Self referencing in global, static object in CoffeeScript - object

Is there any way to accomplish self referencing as below within a global, static object in CS?
#Obj
x: ['string']
y: [#x]
From what I've read, this doesn't seem possible. Mainly due to the object having not been created yet at time of assignment of y. Some form of getter and setter (e.g. __definedSetter__, __defineGetter__, etc.) seem like the most likely options but I would have to turn this object into a class and there are a whole slew of issues with that in CS and I have little reason to do this aside from this self referencing issue. Is there any workaround?
Thanks!

As you mentioned, this would be possible with a class (you can reference and assign Obj.x to Obj.y in the constructor). If it's a static object, I'd just assign it in a separate line with #Obj.y = [#Obj.x].

Related

Is the `def` keyword optional? If so, why use it?

I am aware that a variable can be dynamically typed with the def keyword in Groovy. But I have also noticed that in some circumstances it can be left out, such as when defining method parameters, eg func(p1, p2) instead of func(def p1, def p2). The latter form is discouraged.
I have noticed that this is extendable to all code - anytime you want to define a variable and set its value, eg var = 2 the def keyword can be safely left out. It only appears to be required if not instantiating the variable on creation, ie. def var1 so that it can be instantiated as a NullObject.
Is this the only time def is useful? Can it be safely left out in all other declarations, for example, of classes and methods?
Short answer: you can't. There are some use cases where skipping the type declaration (or def keyword) works, but it is not a general rule. For instance, Groovy scripts allow you to use variables without specific type declaration, e.g.
x = 10
However, it works because groovy.lang.Script class implements getProperty and setProperty methods that get triggered when you access a missing property. In this case, such a variable is promoted to be a global binding, not a local variable. If you try to do the same on any other class that does not implement those methods, you will end up getting groovy.lang.MissingPropertyException.
Skipping types in a method declaration is supported, both in dynamically compiled and statically compiled Groovy. But is it useful? It depends. In most cases, it's much better to declare the type for a better readability and documentation purpose. I would not recommend doing it in the public API - the user of your API will see Object type, while you may expect some specific type. It shows that this may work if your intention is to receive any object, no matter what is its specific type. (E.g. a method like dump(obj) could work like that.)
And last but not least, there is a way to skip type declaration in any context. You can use a final keyword for that.
class Foo {
final id = 1
void bar(final name) {
final greet = "Hello, "
println greet + name + "!"
}
}
This way you can get a code that compiles with dynamic compilation, as well as with static compilation enabled. Of course, using final keyword prevents you from re-assigning the variable, but for the compiler, this is enough information to infer the proper type.
For more information, you can check a similar question that was asked on SO some time ago: Groovy: "def" keyword vs concrete type
in Groovy it plays an important role in Global and Local variable
if the variable name is same with and without def
def is considered local and without def its global
I have explained here in detail https://stackoverflow.com/a/45994227/2986279
So if someone use with and without it will make a difference and can change things.

Storing object in Esent persistent dictionary gives: Not supported for SetColumn Parameter error

I am trying to save an Object which implements an Interface say IInterface.
private PersistentDictionary<string, IInterface> Object = new PersistentDictionary<string, IInterface>(Environment.CurrentDirectory + #"\Object");
Since many classes implement the same interface(all of which need to cached), for a generic approach I want to store an Object of type IInterface in the dictionary.
So that anywhere I can pull out that object type cast it as IInterface and use that object's internal implementation of methods etc..
But, as soon as the Esent cache is initialized it throws this error:
Not supported for SetColumn
Parameter name: TColumn
Actual value was IInterface.
I have tried to not use XmlSerializer to do the same but is unable to deserialize an Interface type.Also, [Serializable] attribute cannot be used on top of a Interface, so I am stuck.
I have also tried to make all the implementations(classes) of the Interface as [Serializable] as a dying attempt but to no use.
Does any one know a way out ? Thanks in advance !!!
The only reason that only structs are supported (as well as some basic immutable classes such as string) is that the PersistentDictionary is meant to be a drop-in replacement for Dictionary, SortedDictionary and other similar classes.
Suppose I have the following code:
class MyClass
{
int val;
}
.
.
.
var dict = new Dictionary<int,MyClass>();
var x = new MyClass();
x.val = 1;
dict.Add(0,x);
x.val = 2;
var y = dict[0];
Console.WriteLine(y.val);
The output in this case would be 2. But if I'd used the PersistentDictionary instead of the regular one, the output would be 1. The class was created with value 1, and then changed after it was added to the dictionary. Since a class is a reference type, when we retrieve the item from the dictionary, we will also have the changed data.
Since the PersistentDictionary writes the data to disk, it cannot really handle reference types this way. Serializing it, and writing it to disk is essentially the same as treating the object as a value type (an entire copy is made).
Because it's intended to be used instead of the standard dictionaries, and the fact that it cannot handle reference types with complete transparency, the developers instead opted to support only structs, because structs are value types already.
However, if you're aware of this limitation and promise to be careful not to fall into this trap, you can allow it to serialize classes quite easily. Just download the source code and compile your own version of the EsentCollections library. The only change you need to make to it is to change this line:
if (!(type.IsValueType && type.IsSerializable))
to this:
if (!type.IsSerializable)
This will allow classes to be written to the PersistentDictionary as well, provided that it's Serializable, and its members are Serializable as well. A huge benefit is that it will also allow you to store arrays in there this way. All you have to keep in mind is that it's not a real dictionary, therefore when you write an object to it, it will store a copy of the object. Therefore, updating any of your object's members after adding them to the PersistentDictionary will not update the copy in the dictionary automatically as well, you'd need to remember to update it manually.
PersistentDictionary can only store value-structs and a very limited subset of classes (string, Uri, IPAddress). Take a look at ColumnConverter.cs, at private static bool IsSerializable(Type type) for the full restrictions. You'd be hitting the typeinfo.IsValueType() restriction.
By the way, you can also try posting questions about PersistentDictionary at http://managedesent.codeplex.com/discussions .
-martin

Kohana helper attribute

I have a question that keeps bothering me. Currently, I have started using Kohana 3.2 Framework. I've written a helper to handle some functionality - I have a number of methods, which are (as it should be) declared STATIC. But, all of these methods are somehow working with the database, so I need to load a model. Currently, every method has a non-static variable like this:
$comment = new Model_Comments;
$comment->addComment("abc");
OK, it seems to be working, but then I wanted to get rid of this redundancy by using class attribute to hold the instance of the model (with is class as well).
Something like this:
private static $comment; // Declaring attribute
self::$comment = new Model_Comment; // This is done within helper __constuct method
self::$comment->addComment("abc"); // And call it within the method.
But, I got failed with: Call to a member function addComment() on a non-object
Question is: is it possible to do it ? Maybe there are some other approaches ?
Sorry for a long story and, thanks in advice! :P
A static method cannot call a non-static method without operating on an instance of the class. So, what you're proposing won't work. There may be a way do accomplish something similar, but what about trying the following:
You could implement the singleton or factory pattern for your "helper" class. Then, you could create the model (as an attribute) as you instantiate/return the instance. With an actual instance of your "helper" class, you won't have to worry about the static scope issues.
In other words, you can create a helper-like class as a "normal" class in your application that, upon creation, always has the necessary model available.
I'd be happy to help further if this approach makes sense.
David

Pass a dynamic variable in a static parameter of a method in C# 4

This is what I am trying to do:
public void method(int myVal, string myOtherVal)
{
// doing something
}
dynamic myVar = new SomeDynamicObjectImplementer();
method(myVar.IntProperty, myVar.StringProperty);
Note that my properties are also DynamicObjects. My problem is that the TryConvert method is never called and that I get a runtime error saying the method signature is invalid.
The following is working great:
string strVar = myVar.StringProperty;
int intVar = myVar.IntProperty;
And I would like to avoid
method((int)myVar.IntProperty, (string)myVar.StringProperty);
Is it possible to override something in DynamicObject to allow this? (or something else)
Thank you
The problem is your assumption that it will try a dynamic implicit convert on arguments of an dynamic invocation to make a method call work, this is not true.
When your arguments aren't statically typed, it will use the runtime type to find the best matching method (if the runtime type matches the static rules for implicit conversion to the argument type this will work too), since your your IntProperty,StringProperty seem to be returning a DynamicObject rather than an Int and a String or something that could statically be converter implicitly, this lookup will fail.
If SomeDynamicObjectImplementer could actually return an Int for IntProperty and a String for StringProperty your method call for without casting would actually work. It's also probably a better dynamic typing practice if you data type is based on the actually type of data rather than usage using try convert. You could add actually implicit convert methods for every possible type that you could return to that returned DynamicObject type, but that could cause strange resolution issues to depending on how much you are overloading.
However, another option to keep your dynamic implementation the same is to mix a little controlled static typing in, you can use ImpromputInterface (in nuget) to put an interface on top of a dynamic object, if you do that then the TryConvert method would be called on your returned DynamicObjects.
public interface ISomeStaticInterface{
int IntProperty {get;}
string StringProperty {get;}
}
...
var myVar = new SomeDynamicObjectImplementer().ActLike<ISomeStaticInterface>();
method(myVar.IntProperty, myVar.StringProperty);
Instead of using myVar.IntProperty can't you just put them in variables first, like you already did, and then use then for your method?
so method(intVar , strVar); seems fine. At least more elegant than casting.
Of course, if you're already certain your object will have IntProperty and StringProperty, why not just make an actual object with those properties instead?
Why are you doing the cast?
method(myVar.IntProperty, myVar.StringProperty);
should compile.
If the two properties must be the types suggested by the names then they shouldn't be dynamic.

What is the difference between static and dynamic binding?

Binding times can be classified between two types: static and dynamic. What is the difference between static and dynamic binding?
Could you give a quick example of each to further illustrate it?
In the most general terms, static binding means that references are resolved at compile time.
Animal a = new Animal();
a.Roar(); // The compiler can resolve this method call statically.
Dynamic binding means that references are resolved at run time.
public void MakeSomeNoise(object a) {
// Things happen...
((Animal) a).Roar(); // You won't know if this works until runtime!
}
It depends when the binding happens: at compile time (static) or at runtime (dynamic). Static binding is used when you call a simple class method. When you start dealing with class hierarchies and virtual methods, compiler will start using so called VTABLEs. At that time the compiler doesn't know exactly what method to call and it has to wait until runtime to figure out the right method to be invoked (this is done through VTABLE). This is called dynamic binding.
See Wikipedia article on Virtual tables for more details and references.
I came accross this perfect answer of a quora user "Monis Yousuf". He explain this perfectly. I am putting it here for others.
Binding is mostly a concept in object oriented programming related to Polymorphism.
Firstly, understand what Polymorphism is. Books say that it means "one name and multiple forms". True, but too abstract. Let us take a real-life example. You go to a "Doctor", a doctor may be an eye-specialist, ENT specialist, Neuro-Surgeon, Homeopath etc.
Here, a "doctor" is a name and may have multiple types; each performing their own function. This is polymorphism in real life.
Function Overloading: This concept depicts Static Binding. Function overloading may be roughly defined as, two or more methods (functions) which have the same name but different signatures (including number of parameters, types of parameters, differt return types) are called overloaded methods (or functions).
Suppose you have to calculate area of a rectangle and circle. See below code:-
class CalculateArea {
private static final double PI = 3.14;
/*
Method to return area of a rectangle
Area of rectangle = length X width
*/
double Area(double length, double width) {
return (length * width);
}
/*
Method to return area of circle
Area of circle = π * r * r
*/
double Area(double radius) {
return PI * radius * radius;
}
}
In above code, there are two methods "Area" with different parameters. This scenario qualifies as function overloading.
Now, coming to the real question: How is this static binding?
When you call any of the above functions in your code, you have to specify the parameters you are passing. In this scenario, you will pass either:
Two parameters of type double [Which will call the first method, to
calculate are of a rectangle]
Single parameter of type double [Which will call the second method, to calculate area of a circle]
Since, at compile time the java compiler can figure out, WHICH function to call, it is compile-time (or STATIC) binding.
Function Overriding: Function overriding is a concept which is shown in inheritance. It may roughly be defined as: when there is a method present in a parent class and its subclass also has the same method with SAME signature, it is called function overriding. [There is more to it, but for the sake of simplicity, i have written this definition] It will be easier to understand with below piece of code.
class ParentClass {
int show() {
System.out.println("I am from parent class");
}
}
class ChildClass extends ParentClass{
int show() {
System.out.println("I am from child class");
}
}
class SomeOtherClass {
public static void main (String[] s) {
ParentClass obj = new ChildClass();
obj.show();
}
}
In above code, the method show() is being overridden as the same signature (and name) is present in both parent and child classes.
In the third class, SomeOtherClass, A reference variable (obj) of type ParentClass holds the object of ChildClass. Next, the method show() is called from the same reference variable (obj).
Again, the same question: How is this Dynamic Binding?
At compile time, the compiler checks that the Reference variable is of type ParentClass and checks if the method show() is present in this class. Once it checks this, the compilation is successful.
Now, when the programs RUNS, it sees that the object is of ChildClass and hence, it runs the show() method of the ChildClass. Since this decision is taken place at RUNTIME, it is called Dynamic Binding (or Run-time Polymorphism).
Link for original answer
Static Binding: is the process of resolving types, members and operations at compile-time.
For example:
Car car = new Car();
car.Drive();
In this example compiler does the binding by looking for a parameterless Drive method on car object. If did not find that method! search for methods taking optional parameters, and if did not found that method again search base class of Car for that method, and if did not found that method again searches for extension methods for Car type. If no match found you'll get the compilation error!
I this case the binding is done by the compiler, and the binding depends on statically knowing the type of object. This makes it static binding.
Dynamic Binding: dynamic binding defers binding (The process of resolving types, members and operations) from compile-time to runtime.
For example:
dynamic d = new Car();
d.Drive();
A dynamic type tells the compiler we expect the runtime type of d to have Drive method, but we can't prove it statically. Since the d is dynamic, compiler defers binding Drive to d until runtime.
Dynamic binding is useful for cases that at compile-time we know that a certain function, member of operation exists but the compiler didn't know! This commonly occurs when we are interoperating with dynamic programming languages, COM and reflection.
Binding done at compile time is static binding and binding done at run time is dynamic binding.In static binding data type of the pointer resolves which method is invoked.But in dynamic binding data type of the object resolves which method is invoked.
* Execution time:-* bindings of variables to its values,as well as the binding of variable to particular storage location at the time of execution is called execution time binding.
IT MAY BE OF TWO TYPES
on entry to a subprogram.
At arbitrary points during execution time.
COMPILE TIME BINDING :- (TRANSLATION TIME)
It consist of the following.
Binding chosen by programmer.
Binding chosen by the translator.
Binding chosen by the loader.

Resources