tutorial I learned that
1)Lower consistency level is quicker for read and write whereas, it's much longer if we use higher consistency level
2) Lower consistency level also ensures high availability of data.
My question is
if Lower CL is good then we can always set CL as ONE,
why do we need QUORUM and ALL consistency levels?
It ultimately depends on the application using Cassandra. If the application is ok with serving up data that may be under-replicated or slightly stale, then LOCAL_ONE should be fine. If the application absolutely cannot provide a wrong answer, or if written rows are not being successfully read consistently, then perhaps LOCAL_QUORUM may be more applicable.
I tell my application teams the same thing. Start with LOCAL_ONE, and and work with it through testing. If you don't have any problems, then continue using it. If you do experience stale data, and your application is more read-sensitive, then try writing at LOCAL_QUORUM and continue reading at LOCAL_ONE. And if that doesn't help, then perhaps the application may need both at QUORUM.
Again, that's why application teams need to do thorough testing.
And just to address it, ALL is a useful consistency level because it invokes a read repair. Essentially, if you have a table which you know is missing data, and you don't want to run a costly nodetool repair on it, you can set your consistency to ALL and read from it. I find this trick to be most-useful when addressing issues with multi-DC clusters having issues with system_auth.
But you probably wouldn't want to use ALL from within an application. Or if you did, it'd be for a very specific edge case.
The real meat of database like Cassandra is "eventual consistency": it won't enforce strong consistency when you first write data to the database. rather, it gives you option to choose a weaker consistency level like "one" to reach high writing performance, and then later when you query data, as long as this rule "Read_Consistency_level + Write_consistency_level >= the RF policy (Replication factor)" satisfies, you won't have stale data.
It's risky if you can't fulfill the above rule since you might get either stale or contradictory (sometimes new, sometimes old) data.
I have a 5 node cluster and keyspace with replication factor of 3. The nature of operations are such that writes are much more important than read, but frequency of read operations are about 10 times higher than write. To achieve consistency while improving overall performance, I chose to set consistency level for writes as ALL, and ONE for read. But this causes operations to fail if even one node is down.
Is there a method by which I can simultaneously change consistency level for (Write,Read) from (ALL,ONE) to (QUORUM, QUORUM) if one node is detected down, or if there is a query-execution-exception; plus this be done in a manner that no operations pass through a temporary phase where it sees a temporary (QUORUM, ONE) setting.
We also plan to expand to twice the capacity, 3 datacenter with 4 nodes each. Is it possible to define custom consistency levels, like, (a level of ALL in any one datacenter and ONE in others). I'm thinking that a level of (EACH_ONE) for read, coupled with above level for write will insure consistency but will allow the cluster to remain available even if a node goes down.
The flexibility is there since you can set your consistency level at a per request basis. Depending on the client you are using, there are some nice capabilities. For example, the java driver has something called a DowngradingConsistencyRetryPolicy such that if a request fails, it will be retried with the next lowest consistency level until the request succeeds. This pushes the complexity of retrying into the client so you don't have to write a bunch of code for it, it's really nice!
The java driver also allows you to configure consistency level per request with Statement#setConsistencyLevel()
As far as custom consistency levels, this is not an option available to you (without changing the cassandra source code), however I think what is made available should be sufficient.
For reads, I don't find much value in ensuring consistency between Data Centers on read. I think LOCAL_QUORUM is more than sufficient, but if you really care, you can use something like EACH_QUORUM for to ensure all datacenters agree, but that will severely impact your response time and availability. For example, if one of your datacenters goes down completely, you won't be able to do reads at all (unless downgrading).
For writes, I'd strongly recommend not using ALL in a multi datacenter set up if you care about response time and availability. Depending on your requirements, LOCAL_QUORUM should likely be more than sufficient.
While one of the benefits of Cassandra is that consistency is tunable, you can have as much strong consistency as you like, but keep in mind that Cassandra is at its best as a Highly Available, Partition Tolerant system.
A really good presentation on consistency that I think really nails a lot of these points is Christos Kalazantis' talk 'Eventual Consistency != Hopeful Consistency' which suggests that a consistency level of ONE is sufficient for a lot of use cases.
When both read and write are set to quorum, I can be guaranteed the client will always get the latest value when reading.
I realize this may be a novice question, but I'm not understanding how this setup doesn't provide consistency, availability, and partitioning.
With a quorum, you are unavailable (i.e. won't accept reads or writes) if there aren't enough replicas available. You can choose to relax and read / write on lower consistency levels granting you availability, but then you won't be consistent.
There's also the case where a quorum on reads and writes guarantees you the latest "written" data is retrieved. However, if a coordinator doesn't know about required partitions being down (i.e. gossip hasn't propagated after 2 of 3 nodes fail), it will issue a write to 3 replicas [assuming quorum consistency on a replication factor of 3.] The one live node will write, and the other 2 won't (they're down). The write times out (it doesn't fail). A write timeout where even one node has writte IS NOT a write failure. It's a write "in progress". Let's say the down nodes come up now. If a client next requests that data with quorum consistency, one of two things happen:
Request goes to one of the two downed nodes, and to the "was live" node. Client gets latest data, read repair triggers, all is good.
Request goes to the two nodes that were down. OLD data is returned (assuming repair hasn't happened). Coordinator gets digest from third, read repair kicks in. This is when the original write is considered "complete" and subsequent reads will get the fresh data. All is good, but one client will have received the old data as the write was "in progress" but not "complete". There is a very small rare scenario where this would happen. One thing to note is that write to cassandra are upserts on keys. So usually retries are ok to get around this problem, however in case nodes genuinely go down, the initial read may be a problem.
Typically you balance your consistency and availability requirements. That's where the term tunable consistency comes from.
Said that on the web it's full of links that disprove (or at least try to) the Brewer's CAP theorem ... from the theorem's point of view the C say that
all nodes see the same data at the same time
Which is quite different from the guarantee that a client will always retrieve fresh information. Strictly following the theorem, in your situation, the C it's not respected.
The DataStax documentation contains a section on Configuring Data Consistency. In looking through all of the available consistency configurations, For QUORUM it states:
Returns the record with the most recent timestamp after a quorum of replicas has responded regardless of data center. Ensures strong consistency if you can tolerate some level of failure.
Note that last part "tolerate some level of failure." Right there it's indicating that by using QUORUM consistency you are sacrificing availability (A).
The document referenced above also further defines the QUORUM level, stating that your replication factor comes into play as well:
If consistency is top priority, you can ensure that a read always
reflects the most recent write by using the following formula:
(nodes_written + nodes_read) > replication_factor
For example, if your application is using the QUORUM consistency level
for both write and read operations and you are using a replication
factor of 3, then this ensures that 2 nodes are always written and 2
nodes are always read. The combination of nodes written and read (4)
being greater than the replication factor (3) ensures strong read
consistency.
In the end, it all depends on your application requirements. If your application needs to be highly-available, ONE is probably your best choice. On the other hand, if you need strong-consistency, then QUORUM (or even ALL) would be the better option.
I want to clarify very basic concept of replication factor and consistency level in Cassandra. Highly appreciate if someone can provide answer to below questions.
RF- Replication Factor
RC- Read Consistency
WC- Write Consistency
2 cassandra nodes (Ex: A, B) RF=1, RC=ONE, WC=ONE or ANY
can I write data to node A and read from node B ?
what will happen if A goes down ?
3 cassandra nodes (Ex: A, B, C) RF=2, RC=QUORUM, WC=QUORUM
can I write data to node A and read from node C ?
what will happen if node A goes down ?
3 cassandra nodes (Ex: A, B, C) RF=3, RC=QUORUM, WC=QUORUM
can I write data to node A and read from node C ?
what will happen if node A goes down ?
Short summary: Replication factor describes how many copies of your data exist. Consistency level describes the behavior seen by the client. Perhaps there's a better way to categorize these.
As an example, you can have a replication factor of 2. When you write, two copies will always be stored, assuming enough nodes are up. When a node is down, writes for that node are stashed away and written when it comes back up, unless it's down long enough that Cassandra decides it's gone for good.
Now say in that example you write with a consistency level of ONE. The client will receive a success acknowledgement after a write is done to one node, without waiting for the second write. If you did a write with a CL of ALL, the acknowledgement to the client will wait until both copies are written. There are very many other consistency level options, too many to cover all the variants here. Read the Datastax doc, though, it does a good job of explaining them.
In the same example, if you read with a consistency level of ONE, the response will be sent to the client after a single replica responds. Another replica may have newer data, in which case the response will not be up-to-date. In many contexts, that's quite sufficient. In others, the client will need the most up-to-date information, and you'll use a different consistency level on the read - perhaps a level ALL. In that way, the consistency of Cassandra and other post-relational databases is tunable in ways that relational databases typically are not.
Now getting back to your examples.
Example one: Yes, you can write to A and read from B, even if B doesn't have its own replica. B will ask A for it on your client's behalf. This is also true for your other cases where the nodes are all up. When they're all up, you can write to one and read from another.
For writes, with WC=ONE, if the node for the single replica is up and is the one you're connect to, the write will succeed. If it's for the other node, the write will fail. If you use ANY, the write will succeed, assuming you're talking to the node that's up. I think you also have to have hinted handoff enabled for that. The down node will get the data later, and you won't be able to read it until after that occurs, not even from the node that's up.
In the other two examples, replication factor will affect how many copies are eventually written, but doesn't affect client behavior beyond what I've described above. The QUORUM will affect client behavior in that you will have to have a sufficient number of nodes up and responding for writes and reads. If you get lucky and at least (nodes/2) + 1 nodes are up out of the nodes you need, then writes and reads will succeed. If you don't have enough nodes with replicas up, reads and writes will fail. Overall some QUORUM reads and writes can succeed if a node is down, assuming that that node is either not needed to store your replica, or if its outage still leaves enough replica nodes available.
Check out this simple calculator which allows you to simulate different scenarios:
http://www.ecyrd.com/cassandracalculator/
For example with 2 nodes, a replication factor of 1, read consistency = 1, and write consistency = 1:
Your reads are consistent
You can survive the loss of no nodes.
You are really reading from 1 node every time.
You are really writing to 1 node every time.
Each node holds 50% of your data.
I'm wondering why this happens with the parameters N=2, RF=1, and ANY write consistency level. The error I get is:
HUnavailableException: May not be enough replicas present to handle consistency level.
Should RF be set to 2 instead? If so, why? ANY is meant to "just write it somewhere", isn't it?
(version of Cassandra is 1.2.4)
This is a bug in Hector. Cassandra will never reject a write at ANY. (Unless it's so behind on its workload that it has to refuse new writes temporarily to catch up; in that case it will return OverloadedException, not Unavailable.)
Best practice today is to use the native Java driver rather than Hector.