E.g
sqlContext = SQLContext(sc)
sample=sqlContext.sql("select Name ,age ,city from user")
sample.show()
The above statement prints theentire table on terminal. But I want to access each row in that table using for or while to perform further calculations.
You simply cannot. DataFrames, same as other distributed data structures, are not iterable and can be accessed using only dedicated higher order function and / or SQL methods.
You can of course collect
for row in df.rdd.collect():
do_something(row)
or convert toLocalIterator
for row in df.rdd.toLocalIterator():
do_something(row)
and iterate locally as shown above, but it beats all purpose of using Spark.
To "loop" and take advantage of Spark's parallel computation framework, you could define a custom function and use map.
def customFunction(row):
return (row.name, row.age, row.city)
sample2 = sample.rdd.map(customFunction)
or
sample2 = sample.rdd.map(lambda x: (x.name, x.age, x.city))
The custom function would then be applied to every row of the dataframe. Note that sample2 will be a RDD, not a dataframe.
Map may be needed if you are going to perform more complex computations. If you just need to add a simple derived column, you can use the withColumn, with returns a dataframe.
sample3 = sample.withColumn('age2', sample.age + 2)
Using list comprehensions in python, you can collect an entire column of values into a list using just two lines:
df = sqlContext.sql("show tables in default")
tableList = [x["tableName"] for x in df.rdd.collect()]
In the above example, we return a list of tables in database 'default', but the same can be adapted by replacing the query used in sql().
Or more abbreviated:
tableList = [x["tableName"] for x in sqlContext.sql("show tables in default").rdd.collect()]
And for your example of three columns, we can create a list of dictionaries, and then iterate through them in a for loop.
sql_text = "select name, age, city from user"
tupleList = [{name:x["name"], age:x["age"], city:x["city"]}
for x in sqlContext.sql(sql_text).rdd.collect()]
for row in tupleList:
print("{} is a {} year old from {}".format(
row["name"],
row["age"],
row["city"]))
It might not be the best practice, but you can simply target a specific column using collect(), export it as a list of Rows, and loop through the list.
Assume this is your df:
+----------+----------+-------------------+-----------+-----------+------------------+
| Date| New_Date| New_Timestamp|date_sub_10|date_add_10|time_diff_from_now|
+----------+----------+-------------------+-----------+-----------+------------------+
|2020-09-23|2020-09-23|2020-09-23 00:00:00| 2020-09-13| 2020-10-03| 51148 |
|2020-09-24|2020-09-24|2020-09-24 00:00:00| 2020-09-14| 2020-10-04| -35252 |
|2020-01-25|2020-01-25|2020-01-25 00:00:00| 2020-01-15| 2020-02-04| 20963548 |
|2020-01-11|2020-01-11|2020-01-11 00:00:00| 2020-01-01| 2020-01-21| 22173148 |
+----------+----------+-------------------+-----------+-----------+------------------+
to loop through rows in Date column:
rows = df3.select('Date').collect()
final_list = []
for i in rows:
final_list.append(i[0])
print(final_list)
Give A Try Like this
result = spark.createDataFrame([('SpeciesId','int'), ('SpeciesName','string')],["col_name", "data_type"]);
for f in result.collect():
print (f.col_name)
If you want to do something to each row in a DataFrame object, use map. This will allow you to perform further calculations on each row. It's the equivalent of looping across the entire dataset from 0 to len(dataset)-1.
Note that this will return a PipelinedRDD, not a DataFrame.
above
tupleList = [{name:x["name"], age:x["age"], city:x["city"]}
should be
tupleList = [{'name':x["name"], 'age':x["age"], 'city':x["city"]}
for name, age, and city are not variables but simply keys of the dictionary.
Related
I'd like to filter a dataframe using an external file.
This is how I use the filter now:
val Insert = Append_Ot.filter(
col("Name2").equalTo("brazil") ||
col("Name2").equalTo("france") ||
col("Name2").equalTo("algeria") ||
col("Name2").equalTo("tunisia") ||
col("Name2").equalTo("egypte"))
Instead of using hardcoded string literals, I'd like to create an external file with the values to filter by.
So I create this file:
val filter_numfile = sc.textFile("/user/zh/worskspace/filter_nmb.txt")
.map(_.split(" ")(1))
.collect
This gives me:
filter_numfile: Array[String] = Array(brazil, france, algeria, tunisia, egypte)
And then, I use isin function on Name2 column.
val Insert = Append_Ot.where($"Name2".isin(filter_numfile: _*))
But this gives me an empty dataframe. Why?
I am just adding some information to philantrovert answer in filter dataframe from external file
His answer is perfect but there might be some case unmatch so you will have to check for case mismatch as well
tl;dr Make sure that the letters use consistent case, i.e. they are all in upper or lower case. Simply use upper or lower standard functions.
lets say you have input file as
1 Algeria
2 tunisia
3 brazil
4 Egypt
you read the text file and change all the countries to lowercase as
val countries = sc.textFile("path to input file").map(_.split(" ")(1).trim)
.collect.toSeq
val array = Array(countries.map(_.toLowerCase) : _*)
Then you have your dataframe
val Append_Ot = sc.parallelize(Seq(("brazil"),("tunisia"),("algeria"),("name"))).toDF("Name2")
where you apply following condition
import org.apache.spark.sql.functions._
val Insert = Append_Ot.where(lower($"Name2").isin(array : _* ))
you should have output as
+-------+
|Name2 |
+-------+
|brazil |
|tunisia|
|algeria|
+-------+
The empty dataframe might be due to spelling mismatch too.
I'm trying to calculate the average for each column in a dataframe and subtract from each element in the column. I've created a function that attempts to do that, but when I try to implement it using a UDF, I get an error: 'float' object has no attribute 'map'. Any ideas on how I can create such a function? Thanks!
def normalize(data):
average=data.map(lambda x: x[0]).sum()/data.count()
out=data.map(lambda x: (x-average))
return out
mapSTD=udf(normalize,IntegerType())
dats = data.withColumn('Normalized', mapSTD('Fare'))
In your example there is problem with UDF function which can not be applied to row and whole DataFrame. UDF can be applied only to single row, but Spark also enables implementing UDAF (User Defined Aggregate Functions) working on whole DataFrame.
To solve your problem you can use below function:
from pyspark.sql.functions import mean
def normalize(df, column):
average = df.agg(mean(df[column]).alias("mean")).collect()[0]["mean"]
return df.select(df[column] - average)
Use it like this:
normalize(df, "Fare")
Please note that above only works on single column, but it is possible to implement something more generic:
def normalize(df, columns):
selectExpr = []
for column in columns:
average = df.agg(mean(df[column]).alias("mean")).collect()[0]["mean"]
selectExpr.append(df[column] - average)
return df.select(selectExpr)
use it like:
normalize(df, ["col1", "col2"])
This works, but you need to run aggregation for each column, so with many columns performance could be issue, but it is possible to generate only one aggregate expression:
def normalize(df, columns):
aggExpr = []
for column in columns:
aggExpr.append(mean(df[column]).alias(column))
averages = df.agg(*aggExpr).collect()[0]
selectExpr = []
for column in columns:
selectExpr.append(df[column] - averages[column])
return df.select(selectExpr)
Adding onto Piotr's answer. If you need to keep the existing dataframe and add normalized columns with aliases, the function can be modified as:
def normalize(df, columns):
aggExpr = []
for column in columns:
aggExpr.append(mean(df[column]).alias(column))
averages = df.agg(*aggExpr).collect()[0]
selectExpr = ['*']
for column in columns:
selectExpr.append((df[column] - averages[column]).alias('normalized_'+column))
return df.select(selectExpr)
I have two pyspark dataframes with same number of rows but they don't have any common column. So I am adding new column to both of them using monotonically_increasing_id() as
from pyspark.sql.functions import monotonically_increasing_id as mi
id=mi()
df1 = df1.withColumn("match_id", id)
cont_data = cont_data.withColumn("match_id", id)
cont_data = cont_data.join(df1,df1.match_id==cont_data.match_id, 'inner').drop(df1.match_id)
But after join the resulting data frame has less number of rows.
What am I missing here. Thanks
You just don't. This not an applicable use case for monotonically_increasing_id, which is by definition non-deterministic. Instead:
convert to RDD
zipWithIndex
convert back to DataFrame.
join
You can generate the id's with monotonically_increasing_id, save the file to disc, and then read it back in THEN do whatever joining process. Would only suggest this approach if you just need to generate the id's once. At that point they can be used for joining, but for the reasons mentioned above, this is hacky and not a good solution for anything that runs regularly.
If you want to get an incremental number on both dataframes and then join, you can generate a consecutive number with monotonically and windowing with the following code:
df1 = df1.withColumn("monotonically_increasing_id",monotonically_increasing_id())
window = Window.orderBy(scol('monotonically_increasing_id'))
df1 = df1.withColumn("match_id", row_number().over(window))
df1 = df1.drop("monotonically_increasing_id")
cont_data = cont_data.withColumn("monotonically_increasing_id",monotonically_increasing_id())
window = Window.orderBy(scol('monotonically_increasing_id'))
cont_data = cont_data.withColumn("match_id", row_number().over(window))
cont_data = cont_data.drop("monotonically_increasing_id")
cont_data = cont_data.join(df1,df1.match_id==cont_data.match_id, 'inner').drop(df1.match_id)
Warning It may move the data to a single partition! So maybe is better to separate the match_id to a different dataframe with the monotonically_increasing_id, generate the consecutive incremental number and then join with the data.
I'm trying to use SQLContext.subtract() in Spark 1.6.1 to remove rows from a dataframe based on a column from another dataframe. Let's use an example:
from pyspark.sql import Row
df1 = sqlContext.createDataFrame([
Row(name='Alice', age=2),
Row(name='Bob', age=1),
]).alias('df1')
df2 = sqlContext.createDataFrame([
Row(name='Bob'),
])
df1_with_df2 = df1.join(df2, 'name').select('df1.*')
df1_without_df2 = df1.subtract(df1_with_df2)
Since I want all rows from df1 which don't include name='Bob' I expect Row(age=2, name='Alice'). But I also retrieve Bob:
print(df1_without_df2.collect())
# [Row(age='1', name='Bob'), Row(age='2', name='Alice')]
After various experiments to get down to this MCVE, I found out that the issue is with the age key. If I omit it:
df1_noage = sqlContext.createDataFrame([
Row(name='Alice'),
Row(name='Bob'),
]).alias('df1_noage')
df1_noage_with_df2 = df1_noage.join(df2, 'name').select('df1_noage.*')
df1_noage_without_df2 = df1_noage.subtract(df1_noage_with_df2)
print(df1_noage_without_df2.collect())
# [Row(name='Alice')]
Then I only get Alice as expected. The weirdest observation I made is that it's possible to add keys, as long as they're after (in the lexicographical order sense) the key I use in the join:
df1_zage = sqlContext.createDataFrame([
Row(zage=2, name='Alice'),
Row(zage=1, name='Bob'),
]).alias('df1_zage')
df1_zage_with_df2 = df1_zage.join(df2, 'name').select('df1_zage.*')
df1_zage_without_df2 = df1_zage.subtract(df1_zage_with_df2)
print(df1_zage_without_df2.collect())
# [Row(name='Alice', zage=2)]
I correctly get Alice (with her zage)! In my real examples, I'm interested in all columns, not only the ones that are after name.
Well there are some bugs here (the first issue looks like related to to the same problem as SPARK-6231) and JIRA looks like a good idea, but SUBTRACT / EXCEPT is no the right choice for partial matches.
Instead, as of Spark 2.0, you can use anti-join:
df1.join(df1_with_df2, ["name"], "leftanti").show()
In 1.6 you can do pretty much the same thing with standard outer join:
import pyspark.sql.functions as F
ref = df1_with_df2.select("name").alias("ref")
(df1
.join(ref, ref.name == df1.name, "leftouter")
.filter(F.isnull("ref.name"))
.drop(F.col("ref.name")))
I am working with PySpark dataframes here. "test1" is my PySpark dataframe and event_date is a TimestampType. So when I try to get a distinct count of event_date, the result is a integer variable but when I try to get max of the same column the result is a dataframe. I would like to understand what operations result in a dataframe and variable. I would also like to know how to store the max of the event date as a variable
Code that results in an integer type:
loop_cnt=test1.select('event_date').distinct().count()
type(loop_cnt)
Code that results in dataframe type:
last_processed_dt=test1.select([max('event_date')])
type(last_processed_dt)
Edited to add a reproducible example:
schema = StructType([StructField("event_date", TimestampType(), True)])
df = sqlContext.createDataFrame([(datetime(2015, 8, 10, 2, 44, 15),),(datetime(2015, 8, 10, 3, 44, 15),)], schema)
Code that returns a dataframe:
last_processed_dt=df.select([max('event_date')])
type(last_processed_dt)
Code that returns a varible:
loop_cnt=df.select('event_date').distinct().count()
type(loop_cnt)
You cannot directly access the values in a dataframe. Dataframe returns a Row Object. Instead Dataframe gives you a option to convert it into a python dictionary. Go through the following example where I will calculate average wordcount:
wordsDF = sqlContext.createDataFrame([('cat',), ('elephant',), ('rat',), ('rat',), ('cat', )], ['word'])
wordCountsDF = wordsDF.groupBy(wordsDF['word']).count()
wordCountsDF.show()
Here are the word count results:
+--------+-----+
| word|count|
+--------+-----+
| cat| 2|
| rat| 2|
|elephant| 1|
+--------+-----+
Now I calculate the average of count column apply collect() operation on it. Remember collect() returns a list.Here the list contains one element only.
averageCount = wordCountsDF.groupBy().avg('count').collect()
Result looks something like this.
[Row(avg(count)=1.6666666666666667)]
You cannot access directly the average value using some python variable. You have to convert it into a dictionary to access it.
results={}
for i in averageCount:
results.update(i.asDict())
print results
Our final results look like these:
{'avg(count)': 1.6666666666666667}
Finally you can access average value using:
print results['avg(count)']
1.66666666667
I'm pretty sure df.select([max('event_date')]) returns a DataFrame because there could be more than one row that has the max value in that column. In your particular use case no two rows may have the same value in that column, but it is easy to imagine a case where more than one row can have the same max event_date.
df.select('event_date').distinct().count() returns an integer because it is telling you how many distinct values there are in that particular column. It does NOT tell you which value is the largest.
If you want code to get the max event_date and store it as a variable, try the following max_date = df.select([max('event_date')]).distinct().collect()
Using collect()
import pyspark.sql.functions as sf
distinct_count = df.agg(sf.countDistinct('column_name')).collect()[0][0]
Using first()
import pyspark.sql.functions as sf
distinct_count = df.agg(sf.countDistinct('column_name')).first()[0]
last_processed_dt=df.select([max('event_date')])
to get the max of date, we should try something like
last_processed_dt=df.select([max('event_date').alias("max_date")]).collect()[0]
last_processed_dt["max_date"]
Based on sujit's example.We can actually print the value without iterating/looping by
[Row(avg(count)=1.6666666666666667)] by providing averageCount[0][0].
Note: we are not going through the loop, because it's going to return only one value.
try this
loop_cnt=test1.select('event_date').distinct().count()
var = loop_cnt.collect()[0]
Hope this helps
trainDF.fillna({'Age':trainDF.select('Age').agg(avg('Age')).collect()[0][0]})
What you can try is accessing the collect() function.
As of spark 3.0, you can do the following:
loop_cnt=test1.select('event_date').distinct().count().collect()[0][0]
print(loop_cnt)