Does Gherkin have any negation? - cucumber

I am used to something like NOT in specifying conditions - but perhaps it will only allow distinct positive conditions? e.g. If the user is not anonomous

There isn't a not operator in the gherkin syntax. As #orde has said in the comments, you just have to write a negative step definition that checks for what you want.
One thing that can make this a little nicer to use is knowing that you can write steps using the 'But' keyword instead of only using 'And'
Given I have set something up
When I do something
Then something positive should happen
And some other thing should happen
But some negative thing should not happen
Not a huge difference but sounds nicer.
As Dave McNulla has said you can write your steps to take 'is | is not' if you want to reuse them.

Related

Is there any way to specify eg (car|cars) in a cucumber step definition?

So I have 2 scenarios....one starts out
Given I have 1 car
The other starts out
Given I have 2 cars
I'd like them to use the same step definition - ie something like this
Given('I have {int} (car|cars)',
I know it's possible to do specify 2 possible values (ie car or cars), but I can't for the life of me remember how. Does anyone know? I'm using typescript, protractor, angular, selenium.
Have also tried
Given(/^I have {int} (car|cars)$
Within cukeExp, the () become optional characters. That is what you want.
So your expression would be
Given('I have {int} car(s)')
Happy to help - More information can be found here: https://cucumber.io/docs/cucumber/cucumber-expressions/ - Switch to JS code at the top.
Luke - Cucumber contributor.
Luke's answer is great and is definitely standard practice when cuking.
I would (and do) take a different approach. I would strongly argue that the complexity of even a single expression like the one he uses isn't worth the step duplication. Let me explain and illustrate.
The fundamental idea behind this approach is that the internals of each step definition must be a single call to a helper method. When you do this you no longer need expressions or regex's.
I would prefer and use in my projects
module CarStepHelper
def create_car(amount: 1)
Lots of stuff to create cars
end
end
World CarStepHelper
Given 'I have one car' do
create_car
end
Given 'I have two cars' do
create_car(amount: 2)
end
to
Given('I have {int} car(s)')
lots of stuff to create cars
end
because
the step definitions are simpler (no regex, no cucumber expression
the stuff to create the cars is slightly simpler (no processing of the regex or expression)
the helper method supports and encourages a wider range of expression e.g.
Given Fred has a car
Given there is a blue car and a red car
the helper method encourages better communication between steps because you can assign its results relative to the step definition e.g.
Given Fred has a car
#freds_car = create_car
end
Given there are two cars
[#car1, #car2] = create_car(amount: 2)
end
Cucumber expressions and cucumbers regex's are very powerful and quite easy to use, but you can Cuke very effectively without ever using them. Step definition efficiency is a myth and often an anti-pattern, if you ensure each step def is just a single call you no longer have to worry about it, and you will avoid the mistake many cukers fall into which is the writing over-complicated step definitions with lots of parameters, regex's and|or expressions.
As far as I know, your step definition should be as below for it to work.
Given(/^I have "([^"]*)?" (car|cars)*$/, (number, item) => {
You can still simplify the first regular expression.
Cheers!

Force simplify to only use certain rules

I have an expression involving lots of trigonometric functions which I wish to simplify. Unfortunately, simplify() and trigsimp() takes forever to complete which I suspect is because simplify is trying to use dozens of rules to try to simplify.
Suppose I already know before hand that I only want to simplify based on the identity
sin(a)**2 + cos(a)**2 = 1 (note a may be a huge expression), is there some way to tell simplify to only use this rule, so that it might work faster in simplifying?
See the fu.py routines for very targeted trigonometric transformations.

A reverse inference engine (find a random X for which foo(X) is true)

I am aware that languages like Prolog allow you to write things like the following:
mortal(X) :- man(X). % All men are mortal
man(socrates). % Socrates is a man
?- mortal(socrates). % Is Socrates mortal?
yes
What I want is something like this, but backwards. Suppose I have this:
mortal(X) :- man(X).
man(socrates).
man(plato).
man(aristotle).
I then ask it to give me a random X for which mortal(X) is true (thus it should give me one of 'socrates', 'plato', or 'aristotle' according to some random seed).
My questions are:
Does this sort of reverse inference have a name?
Are there any languages or libraries that support it?
EDIT
As somebody below pointed out, you can simply ask mortal(X) and it will return all X, from which you can simply pick a random one from the list. What if, however, that list would be very large, perhaps in the billions? Obviously in that case it wouldn't do to generate every possible result before picking one.
To see how this would be a practical problem, imagine a simple grammar that generated a random sentence of the form "adjective1 noun1 adverb transitive_verb adjective2 noun2". If the lists of adjectives, nouns, verbs, etc. are very large, you can see how the combinatorial explosion is a problem. If each list had 1000 words, you'd have 1000^6 possible sentences.
Instead of the deep-first search of Prolog, a randomized deep-first search strategy could be easyly implemented. All that is required is to randomize the program flow at choice points so that every time a disjunction is reached a random pole on the search tree (= prolog program) is selected instead of the first.
Though, note that this approach does not guarantees that all the solutions will be equally probable. To guarantee that, it is required to known in advance how many solutions will be generated by every pole to weight the randomization accordingly.
I've never used Prolog or anything similar, but judging by what Wikipedia says on the subject, asking
?- mortal(X).
should list everything for which mortal is true. After that, just pick one of the results.
So to answer your questions,
I'd go with "a query with a variable in it"
From what I can tell, Prolog itself should support it quite fine.
I dont think that you can calculate the nth solution directly but you can calculate the n first solutions (n randomly picked) and pick the last. Of course this would be problematic if n=10^(big_number)...
You could also do something like
mortal(ID,X) :- man(ID,X).
man(X):- random(1,4,ID), man(ID,X).
man(1,socrates).
man(2,plato).
man(3,aristotle).
but the problem is that if not every man was mortal, for example if only 1 out of 1000000 was mortal you would have to search a lot. It would be like searching for solutions for an equation by trying random numbers till you find one.
You could develop some sort of heuristic to find a solution close to the number but that may affect (negatively) the randomness.
I suspect that there is no way to do it more efficiently: you either have to calculate the set of solutions and pick one or pick one member of the superset of all solutions till you find one solution. But don't take my word for it xd

Identifying frequent formulas in a codebase

My company maintains a domain-specific language that syntactically resembles the Excel formula language. We're considering adding new builtins to the language. One way to do this is to identify verbose commands that are repeatedly used in our codebase. For example, if we see people always write the same 100-character command to trim whitespace from the beginning and end of a string, that suggests we should add a trim function.
Seeing a list of frequent substrings in the codebase would be a good start (though sometimes the frequently used commands differ by a few characters because of different variable names used).
I know there are well-established algorithms for doing this, but first I want to see if I can avoid reinventing the wheel. For example, I know this concept is the basis of many compression algorithms, so is there a compression module that lets me retrieve the dictionary of frequent substrings? Any other ideas would be appreciated.
The string matching is just the low hanging fruit, the obvious cases. The harder cases are where you're doing similar things but in different order. For example suppose you have:
X+Y
Y+X
Your string matching approach won't realize that those are effectively the same. If you want to go a bit deeper I think you need to parse the formulas into an AST and actually compare the AST's. If you did that you could see that the tree's are actually the same since the binary operator '+' is commutative.
You could also apply reduction rules so you could evaluate complex functions into simpler ones, for example:
(X * A) + ( X * B)
X * ( A + B )
Those are also the same! String matching won't help you there.
Parse into AST
Reduce and Optimize the functions
Compare the resulting AST to other ASTs
If you find a match then replace them with a call to a shared function.
I would think you could use an existing full-text indexer like Lucene, and implement your own Analyzer and Tokenizer that is specific to your formula language.
You then would be able to run queries, and be able to see the most used formulas, which ones appear next to each other, etc.
Here's a quick article to get you started:
Lucene Analyzer, Tokenizer and TokenFilter
You might want to look into tag-cloud generators. I couldn't find any source in the minute that I spent looking, but here's an online one:
http://tagcloud.oclc.org/tagcloud/TagCloudDemo which probably won't work since it uses spaces as delimiters.

When to use If-else if-else over switch statements and vice versa [duplicate]

This question already has answers here:
Advantage of switch over if-else statement
(23 answers)
Eliminating `switch` statements [closed]
(23 answers)
Is there any significant difference between using if/else and switch-case in C#?
(21 answers)
Closed 2 years ago.
Why you would want to use a switch block over a series of if statements?
switch statements seem to do the same thing but take longer to type.
As with most things you should pick which to use based on the context and what is conceptually the correct way to go. A switch is really saying "pick one of these based on this variables value" but an if statement is just a series of boolean checks.
As an example, if you were doing:
int value = // some value
if (value == 1) {
doThis();
} else if (value == 2) {
doThat();
} else {
doTheOther();
}
This would be much better represented as a switch as it then makes it immediately obviously that the choice of action is occurring based on the value of "value" and not some arbitrary test.
Also, if you find yourself writing switches and if-elses and using an OO language you should be considering getting rid of them and using polymorphism to achieve the same result if possible.
Finally, regarding switch taking longer to type, I can't remember who said it but I did once read someone ask "is your typing speed really the thing that affects how quickly you code?" (paraphrased)
If you are switching on the value of a single variable then I'd use a switch every time, it's what the construct was made for.
Otherwise, stick with multiple if-else statements.
concerning Readability:
I typically prefer if/else constructs over switch statements, especially in languages that allows fall-through cases. What I've found, often, is as the projects age, and multiple developers gets involved, you'll start having trouble with the construction of a switch statement.
If they (the statements) become anything more than simple, many programmers become lazy and instead of reading the entire statement to understand it, they'll simply pop in a case to cover whatever case they're adding into the statement.
I've seen many cases where code repeats in a switch statement because a person's test was already covered, a simple fall-though case would have sufficed, but laziness forced them to add the redundant code at the end instead of trying to understand the switch. I've also seen some nightmarish switch statements with many cases that were poorly constructed, and simply trying to follow all the logic, with many fall-through cases dispersed throughout, and many cases which weren't, becomes difficult ... which kind of leads to the first/redundancy problem I talked about.
Theoretically, the same problem could exist with if/else constructs, but in practice this just doesn't seem to happen as often. Maybe (just a guess) programmers are forced to read a bit more carefully because you need to understand the, often, more complex conditions being tested within the if/else construct? If you're writing something simple that you know others are likely to never touch, and you can construct it well, then I guess it's a toss-up. In that case, whatever is more readable and feels best to you is probably the right answer because you're likely to be sustaining that code.
concerning Speed:
Switch statements often perform faster than if-else constructs (but not always). Since the possible values of a switch statement are laid out beforehand, compilers are able to optimize performance by constructing jump tables. Each condition doesn't have to be tested as in an if/else construct (well, until you find the right one, anyway).
However this isn't always the case, though. If you have a simple switch, say, with possible values of 1 to 10, this will be the case. The more values you add requires the jump tables to be larger and the switch becomes less efficient (not than an if/else, but less efficient than the comparatively simple switch statement). Also, if the values are highly variant ( i.e. instead of 1 to 10, you have 10 possible values of, say, 1, 1000, 10000, 100000, and so on to 100000000000), the switch is less efficient than in the simpler case.
Hope this helps.
Switch statements are far easier to read and maintain, hands down. And are usually faster and less error prone.
Use switch every time you have more than 2 conditions on a single variable, take weekdays for example, if you have a different action for every weekday you should use a switch.
Other situations (multiple variables or complex if clauses you should Ifs, but there isn't a rule on where to use each.
I personally prefer to see switch statements over too many nested if-elses because they can be much easier to read. Switches are also better in readability terms for showing a state.
See also the comment in this post regarding pacman ifs.
This depends very much on the specific case. Preferably, I think one should use the switch over the if-else if there are many nested if-elses.
The question is how much is many?
Yesterday I was asking myself the same question:
public enum ProgramType {
NEW, OLD
}
if (progType == OLD) {
// ...
} else if (progType == NEW) {
// ...
}
if (progType == OLD) {
// ...
} else {
// ...
}
switch (progType) {
case OLD:
// ...
break;
case NEW:
// ...
break;
default:
break;
}
In this case, the 1st if has an unnecessary second test. The 2nd feels a little bad because it hides the NEW.
I ended up choosing the switch because it just reads better.
I have often thought that using elseif and dropping through case instances (where the language permits) are code odours, if not smells.
For myself, I have normally found that nested (if/then/else)s usually reflect things better than elseifs, and that for mutually exclusive cases (often where one combination of attributes takes precedence over another), case or something similar is clearer to read two years later.
I think the select statement used by Rexx is a particularly good example of how to do "Case" well (no drop-throughs) (silly example):
Select
When (Vehicle ¬= "Car") Then
Name = "Red Bus"
When (Colour == "Red") Then
Name = "Ferrari"
Otherwise
Name = "Plain old other car"
End
Oh, and if the optimisation isn't up to it, get a new compiler or language...
The tendency to avoid stuff because it takes longer to type is a bad thing, try to root it out. That said, overly verbose things are also difficult to read, so small and simple is important, but it's readability not writability that's important. Concise one-liners can often be more difficult to read than a simple well laid out 3 or 4 lines.
Use whichever construct best descibes the logic of the operation.
Let's say you have decided to use switch as you are only working on a single variable which can have different values. If this would result in a small switch statement (2-3 cases), I'd say that is fine. If it seems you will end up with more I would recommend using polymorphism instead. An AbstractFactory pattern could be used here to create an object that would perform whatever action you were trying to do in the switches. The ugly switch statement will be abstracted away and you end up with cleaner code.

Resources