Spark-Cassandra: how to efficiently restrict partitions - apache-spark

After days thinking about it I'm still stuck with this problem: I have one table where "timestamp" is the partition key. This table contains billions of rows.
I also have "timeseries" tables that contain timestamps related to specific measurement processes.
With Spark I want to analyze the content of the big table. Of course it is not efficient to do a full table scan, and with a rather fast lookup in the timeseries table I should be able to target only, say, 10k partitions.
What is the most efficient way to achieve this?
Is SparkSQL smart enough to optimize something like this
sqlContext.sql("""
SELECT timeseries.timestamp, bigtable.value1 FROM timeseries
JOIN bigtable ON bigtable.timestamp = timeseries.timestamp
WHERE timeseries.parameter = 'xyz'
""")
Ideally I would expect Cassandra to fetch the timestamps from the timeseries table and then use that to query only that subset of partitions from bigtable.

If you add an "Explain" call to your query you'll see what the Catalyst planner will do for your query but I know it will not do the optimizations you want.
Currently Catalyst has no support for pushing down joins to DataSources which means the structure of your query is most likely got to look like.
Read Data From Table timeseries with predicate parameter = 'xyz'
Read Data From Table bigtable
Join these two results
Filter on bigtable.timestamp == timeseries.timestamp
The Spark Cassandra Connector will be given the predicate from the timeseries table read and will be able to optimize it if is a clustering key or a partition key. See the Spark Cassandra Connector Docs. If it doesn't fit into one of those pushdown categories it will require a Full Table Scan followed by a filter in Spark.
Since the Read Data From Table bigtable has no restrictions on it, Spark will instruct the Connector to read the entire table (Full Table Scan).

I can only take a guess on the optimizations done by the driver, but I'd surely expect a query such as that to restrict the JOIN on the WHERE, which means that your simple query will be optimized.
What I will do as well is point you in the general direction of optimizing Spark SQL. Have a look at Catalyst for Spark SQL, which is a tool for greatly optimizing queries all the way down to the physical level.
Here is a breakdown of how it works:
Deep Dive into Spark SQL Catalyst Optimizer
And the link to the git-repo: Catalyst repo

Related

How can I implement pyspark Cassandra "keybased" connector?

I am using Spark 2.4.7 and I have implemented normal pyspark cassandra connector, but there is a use case where I need to implement key based connector, I am not getting useful blogs/tutorials around it, Someone please help me with it.
I have tried normal pyspark-cassandra connector and it is working good.
Now I am expecting to implement keybased connector, which I am unable to find.
Normally Cassandra Loads entire table but I want not to load entire table but run a query on source and get the required data
By keybased I want to get data using some keys i.e. using where condition like
Select *
From <table_name>
Where <column_name>!=0
should run on source and load those data only which satisfies this condition.
To have this functionality you need to understand how both Spark & Cassandra works separately & together:
When you do spark.read, Spark doesn't load all data - it just fetches metadata, like, table structure, column names & types, partitioning schema, etc.
When you perform query with condition (where or filter), Spark Cassandra Connector tries to perform so-called predicate pushdown - convert Spark SQL query into corresponding CQL query, but it really depends on the condition. And if it's not possible, then it goes through all data, and perform filtering on the Spark side. For example, if you have condition on the column that is partition key - then it will be converted into CQL expression SELECT ... FROM table where pk = XXX. Similarly, there are some optimizations for queries on the clustering columns - Spark will need to go through all partitions, but it's still will be more optimized as it may filter data based on the clustering columns. Use a link above to understand what conditions could be pushed down into Cassandra and which aren't. The rule of thumb is - if you can execute query in CQLSH without ALLOW FILTERING, then it will be pushed down.
In your specific example, you're using inequality predicate (<> or !=) that isn't supported by Cassandra, so Spark Cassandra connector will need to go through all data, and filtering will happen on the Spark side.

Flexibility of Databricks Delta Optimize Command

I was trying to optimize my DataBricks delta tables in order to improve query performance.
I am having few doubts to be clarified, asking here since I did not get answer from the documentation.
I am having few tables which are not partitioned but adding data incrementally. Is there any way to only optimize only the incrementally adding data at each week.
(I understood optimization happens at partitions and if it is not partitioned, optimization can be made on complete table data, currently we are doing like that. but just to confirm that there are no other work arounds.)
I have tables which are partitioned, and i try to optimize the table by providing a subquery to fetch the partition to be optimized. Below is the query used where load_date is the partition column.
OPTMIZE database.table where
load_date > (select to_date(max(load_date)) as load_date
from audit.delta_optimization_audit
where source = 'abc' and job_status = 'success')
But the optimization failed with ERROR
org.apache.spark.sql.AnalysisException: Subquery is not supported in partition predicates.
What and all conditions can be added in the OPTIMIZE WHERE clause? Is subquery not allowed in WHERE clause for OPTIMIZE command?
If there are multiple partitions like YEAR then MONTH then DATE, How should I provide Partitions in WHERE clause to OPTIMIZE data incrementally?
Is it useful to run OPTIMIZE query on a table which is not partitioned ?
Any Leads Appreciated. Thanks in Advance!

Should we create separate dataframe for each table in a join query in SparkSQL

We need to convert and execute execute hive queries in Spark SQL.The query involves a join between 2 tables.We will create a dataframe and then sparksql queries on top of it.Please find samples hive query along with converted query.
------Hive query
select a.col1,a.col2,a.col3,b.col4,b.col5,b.col6.b.col7
from table1 a left outer join table2 b
on a.col3=b.col3
-----Spark SQL
import org.apache.spark.sql.hive.HiveContext
val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
val q1=hivecontext.sql("select col1,col2,col3,col4 from table1");
val q2=hivecontext.sql("select col3,col5,col6,col7 from table2");
val q3=q1.join(q2,q1("col3")===q2("col3"));
But it is also possible for us to execute the entire query in a single data frame as below
**
val q5=hivecontext.sql("select
a.col1,a.col2,a.col3,b.col4,b.col5,b.col6.b.col7
from table1 a left outer join table2 b
on a.col3=b.col3")**
I would like to know which of the 2 approach(single vs multiple dataframe) we is better to use in such situation and the advantages over the other in various parameters like performance and readability.
Second approach seems to be wise in all aspects
When you run SQL on top of Hive data, HiveContext will run the query in hive and returns the result metadata to Spark. So spark just need to store the resultant metadata set.But in the above case it has to store all the data in hive into its RDD's.
Maintaining a single RDD helps in optimizing DAG as well.
If you run as a single query even Spark catalyst will optimize it more.
It looks even better for Readability.
Both the approaches are identical. It doesn't matter really from the performance standpoint. Catalyst optimizer will create the same physical plan for both the queries.
Now however there are other aspects to consider. Writing SQL query is generally easy however you loose the compile time type check. If you have a typo or incorrect column name in the SQL it is impossible to find unless you run that on the cluster. However, if you are using dataframe operation the code won't compile. So it helps faster coding speed.
But again writing complex SQL with dataframe APIs is not trivial tasks. So generally I use Dataframe APIs where the operations are relatively easy and use SQL for complex queries.

Writing SQL vs using Dataframe APIs in Spark SQL

I am a newbie in Spark SQL world. I am currently migrating my application's Ingestion code which includes ingesting data in stage,Raw and Application layer in HDFS and doing CDC(change data capture), this is currently written in Hive queries and is executed via Oozie. This needs to migrate into a Spark application(current version 1.6). The other section of code will migrate later on.
In spark-SQL, I can create dataframes directly from tables in Hive and simply execute queries as it is (like sqlContext.sql("my hive hql") ). The other way would be to use dataframe APIs and rewrite the hql in that way.
What is the difference in these two approaches?
Is there any performance gain with using Dataframe APIs?
Some people suggested, there is an extra layer of SQL that spark core engine has to go through when using "SQL" queries directly which may impact performance to some extent but I didn't find any material substantiating that statement. I know the code would be much more compact with Datafrmae APIs but when I have my hql queries all handy would it really worth to write complete code into Dataframe API?
Thank You.
Question : What is the difference in these two approaches?
Is there any performance gain with using Dataframe APIs?
Answer :
There is comparative study done by horton works. source...
Gist is based on situation/scenario each one is right. there is no
hard and fast rule to decide this. pls go through below..
RDDs, DataFrames, and SparkSQL (infact 3 approaches not just 2):
At its core, Spark operates on the concept of Resilient Distributed Datasets, or RDD’s:
Resilient - if data in memory is lost, it can be recreated
Distributed - immutable distributed collection of objects in memory partitioned across many data nodes in a cluster
Dataset - initial data can from from files, be created programmatically, from data in memory, or from another RDD
DataFrames API is a data abstraction framework that organizes your data into named columns:
Create a schema for the data
Conceptually equivalent to a table in a relational database
Can be constructed from many sources including structured data files, tables in Hive, external databases, or existing RDDs
Provides a relational view of the data for easy SQL like data manipulations and aggregations
Under the hood, it is an RDD of Row’s
SparkSQL is a Spark module for structured data processing. You can interact with SparkSQL through:
SQL
DataFrames API
Datasets API
Test results:
RDD’s outperformed DataFrames and SparkSQL for certain types of data processing
DataFrames and SparkSQL performed almost about the same, although with analysis involving aggregation and sorting SparkSQL had a slight advantage
Syntactically speaking, DataFrames and SparkSQL are much more intuitive than using RDD’s
Took the best out of 3 for each test
Times were consistent and not much variation between tests
Jobs were run individually with no other jobs running
Random lookup against 1 order ID from 9 Million unique order ID's
GROUP all the different products with their total COUNTS and SORT DESCENDING by product name
In your Spark SQL string queries, you won't know a syntax error until runtime (which could be costly), whereas in DataFrames syntax errors can be caught at compile time.
Couple more additions. Dataframe uses tungsten memory representation , catalyst optimizer used by sql as well as dataframe. With Dataset API, you have more control on the actual execution plan than with SparkSQL
If query is lengthy, then efficient writing & running query, shall not be possible.
On the other hand, DataFrame, along with Column API helps developer to write compact code, which is ideal for ETL applications.
Also, all operations (e.g. greater than, less than, select, where etc.).... ran using "DataFrame" builds an "Abstract Syntax Tree(AST)", which is then passed to "Catalyst" for further optimizations. (Source: Spark SQL Whitepaper, Section#3.3)

Efficient Filtering on a huge data frame in Spark

I have a Cassandra table with 500 million rows. I would like to filter based on a field which is a partition key in Cassandra using spark.
Can you suggest the best possible/efficient approach to filter in Spark/Spark SQL based on the list keys which is also a pretty large.
Basically i need only those rows from the Cassandra table which are present in the list of keys.
We are using DSE and its features.
The approach i am using is taking lot of time roughly around an hour.
Have you checked repartitionByCassandraReplica and joinWithCassandraTable ?
https://github.com/datastax/spark-cassandra-connector/blob/75719dfe0e175b3e0bb1c06127ad4e6930c73ece/doc/2_loading.md#performing-efficient-joins-with-cassandra-tables-since-12
joinWithCassandraTable utilizes the java drive to execute a single
query for every partition required by the source RDD so no un-needed
data will be requested or serialized. This means a join between any
RDD and a Cassandra Table can be performed without doing a full table
scan. When performed between two Cassandra Tables which share the same
partition key this will not require movement of data between machines.
In all cases this method will use the source RDD's partitioning and
placement for data locality.
The method repartitionByCassandraReplica can be used to relocate data
in an RDD to match the replication strategy of a given table and
keyspace. The method will look for partition key information in the
given RDD and then use those values to determine which nodes in the
Cluster would be responsible for that data.

Resources