I have written two codes for implementation of DAC in Spartan 3E starter Kit, they seem to be working perfectly in simulation but when i attach them to chipscope and load on board I always get a zero value. I have also noticed that there were no critical warnings.
Code 1:
module dac_state_d(
input dacclk,
input reset,
input [31:0] dacdata,
output reg[31:0] previousdata,
output reg dac_mosi,
output reg dac_miso,
output reg dac_cs,
output reg dac_sck,
output reg dac_clr,
output reg spi_ss_b,
output reg sf_ce0,
output reg fpga_init_b,
output reg amp_cs,
output reg ad_conv,
output reg [2:0] state,
output reg ack
);
integer index=0;
parameter idle=3'b000, ready=3'b001, delay=3'b010, trans=3'b011, read=3'b100, increment=3'b101, check=3'b110;
initial begin//setting different registers on spi bus and initialization
spi_ss_b='b1;
amp_cs='b1;
ad_conv='b0;
sf_ce0='b1;
fpga_init_b='b0;
end
always #(posedge dacclk or posedge reset) begin
if (reset) begin
index<=0;
dac_mosi<=0;
dac_clr<=0;
dac_sck<=0;
dac_cs<=1;
end
else begin
dac_clr<=1;
case(state)
idle: begin
dac_sck <= 0;
dac_cs <= 1;
index <= 0;
dac_mosi <= 0;
ack <= 1;
state <= ready;
end
ready: begin
ack <= 0;
dac_cs <= 0;
dac_sck <= 0;
dac_mosi <= dacdata[31-index];
state <= delay;
end
delay: begin
state <= trans;
end
trans: begin
dac_sck <= 1;
state <= read;
end
read: begin
dac_sck <= 1;
previousdata[31-index]<=dac_miso;
state <= increment;
end
increment: begin
dac_sck <= 1;
index <= index + 1;
state <= check;
end
check: begin
dac_sck <= 1;
if (31-index < 0) begin
state <= idle; end
else begin
state <= ready;
end
end
endcase
end
end
endmodule
with its top module defined as
reg [31:0] dacdata;
wire [31:0] previousdata;
reg [3:0] command, address;
wire dac_miso_w;
assign dac_miso_w=dac_miso;
wire dacclk;
DACCLK clock(.clk(clk),
.dacclk(dacclk)
);
dac_state_d daq_run(.dacclk(dacclk),
.reset(reset),
.dacdata(dacdata),
.previousdata(previousdata),
.dac_mosi(dac_mosi),
.dac_miso(dac_miso_w),
.dac_clr(dac_clr),
.dac_cs(dac_cs),
.spi_ss_b(spi_ss_b),
.sf_ce0(sf_ce0),
.fpga_init_b(fpga_init_b),
.amp_cs(amp_cs),
.ad_conv(ad_conv),
.dac_sck(dac_sck),
.state(state),
.ack(ack)
);
initial begin
command<=4'b0011;
address<=4'b1111;
end
always # (posedge clk) begin
if (ack) begin
dacdata[31:24]<=8'b00000000;
dacdata[23:20]<=command;
dacdata[19:16]<=address;
dacdata[15:4]<=data;
dacdata[3:0]<=4'b0000;
pre_data<=previousdata[15:4];
end
else begin dacdata<=0; end
end
//chipscope-------------------
wire[11:0] D;
wire R;
wire[35:0] CONTROL;
assign D=data;
assign R=reset;
ICON cs_con(.CONTROL0(CONTROL)); //INOUT BUS [35:0]
VIO cs_vio (.CONTROL(CONTROL), // INOUT BUS [35:0]
.ASYNC_IN({pre_data,state,ack}), // IN BUS [12:0]
.ASYNC_OUT({D,R}) // OUT BUS [12:0]
);
//----------------------------------------------------------------------------
endmodule
obviously top module has also I/O port description.
Code 2:
wire dacclk;
DACCLK clock(.clk(clk),
.dacclk(dacclk)
);
initial begin//setting different registers on spi bus and initialization
spi_ss_b='b1;
amp_cs='b1;
ad_conv='b0;
fpga_init_b='b0;
dac_clr=1;
dac_cs=1;
dacstate<=0;
//StrataFLASH must be disabled to prevent it driving the SDI line with its D0 output
//or conflicting with the LCD display
strataflash_oe <= 1;
strataflash_ce <= 1;
strataflash_we <= 1;
end
always#(posedge dacclk) begin
case (dacstate)
//------------------------------Bit 31 to 24 Don't Care----------------------------------
0: begin//idle and allotment cycle(31-->x)
ack=0;
dac_cs=0;
dac_sck=0;
dacstate=1;
end
1: begin//read write cycle (31)
dac_sck=1;
dacstate=2;
end
2: begin//idle and allotment cycle(30-->x)
dacstate=3;
dac_sck=0;
end
3: begin//read write cycle(30)
dac_sck=1;
dacstate=4;
.....
62: begin//idle and allotment cycle(0-->x)
dac_sck=0;
dacstate=63;
end
63: begin//read write cycle(0)
dac_sck=1;
dacstate=64;
end
64: begin//Acknowledging completion of data transfer to DAC
dac_cs=1;
ack=1;
dacstate=65;
end
65: begin if (reset) begin dacstate=0; end
else begin dacstate=65; end end//idle or reset
default: begin dacstate=0; end
endcase
end
endmodule
UCF file i used is as follows
NET "clk" PERIOD = 20.0ns HIGH 50%;
NET "clk" LOC = "C9" | IOSTANDARD = LVTTL;
NET"dac_miso" LOC= "N10" | IOSTANDARD= LVCMOS33 ;
NET"dac_mosi" LOC= "T4" | IOSTANDARD= LVCMOS33 | SLEW= SLOW | DRIVE= 8 ;
NET"dac_sck" LOC= "U16" | IOSTANDARD= LVCMOS33 | SLEW= SLOW | DRIVE= 8 ;
NET"dac_cs" LOC= "N8" | IOSTANDARD= LVCMOS33 | SLEW= SLOW | DRIVE= 8 ;
NET"dac_clr" LOC= "P8" | IOSTANDARD= LVCMOS33 | SLEW= SLOW | DRIVE= 8 ;
NET "fpga_init_b" LOC = "T3" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 4 ;
NET "ad_conv" LOC = "P11" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 6 ;
NET "amp_cs" LOC = "N7" | IOSTANDARD = LVCMOS33 | SLEW = SLOW |DRIVE = 6 ;
NET "spi_ss_b" LOC = "U3" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 6 ;
NET "sf_ce0" LOC = "D16" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 2;
NET "reset" LOC = "V4" | IOSTANDARD = LVTTL | PULLDOWN;
I don't expect some-one to solve my problem but I feel helpless as i am debugging these codes from past 2 weeks and i am unable to find any problem. It will be really helpful if someone can point me towards error. I also went through some sample codes but as all are written in VHDL hence they were not great help to me. still i tried to match the logic and found it to be the same.
The error in code is very basic, actually in connection to VIO. Inputs can't be connected to VIO as VIO is internal hence need to connect the wire only. Also, there is assignment of input to wire and Wire is reassigned by VIO, which is not acceptable.
Related
I can't figure out why is it that when I set the clock frequency from 50MHz to 100MHz, by changing the clk period to 5 in the testbench, my output transmit and receive data stays at 0. Can anyone enlighten me on this? I need my clock frequency to be 100MHz. Your help will be much appreciated.
Testbench
`timescale 1ns / 1ps
module uart_tx_test();
parameter periodCLK_2 = 5;
parameter perioddump = 10;
parameter delay = 1;
parameter delay_in = 2;
reg CLK_TB = 0 ;
reg RSTN ;
reg [7:0] data = 0;
reg clk = 0;
reg enable = 0;
wire tx_busy;
wire rdy;
wire [7:0] rxdata;
wire loopback;
reg rdy_clr = 0;
uart test_uart(.din(data),
.wr_en(enable),
.clk_50m(clk),
.tx(loopback),
.tx_busy(tx_busy),
.rx(loopback),
.rdy(rdy),
.rdy_clr(rdy_clr),
.dout(rxdata));
initial begin
// $dumpfile("uart.vcd");
$dumpvars(0, uart_tx_test);
enable <= 1'b1;
#2 enable <= 1'b0;
end
always begin
#5 clk = ~clk; //I set period to 5; period was 1 previously.
end
always #(posedge rdy) begin
#2 rdy_clr <= 1;
#2 rdy_clr <= 0;
if (rxdata != data) begin
$display("FAIL: rx data %x does not match tx %x", rxdata, data);
$finish;
end else begin
if (rxdata == 8'hff) begin
$display("SUCCESS: all bytes verified");
$finish;
end
data <= data + 1'b1;
enable <= 1'b1;
#2 enable <= 1'b0;
end
end
endmodule
Design Sources
module uart(
input wire [7:0] din,
input wire wr_en,
input wire clk_50m,
output wire tx,
output wire tx_busy,
input wire rx,
input wire rdy_clr,
output wire rdy,
output wire [7:0] dout
);
wire rxclk_en, txclk_en;
baud_rate_gen uart_baud(
.clk_50m(clk_50m),
.rxclk_en(rxclk_en),
.txclk_en(txclk_en)
);
transmitter uart_tx(
.tx(tx),
.din(din),
.clk_50m(clk_50m),
.clken(txclk_en),
.wr_en(wr_en),
.tx_busy(tx_busy)
);
receiver uart_rx(
.rx(rx),
.data(dout),
.clk_50m(clk_50m),
.clken(rxclk_en),
.rdy(rdy),
.rdy_clr(rdy_clr)
);
endmodule
/*
* Hacky baud rate generator to divide a 50MHz clock into a 9600 baud
* rx/tx pair where the rx clcken oversamples by 16x.
*/
module baud_rate_gen(input wire clk_50m,
output wire rxclk_en,
output wire txclk_en);
parameter RX_ACC_MAX = 100000000 / (9600 * 16);
parameter TX_ACC_MAX = 100000000 / 9600;
parameter RX_ACC_WIDTH = $clog2(RX_ACC_MAX);
parameter TX_ACC_WIDTH = $clog2(TX_ACC_MAX);
reg [RX_ACC_WIDTH - 1:0] rx_acc = 0;
reg [TX_ACC_WIDTH - 1:0] tx_acc = 0;
assign rxclk_en = (rx_acc == 5'd0);
assign txclk_en = (tx_acc == 9'd0);
always #(posedge clk_50m) begin
if (rx_acc == RX_ACC_MAX[RX_ACC_WIDTH - 1:0])
rx_acc <= 0;
else
rx_acc <= rx_acc + 5'b1;
end
always #(posedge clk_50m) begin
if (tx_acc == TX_ACC_MAX[TX_ACC_WIDTH - 1:0])
tx_acc <= 0;
else
tx_acc <= tx_acc + 9'b1;
end
endmodule
module transmitter(
input wire [7:0] din,
input wire wr_en,
input wire clk_50m,
input wire clken,
output reg tx,
output wire tx_busy
);
initial begin
tx = 1'b1;
end
parameter STATE_IDLE = 2'b00;
parameter STATE_START = 2'b01;
parameter STATE_DATA = 2'b10;
parameter STATE_STOP = 2'b11;
reg [7:0] data = 8'h00;
reg [2:0] bitpos = 3'h0;
reg [1:0] state = STATE_IDLE;
always #(posedge clk_50m) begin
case (state)
STATE_IDLE: begin
if (wr_en) begin
state <= STATE_START;
data <= din;
bitpos <= 3'h0;
end
end
STATE_START: begin
if (clken) begin
tx <= 1'b0;
state <= STATE_DATA;
end
end
STATE_DATA: begin
if (clken) begin
if (bitpos == 3'h7)
state <= STATE_STOP;
else
bitpos <= bitpos + 3'h1;
tx <= data[bitpos];
end
end
STATE_STOP: begin
if (clken) begin
tx <= 1'b1;
state <= STATE_IDLE;
end
end
default: begin
tx <= 1'b1;
state <= STATE_IDLE;
end
endcase
end
assign tx_busy = (state != STATE_IDLE);
endmodule
module receiver(
input wire rx,
input wire rdy_clr,
input wire clk_50m,
input wire clken,
output reg rdy,
output reg [7:0] data
);
initial begin
rdy = 0;
data = 8'b0;
end
parameter RX_STATE_START = 2'b00;
parameter RX_STATE_DATA = 2'b01;
parameter RX_STATE_STOP = 2'b10;
reg [1:0] state = RX_STATE_START;
reg [3:0] sample = 0;
reg [3:0] bitpos = 0;
reg [7:0] scratch = 8'b0;
always #(posedge clk_50m) begin
if (rdy_clr)
rdy <= 0;
if (clken) begin
case (state)
RX_STATE_START: begin
/*
* Start counting from the first low sample, once we've
* sampled a full bit, start collecting data bits.
*/
if (!rx || sample != 0)
sample <= sample + 4'b1;
if (sample == 15) begin
state <= RX_STATE_DATA;
bitpos <= 0;
sample <= 0;
scratch <= 0;
end
end
RX_STATE_DATA: begin
sample <= sample + 4'b1;
if (sample == 4'h8) begin
scratch[bitpos[2:0]] <= rx;
bitpos <= bitpos + 4'b1;
end
if (bitpos == 8 && sample == 15)
state <= RX_STATE_STOP;
end
RX_STATE_STOP: begin
/*
* The baud clock may not be running at exactly the
* same rate as the transmitter. If we thing that
* we're at least half way into the stop bit, allow
* transition into handling the next start bit.
*/
if (sample == 15 || (sample >= 8 && !rx)) begin
state <= RX_STATE_START;
data <= scratch;
rdy <= 1'b1;
sample <= 0;
end else begin
sample <= sample + 4'b1;
end
end
default: begin
state <= RX_STATE_START;
end
endcase
end
end
endmodule
You need to scale all your other delays accordingly. Change all your #2 to #10, then you will see the SUCCESS: all bytes verified message.
With your original clock delay of #1, your other input signal pulses (enable and rdy_clr) were wide enough for your uart design module to sample properly. For example, on the 1st posedge of clk, your design properly sampled the enable input as 1, which started the TX state machine.
You increased the clock period by a factor of 5 when you changed the delay from #1 to #5. However, your enable pulse stayed the same width as before, which means that the design sampled enable as 0, not 1. So your TX state machine stayed in the IDLE state. By changing the enable delay from #2 to #10, you are able to properly sample enable as 1.
You can easily prove this to yourself by dumping a VCD file, and viewing the waveforms inside the design.
You could replace the numeric delays with a parameter to make it easier to change to different frequencies.
Note: You stated the clk delay was originally #1. This gives the clk signal a period of 2ns, which is 500MHz, not 50MHz.
I've got a simple project which requires me to write a code for RS232 receiver and sender, then put them together and, finally, test if it works properly. I've prepared code for both sender and receiver (and also connecting block - top). My problem is that I don't know how to connect them, so they could work with each other properly.
The main issue is that I can't "transfer" data from data_o to data_i because of the fact that one is reg and second - wire. I wouldn't like to use inout for these purposes. I can't figure out any possible modifications to make it work.
Another issue is putting some flags that could kind of follow idea like this: if receiving -> not sending, if sending -> not receiving.
Here's my code:
top.v
`timescale 1ns / 1ps
module top (
clk_i,
rst_i,
RXD_i,
data_i,
TXD_o,
data_o
);
input clk_i;
input rst_i;
input RXD_i;
output TXD_o;
//the problem is here, can't data_i <= data_o because output is reg
input [7:0] data_i;
output [7:0] data_o;
receiver r1(clk_i, RXD_i, data_o);
sender s1(clk_i, data_i, TXD_o);
endmodule
receiver.v
`timescale 1ns / 1ps
module receiver (
clk_i,
RXD_i,
data_o
);
//inputs and outputs
input clk_i;
input RXD_i;
output reg [7:0] data_o;
//counter values
parameter received_bit_period = 5208;
parameter half_received_bit_period = 2604;
//state definitions
parameter ready = 2'b00;
parameter start_bit = 2'b01;
parameter data_bits = 2'b10;
parameter stop_bit = 2'b11;
//operational regs
reg [12:0] counter = 0; //9765.625Hz
reg [7:0] received_data = 8'b00000000;
reg [3:0] data_bit_count = 0;
reg [1:0] state = ready;
//latching part
reg internal_RXD;
always #(posedge clk_i) //latch RXD_i value to internal_RXD
begin
internal_RXD = RXD_i;
end
always #(clk_i) //receiving process
begin
case (state)
ready :
begin
if (internal_RXD == 0)
begin
state <= start_bit;
counter <= counter + 1;
end
else
begin
state <= ready;
counter <= 0;
data_bit_count <= 0;
end
end
start_bit :
begin
if (counter == half_received_bit_period)
begin
if (internal_RXD == 0)
begin
state <= data_bits;
counter <= 0;
end
end
else
begin
state <= start_bit;
counter <= counter + 1;
end
end
data_bits :
begin
if (counter == received_bit_period)
begin
received_data[data_bit_count] <= internal_RXD;
data_bit_count <= data_bit_count + 1;
counter <= 0;
if (data_bit_count == 8)
state <= stop_bit;
end
else
counter <= counter + 1;
end
stop_bit:
begin
counter <= counter + 1;
if (counter == received_bit_period)
begin
state <= ready;
data_o <= received_data;
end
end
endcase
end
endmodule
sender.v
`timescale 1ns / 1ps
module sender (
clk_i,
data_i,
TXD_o
);
//inputs and outputs
input clk_i;
input [7:0] data_i;
output reg TXD_o;
//counter values
parameter received_bit_period = 5208;
parameter half_received_bit_period = 2604;
//state definitions
parameter ready = 1'b0;
parameter data_bits = 1'b1;
//operational regs
reg [12:0] counter = 0; //9765.625Hz
reg [9:0] framed_data = 0;
reg [3:0] data_bit_count = 0;
reg state = ready;
always #(posedge clk_i) //sending process
begin
case (state)
ready :
begin // flag needed?
state <= data_bits;
TXD_o <= 1;
framed_data[0] <= 1'b0;
framed_data[8:1] <= data_i;
framed_data[9] <= 1'b1;
counter <= 0;
end
data_bits :
begin
counter <= counter + 1;
if (data_bit_count == 10)
begin // flag needed?
state <= ready;
data_bit_count <= 0;
TXD_o <= 1;
end
else
begin
if (counter == received_bit_period)
begin
data_bit_count <= data_bit_count + 1;
end
TXD_o <= framed_data[data_bit_count];
end
end
endcase
end
endmodule
You don't!
In all CPU's and FPGA nowadays the read and write data path are separate buses. You will find that also with all CPU cores. Have a look at AXI or AHB bus protocols from ARM.
What is more worrying is the way you have implemented your functions. You would at least need some 'data valid' signal for the transmitter to know when there is valid data to transmit and for the receive when valid data has arrived.
Even that is not enough because for the TX the connecting logic would need to know when the data has been send and the next byte can go out.
You need to make a (preferably standard) CPU interface which talks to your UART. (For beginner I would not use AXI.)
As to your flags: they would come from within the CPU interface.
Last: a UART should be capable of transmitting and receiving at the same time.
EDIT: removed some redundancies, moved all assignments to non-blocking, inserted a reset mapped as one of the input buttons of my FPGA... but when I implement the code, it starts transmitting the same wrong character and gets stuck in a single state of my machine.
Post Synthesis and Post-Implementation simulations are identical,$time-wise
module UART (reset_button, sysclk_p, sysclk_n,TxD, Tx_busy, Tx_state_scope_external);
input reset_button, sysclk_p, sysclk_n;
output wire TxD, Tx_busy;
output wire [1:0]Tx_state_scope_external;
//internal communications signals
wire clk_internal;
//buffer unit control signals
wire [7:0]TxD_data_internal;
wire Tx_start_internal;
wire Tx_busy_internal;
wire reset_flag;
reset_buf RESET_BUFF (.reset_internal (reset_flag), .reset (reset_button));
differential_CK CK_GENERATION (.sysclk_p (sysclk_p), .sysclk_n(sysclk_n), .clk(clk_internal));
output_Dbuffer OB1 (.reset (reset_flag), .RTS_n (Tx_busy_internal), .clk(clk_internal), .TX_trigger (Tx_start_internal), .TX_data(TxD_data_internal));
async_transmitter TX1 (.reset (reset_flag), .clk (clk_internal), .TxD_data(TxD_data_internal), .Tx_start (Tx_start_internal), .TxD(TxD), .Tx_busy_flag(Tx_busy_internal), .Tx_state_scope(Tx_state_scope_external));
obuf_TX O_TX1( .Tx_busy(Tx_busy), .Tx_busy_flag(Tx_busy_internal));
endmodule
module reset_buf (
output reset_internal,
input reset
);
// IBUF: Single-ended Input Buffer
// 7 Series
// Xilinx HDL Libraries Guide, version 14.7
IBUF #(
.IBUF_LOW_PWR("TRUE"), // Low power (TRUE) vs. performance (FALSE) setting for referenced I/O standards
.IOSTANDARD("DEFAULT") // Specify the input I/O standard
) IBUF_inst (
.O(reset_internal), // Buffer output
.I(reset) // Buffer input (connect directly to top-level port)
);
// End of IBUF_inst instantiation
endmodule
module differential_CK(
input sysclk_p,
input sysclk_n,
output clk
);
// IBUFGDS: Differential Global Clock Input Buffer
// 7 Series
// Xilinx HDL Libraries Guide, version 14.7
IBUFGDS #(
.DIFF_TERM("FALSE"), // Differential Termination
.IBUF_LOW_PWR("TRUE"), // Low power="TRUE", Highest performance="FALSE"
.IOSTANDARD("DEFAULT") // Specify the input I/O standard
) IBUFGDS_inst (
.O(clk), // Clock buffer output
.I(sysclk_p), // Diff_p clock buffer input (connect directly to top-level port)
.IB(sysclk_n) // Diff_n clock buffer input (connect directly to top-level port)
);
// End of IBUFGDS_inst instantiation
endmodule
module output_Dbuffer (
input reset,
input RTS_n, //TX_BUSY flag of the transmitter is my ready to send flag
input clk, //ck needed for the FSM
output wire TX_trigger, //TX_START flag of the transmitter now comes from THIS unit instead of Receiver
output wire [7:0]TX_data //byte for transmission
);
//internal variables
reg [7:0] mem [0:9]; //memory init, 10 * 8 bit locations
integer m, n, i, j, k ; //M = row [a.k.a. bytes], N = column [a.k.a. single bits]
reg TX_trigger_int;
reg [7:0] TX_data_int, TX_complete;
//reg sum256_ok;
reg [7:0]checksum_buff ;
//buffer FSM required variables
localparam //state enumeration declaration
BUF_IDLE = 3'b000,
BUF_START = 3'b001,
BUF_BYTES = 3'b010,
BUF_BUSY = 3'b011,
BUF_TX_CHECKSUM = 3'b100;
reg [2:0] buf_state; //2 bits for 4 states
//static assignments of OUTPUTS : Transmission Flag and Transmission Data (content)
assign TX_trigger = TX_trigger_int;
assign TX_data = TX_data_int;
//Block for transmitting [here I manage the TX_Data and TX_Trigger functionality]
always #(posedge clk)
begin
if (reset)
begin
buf_state <= BUF_IDLE;
TX_trigger_int <= 0;
TX_data_int <= 8'b00000000;
end
else case (buf_state)
BUF_IDLE:
begin
TX_trigger_int <= 0;
TX_data_int <= 8'b00000000;
m <=0;
n <=0;
i <=0;
j <=0;
mem[9] <= 8'b01010001; //81
mem[8] <= 8'b01000000; //64
mem[7] <= 8'b00110001; //49
mem[6] <= 8'b00100100; //36
mem[5] <= 8'b00011001; //25
mem[4] <= 8'b00010000; //16
mem[3] <= 8'b00001001; //9
mem[2] <= 8'b00000100; //4
mem[1] <= 8'b00000001; //1
mem[0] <= 8'b00000010;//2
checksum_buff <= 8'd31;
//check if the TX is not busy
if (RTS_n == 0) buf_state <= BUF_START;
end
BUF_START:
begin
TX_trigger_int <= 0;
if ((i == 0) || ( (j - i) > 1 )) buf_state <= BUF_BYTES;
else begin
$display ("BUFFER BUSY #time:", $time);
buf_state <= BUF_BUSY;
end
end
BUF_BYTES:
begin
//check if the TX is busy
if (RTS_n==0)
begin
// TX_trigger_int = 1; 21.09 MOVED THE TRIGGER INSIDE THE ELSE N LINE 498
if (j > 9)
begin
TX_trigger_int <= 0;
buf_state <= BUF_TX_CHECKSUM;
end
else begin
TX_data_int <= mem[j];
TX_trigger_int <= 1;
j <= j+1;
//TX_trigger_int =0;
buf_state <= BUF_START;
end
end
else buf_state <= BUF_BYTES;
end
BUF_BUSY:
begin
if (RTS_n == 0)
begin
$display ("BUFFER AVAILABLE AGAIN #time:", $time);
buf_state <= BUF_START;
end
end
BUF_TX_CHECKSUM:
begin
if (RTS_n==0) begin
TX_data_int <= checksum_buff;
// sum256_ok = 0;
TX_trigger_int <= 1;
buf_state <= BUF_IDLE;
end
end
//default: buf_state <= BUF_IDLE;
endcase
end
endmodule
module async_transmitter(
input clk,
input reset,
//differential clock pair
input [7:0] TxD_data,
input Tx_start, // it is ==TX_TRIGGER
output wire TxD, //bit being sent to the USB
output reg Tx_busy_flag,
output wire [1:0]Tx_state_scope
);
localparam //state enumeration declaration
TX_IDLE = 2'b00,
TX_START_BIT = 2'b01,
TX_BITS = 2'b10,
TX_STOP_BIT = 2'b11;
parameter ClkFrequencyTx = 200000000; // 200MHz
parameter BaudTx = 9600;
reg [1:0] Tx_state; //2 bits for 4 states
integer bit_counter; //bit counter variable
reg [7:0]TxD_data_int, TxD_int;
integer i; //vector index for output data
wire TXSTART_Trigger;
StartDetectionUnitTX SDU_TX (.clk(clk), .state (Tx_state), .signal_in (Tx_start), . trigger (TXSTART_Trigger));
wire BitTick;
BaudTickGen #(ClkFrequencyTx, BaudTx) as (.clk(clk), .trigger (TXSTART_Trigger), .tick(BitTick));
//BitTick is 16times the frequency generated during the RX portion
assign TxD = TxD_int;
always #(posedge clk) begin
if (reset)
begin
Tx_state <= TX_IDLE;
TxD_int <= 1;
Tx_busy_flag <=0;
end
else case (Tx_state)
TX_IDLE:
begin //reinitialization and check on the trigger condition
bit_counter <= 0;
TxD_data_int <= 8'b00000000;
i <= 0;
TxD_int <= 1; //idle state
Tx_busy_flag <= 0;
if (TXSTART_Trigger) begin
Tx_state <= TX_START_BIT;
TxD_data_int <= TxD_data;
Tx_busy_flag <= 1;
bit_counter <= 8;
end
end
TX_START_BIT:
begin
if (BitTick)
begin
TxD_int <= 0 ; //start bit is a ZERO logical value
Tx_state <= TX_BITS;
end
end
TX_BITS:
begin
if (BitTick)
begin
bit_counter <= bit_counter -1;
TxD_int <= TxD_data_int[i];
// $display ("ho trasmesso dalla UART un bit di valore %b al tempo: ", TxD, $time);
i <= i+1;
if (bit_counter < 1) Tx_state <= TX_STOP_BIT;
end
end
TX_STOP_BIT:
begin
if (BitTick) begin
TxD_int <= 1; //STOP BIT is a logical '1'
Tx_busy_flag <= 0;
Tx_state <= TX_IDLE;
end
end
// default: Tx_state <= TX_IDLE;
endcase
end
assign Tx_state_scope = Tx_state;
endmodule
module obuf_TX (
output Tx_busy,
input Tx_busy_flag
);
// OBUF: Single-ended Output Buffer
// 7 Series
// Xilinx HDL Libraries Guide, version 14.7
OBUF #(
.DRIVE(12), // Specify the output drive strength
.IOSTANDARD("DEFAULT"), // Specify the output I/O standard
.SLEW("SLOW") // Specify the output slew rate
) OBUF_inst (
.O(Tx_busy), // Buffer output (connect directly to top-level port)
.I(Tx_busy_flag) // Buffer input
);
// End of OBUF_inst instantiation
endmodule
module StartDetectionUnitTX ( //detects a rising edge of the start bit == TRANSMISSION START, during the IDLE state = 0000
input clk, [1:0]state,
input signal_in,
output trigger
);
reg signal_d;
always #(posedge clk)
begin
signal_d <= signal_in;
end
assign trigger = signal_in & (!signal_d) & (!state);
endmodule
module BaudTickGen (
input clk, trigger,
output tick //generates a tick at a specified baud rate *oversampling
);
parameter ClkFrequency = 200000000; //sysclk at 200Mhz
parameter Baud = 9600;
parameter Oversampling = 1;
//20832 almost= ClkFrequency / Baud, to make it an integer number
integer counter = (20833/Oversampling)-1; //-1 so counter can get to 0
reg out;
always #(posedge clk)
begin
if (trigger)
begin
counter <= (20833/Oversampling)-1; //-1 so counter can get to 0
out <= 1;
end
if (counter == 0)
begin
counter <= (20833/Oversampling)-1; //-1 so counter can get to 0
out <= 1;
end
else begin
counter <= counter-1;
out <= 0;
end
end
assign tick = out;
endmodule
My FPGA is a Virtex-7 VC707 and I'm using Vivado for my design flow.
Here I am attaching an image of my looping error.
error image
What have you done? Have you just simulated the code? Are you saying that it fails on the board, but the post-implementation sim is Ok?
A difference between pre- and post-implementation sim could point to a race condition. Get rid of all your blocking assignments, replace with NBAs (why did you use blocking assignments?)
Don't go to Chipscope - it's just a red flag that you don't know what you're doing
The code is a mess - simplify it. The Xilinx-specific stuff is irrelevant - get rid of it if you want anyone to look at it, fix comments (2-bit state?!), fix your statement about getting stuck in '10', etc
Have you run this through Vivado? Seriously? You have multiple drivers on various signals. Get rid of the initial block, use a reset. Initialise the RAM in a way which is understood by the tools. Even if Vivado is capable of initialising stuff using a separate initial block, don't do it
Get rid of statements like 'else Tx_state = TX_IDLE' in the TX_IDLE branch - they're redundant, and just add verbosity
Write something which fails stand-alone, and post it again.
I want to make a simple project on which I load 10 numbers in SDRAM of my Altera DE1-SOC ready to be taken as input for a Logic Unit I am creating,
the logic unit only does a simple arithmetic " Y =(X+1)*(X-1), X is the input and Y is the output ".It will pick the values (one by one) from the SDRAM, calculate and spit out the result in another SDRAM arrangement.
Then the SDRAM should store this data, I wish to take this data out of the DE1-SOC to a PC, for example.
Until now I've done this code, (in case is necessary to check):
module mem_prue1 (rst_n, clk, fin);
input clk, rst_n;
output fin;
wire [6:0] data_X;
reg [6:0] sec_A, sec_B, s_sec_A, s_sec_B;
reg [13:0] rslt_Y, s_rslt_Y;
reg save_sec_A, save_sec_B, save_rslt_Y, set_ram;
reg clear, enable, next_num, no_num, fin, w_mem_out;
reg [1:0] state, nextstate;
reg [3:0] indx;
parameter S0 = 0; parameter S1 = 1; parameter S2 = 2; parameter S3 = 3;
RAM_IN RAM_IN_inst1 (
.data_X (data_X),
.indx(indx)
);
RAM_OUT RAM_OUT_inst1 (
.s_rslt_Y (s_rslt_Y),
.w_mem_out (w_mem_out),
.set_ram (set_ram)
);
always # (posedge clk or negedge rst_n)
begin
if (~rst_n)
begin
set_ram <= 1;
indx <= 0;
no_num <=0;
enable <= 1;
s_sec_A <= 0;
s_sec_B <= 0;
s_rslt_Y <= 0;
state <= S0;
end
else if (clear)
begin
enable <= 0;
state <= nextstate;
no_num <= 0;
indx <= 0;
set_ram <= 1;
fin <= 1;
end
else
begin
set_ram <= 0;
state <= nextstate;
if (save_sec_A)
s_sec_A <= sec_A;
if (save_sec_B)
s_sec_B <= sec_B;
if (save_rslt_Y)
s_rslt_Y <= rslt_Y;
if (next_num)
begin
if (indx >= 9)
begin
indx <= 0; /// resetea el indice de la memoria
no_num <= 1; // se informa que no hay numeros
end
else
indx <= indx + 4'b0001;
end
end
end
always # (*)
begin
w_mem_out = 0;
sec_A = 0; sec_B = 0; rslt_Y = 0;
save_sec_A = 0; save_sec_B = 0;
save_rslt_Y = 0; clear = 0;
next_num = 0;
case (state)
S0:
begin
if (~enable)
nextstate = S0;
else
begin
sec_A = data_X + 7'b0000001;
save_sec_A = 1;
nextstate = S1;
end
end
S1: begin
sec_B = data_X - 7'b0000001;
save_sec_B = 1;
nextstate = S2;
end
S2: begin
rslt_Y = s_sec_A * s_sec_B;
save_rslt_Y = 1;
nextstate = S3;
end
S3: begin
w_mem_out = 1;
next_num = 1;
nextstate = S0;
if (no_num == 1)
clear = 1;
end
default:
nextstate = S0;
endcase
end
endmodule
This is the memory I "simulated" as a RAM for input data :
module RAM_IN (data_X, indx);
input [0:3] indx;
output [6:0] data_X;
reg [6:0] data_X;
reg [6:0] in_ram [0:9];
always # (indx)
data_X = in_ram [indx];
initial
begin
$readmemb("C:/altera/15.0/PROYECTOS/mem_prue/in_ram.txt", in_ram);
end
endmodule
and this for output data:
module RAM_OUT (s_rslt_Y, w_mem_out, set_ram);
input [13:0]s_rslt_Y;
input set_ram, w_mem_out;
reg [3:0] addr_out; // tamano de 57600 datos
reg [13:0] mem_out [0:9];
always # (w_mem_out or set_ram)
begin
if (set_ram)
addr_out = 0;
else if (w_mem_out == 1)
begin
mem_out [addr_out] = s_rslt_Y;
addr_out = addr_out + 4'b0001;
end
else
addr_out = addr_out;
end
endmodule
and The test bench:
module mem_prue1_tb ();
wire fin;
reg clk, rst_n;
mem_prue1 mem_prue1_inst1 (
.clk(clk),
.rst_n (rst_n),
.fin (fin)
);
initial
begin
rst_n <= 1;
#1 rst_n <= 0;
#2 rst_n <= 1;
clk <= 1;
end
always
begin
#5 clk = ~clk;
end
//---------------------------
integer out,i;
initial begin
out=$fopen("C:/altera/15.0/PROYECTOS/mem_prue/mem_out.txt");
end
always#(posedge clk) begin
if(fin==1)
for(i=0;i<=9;i=i+1) begin
$fdisplay(out,"%b",mem_prue1_inst1.RAM_OUT_inst1.mem_out[i]);
if(i==9)begin
$stop;
end
end
end
endmodule
So, basically now I want to substitute that "simulated" RAM for real SDRAM, I don't know what is the most practical way to do it.
Should I use QSYS, NIOS-II, or only by learning the Megawizard IP library and generating a variation of the UniPHY. I'm just learning to use the FPGA, so I'm kinda confused at this part. I want to download the proper manuals and tutorials for learn this in detail but I wish you guys could orient me.
PD: My target would be to "isolate" my logic unit from the "simulated ram" because I'm guessing if I program just like I did, it will consume logic resources and my main goal is to calculate the Area, Energy and Speed consumption of my logic ONLY, without the memory burden.
Thanks.
Your keywords, (QSYS, megawizard, uniphy) indicate Altera. If you are just going to simulate the SDRAM, you should be okay. Sometimes, bringing up that interface in a real chip gets hairy the first time.
If you are just doing simulation, I would use QSYS to generate the SDRAM controller module. If you can do DDR3, that there is the ability to generate an Example Design. If you do that, you will be able to see how the interface to the DDR3 works. In fact it should be already to go.
As an FYI, there will be more latency on the read though, so you need to be able to either wait for the response, or you need to have a pipeline architecture, where you can have multiple reads in flight simultaneously.
The "FPGAs Now What?" tutorial offers some advice (for a Xilinx platform, which apparently doesn't match your particular case) on SDRAM simulation. Basically, it boils down to finding an SDRAM vendor with an available Verilog/VHDL model, and plugging it in to a simulation testbench. (Note that these models aren't going to be synthesizeable.)
http://www.xess.com/static/media/appnotes/FpgasNowWhatBook.pdf
Altera has a tutorial for connecting the SDRAM to a Nios II system (using Qsys) on the DE1-SoC board.
ftp://ftp.altera.com/up/pub/Altera_Material/16.0/Tutorials/Verilog/DE1-SoC/Using_the_SDRAM.pdf
If you're implementing your own controller (or using a HW only IP Core), the tutorial also has the timing information for the SDRAM as well.
I'm using a Pmod_KYPD connected to a Digilent FPGA.
My purpose is to activate the first LED on the board after the combination '123' is entered in to the keypad.
I've downloaded the demo code of the keypad from Digilent which works fine and it basically displays whatever pressed on from the keypad on to the 7-segment display.
The demo code is composed of two parts, which are decode and display. I've modified the display code(only the second 'always' statement is my addition) like the following with a statement machine:
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// Company: Digilent Inc 2011
// Engineer: Michelle Yu
// Josh Sackos
// Create Date: 07/23/2012
//
// Module Name: DisplayController
// Project Name: PmodKYPD_Demo
// Target Devices: Nexys3
// Tool versions: Xilinx ISE 14.1
// Description: This file defines a DisplayController that controls the seven segment display that works with
// the output of the Decoder.
//
// Revision History:
// Revision 0.01 - File Created (Michelle Yu)
// Revision 0.02 - Converted from VHDL to Verilog (Josh Sackos)
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// ==============================================================================================
// Define Module
// ==============================================================================================
module DisplayController(
DispVal,
anode,
segOut,
led,
clk,
reset
);
input clk;
input reset;
// ==============================================================================================
// Additional Declarations
// ==============================================================================================
output reg [7:0] led;
reg [1:0] state;
// ==============================================================================================
// Port Declarations
// ==============================================================================================
input [3:0] DispVal; // Output from the Decoder
output [3:0] anode; // Controls the display digits
output [6:0] segOut; // Controls which digit to display
// ==============================================================================================
// Parameters, Regsiters, and Wires
// ==============================================================================================
// Output wires and registers
wire [3:0] anode;
reg [6:0] segOut;
// ==============================================================================================
// Implementation
// ==============================================================================================
// only display the rightmost digit
assign anode = 4'b1110;
//------------------------------
// Segment Decoder
// Determines cathode pattern
// to display digit on SSD
//------------------------------
always #(DispVal) begin
case (DispVal)
4'h0 : segOut <= 7'b1000000; // 0
4'h1 : segOut <= 7'b1111001; // 1
4'h2 : segOut <= 7'b0100100; // 2
4'h3 : segOut <= 7'b0110000; // 3
4'h4 : segOut <= 7'b0011001; // 4
4'h5 : segOut <= 7'b0010010; // 5
4'h6 : segOut <= 7'b0000010; // 6
4'h7 : segOut <= 7'b1111000; // 7
4'h8 : segOut <= 7'b0000000; // 8
4'h9 : segOut <= 7'b0010000; // 9
4'hA : segOut <= 7'b0001000; // A
4'hB : segOut <= 7'b0000011; // B
4'hC : segOut <= 7'b1000110; // C
4'hD : segOut <= 7'b0100001; // D
4'hE : segOut <= 7'b0000110; // E
4'hF : segOut <= 7'b0001110; // F
default : segOut <= 7'b0111111;
endcase
end
always #(posedge clk) begin
if(reset) begin
led <= 8'b11111111;
state <= 0;
end
else begin
case (state)
2'b00: begin
if(DispVal == 1) begin
state <= state + 1;
end
//led <= 8'b10000000;
end
2'b01: begin
if(DispVal == 2) begin
state <= state + 1;
end
else
state <= 0;
//led <= 8'b00000010;
end
2'b10: begin
if(DispVal == 3) begin
state <= state + 1;
end
else
state <= 0;
//led <= 8'b00000100;
end
2'b11: begin
led <= 8'b11111111;
end
default: led <= 0;
endcase
end
end
endmodule
But my modification is not working unfortunately. If I enter '123' from the keypad, the LED simply doesn't get activated.
What should I change in my modification?
Thanks. :)
You need a condition that keeps the current state. Example:
2'b01: begin
if(DispVal == 2) begin
state <= state + 1;
end
else if(DispVal == 1)
state <= state; // keep current state
else
state <= 0;
//led <= 8'b00000010;
end
Note: this is assuming DispVal is sticky (i.e., it holds it value until a different key is pressed). If not, then add logic or states to handle the no key press condition.
Debug suggestion: if you do not a a simulator, then un-comment the commented-out led <= in the state machine. This will allow monitoring of the state order