What does it mean for a process to block? - multithreading

In my OS class, my professor keeps using block as a verb instead of an adjective when describing multi-threading/synchronization. For example: "Thread B tries to access a resource that is currently being used by Thread A, and so Thread B blocks."
Without any prior knowledge, I would initially think that for a thread to block, it would be preventing some other thread from doing something (e.g. it holds the lock on a resource). But from the way he talks, it sounds like "Thread B blocks" actually means that Thread B is being blocked, or prevented, from accessing the resource it wants to access.
Which is correct?

Your interpolation is correction: When it is said "Thread B blocks" it means that thread B's operation is suspended pending some condition (which may or may not be achieved, "not" being the case in a deadlock for instance).

Related

Understanding Condition Variables - Isn't there always spin-waiting "somewhere"?

I am going to explain my understanding of this OS construct and appreciate some polite correction.
I understand thread-safety clearly and simply.
If there is some setup where
X: some condition
Y: do something
and
if X
do Y
is atomic, meaning that if at the exact moment in time
doing Y
not X
there is some problem.
By my understanding, the lowest-level solution of this is to use shared objects (mutexes). As an example, in the solution to the "Too Much Milk" Problem
Thead A | Thread B
-------------------------------------
leave Note A | leave Note B
while Note B | if no Note A
do nothing | if no milk
if no milk | buy milk
buy milk | remove Note B
remove Note A |
Note A and Note B would be the shared objects, i.e. some piece of memory accessible by both threads A and B.
This is can be generalized (beyond milk) for 2-thread case like
Thead A | Thread B
-------------------------------------
leave Note A | leave Note B
while Note B | if no Note A
do nothing | if X
if X | do Y
do Y | remove Note B
remove Note A |
and there is some way to generalize it for the N-thread case (so I'll continue referring to the 2-thread case for simplicity).
Possibly incorrect assumption #1: This is the lowest-level solution known (possible?).
Now one of the defficiencies of this solution is the spinning or busy-wait
while Note B
do nothing
because if the do Y is an expensive task then the thread scheduler will keep switching to Thread A to perform this check, i.e. the thread is still "awake" and using processing power even when we "know" its processing is to perform a check that will fail for some time.
The question then becomes: Is there some way we could make Thread A "sleep", so that it isn't scheduled to run until Note B is gone, and then "wake up"???
The Condition Variable design pattern provides a solution and it built on top of mutexes.
Possibly incorrect assumption #2: Then, isn't there still some spinning under the hood? Is the average amount of spinning somehow reduced?
I could use a logical explanation like only S.O. can provide ;)
Isn't there still some spinning under the hood.
No. That's the whole point of condition variables: It's to avoid the need for spinning.
An operating system scheduler creates a private object to represent each thread, and it keeps these objects in containers which, for purpose of this discussion, we will call queues.
Simplistic explanation:
When a thread calls condition.await(), that invokes a system call. The scheduler handles it by removing the calling thread from whatever CPU it was running on, and by putting its proxy object into a queue. Specifically, it puts it into the queue of threads that are waiting to be notified about that particular condition.
There usually is a separate queue for every different thing that a thread could wait for. If you create a mutex, the OS creates a queue of threads that are waiting to acquire the mutex. If you create a condition variable, the OS creates a queue of threads that are waiting to be notified.
Once the thread's proxy object is in that queue, nothing will wake it up until some other thread notifies the condition variable. That notification also is a system call. The OS handles it (simplest case) by moving all of the threads that were in the condition variable's queue into the global run queue. The run queue holds all of the threads that are waiting for a CPU to run on.
On some future timer tick, the OS will pick the formerly waiting thread from the run queue and set it up on a CPU.
Extra credit:
Bad News! the first thing the thread does after being awakened, while it's still inside the condition.await() call, is it tries to re-lock the mutex. But there's a chance that the thread that signalled the condition still has the mutex locked. Our victim is going to go right back to sleep again, this time, waiting in the queue for the mutex.
A more sophisticated system might be able to optimize the situation by moving the thread directly from the condition variable's queue to the mutex queue without ever needing to wake it up and then put it back to sleep.
yes, on the lowest, hardware level instructions like Compare-and-set, Compare-and-swap are used, which spin until the condition is met, and only then make set (assignment). This spin is required each time we put a thread in a queue, be it queue to a mutex, to condition or to processor.
Then, isn't there still some spinning under the hood? Is the average amount of spinning somehow reduced?
That's a decision for the implementation to make. If spinning works best on the platform, then spinning can be used. But almost no spinning is required.
Typically, there's a lock somewhere at the lowest level of the implementation that protects system state. That lock is only held by any thread for a tiny split second as it manipulates that system state. Typically, you do need to spin while waiting for that inner lock.
A block on a mutex might look like this:
Atomically try to acquire the mutex.
If that succeeds, stop, you are done. (This is the "fast path".)
Acquire the inner lock that no thread holds for more than a few instructions.
Mark yourself as waiting for that mutex to be acquired.
Atomically release the inner lock and set your thread as not ready-to-run.
Notice the only place that there is any spinning in here is in step 3. That's not in the fast path. No spinning is needed after the call in step 5 does not return to this thread until the lock is conveyed to this thread by the thread that held it.
When a thread releases the lock, it checks the count of threads waiting for the lock. If that's greater than zero, instead of releasing the lock, it acquires the inner lock protecting system state, picks one of the threads recorded as waiting for the lock, conveys the lock to that thread, and tells the scheduler to run that thread. That thread then sees step 5 return from its call with now holding the lock.
Again, the only waiting is on that inner lock that is used just to track what thread is waiting for what.

semaphore and mutex locking concept

I read one of the differences between semaphore and mutex is in case of mutex the process/thread (which ever is having the lock) can only release the lock. But in the case of the semaphore any other process can release the semaphore. My doubt arises when a process that does not have the semaphore with it can release the semaphore. What is the use of having a semaphore?
Let's say I have two processes A and B. Assume process A is having a semaphore with it and executing some critical task. Now let us say process B sends a signal to release the semaphore. In this scenario, will process A release the semaphore even if it is executing some critical task?
You are making half-sense. It is not about ownership. Partner-release in semaphores (and mutexes) is usable, for instance, in my favorite interview question of thread ping-pong. As a matter of fact, I have specifically tried to partner-release a mutex on 3 implementations available to me at a time (Linux/Solaris/AIX) and partner-release did work for mutexes as expected - i.e. mutex was successsfully released and threads blocking on it resumed execution. However, this is, of course, prohibited by Posix.
I think you might be confused on the whole set of differences between a semaphore and a mutex. A mutex provides mutual exclusion. A semaphore counts until it reaches a level where it starts excluding. A semaphore that counted to one would give similar semantics to a mutex though.
A good example would be a television set. Only so many people can watch the same television set, so protecting it with a semaphore would make sense. Anyone can stop watching the television. The remote control for the television can only be operated by one person at a time though, so you could protect it with a mutex.
Some reading...
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
"Let's say I have two processes A and B. Assume process A is having a semaphore with it and executing some critical task. Now let us say process B sends a signal to release the semaphore. In this scenario, will process A release the semaphore even if it is executing some critical task?"
One key point to note here is the role of OS kernel. Process B can't send a signal to Process A 'to release the semaphore'. What it can do is request the kernel to give it access to the resource. Process A had requested the kernel and the kernel granted it access to the resource.
Now process A, after it finishes its job, will let the kernel know that it is done with the resource and then kernel grants access to B.
"My doubt arises when a process that does not have the semaphore with it can release the semaphore. What is the use of having a semaphore?"
The key difference between a mutex and a semaphore is, a semaphore serializes access to multiple instances of a resource. Mutex does the same when there is one instance of the resource.
A count is maintained by kernel in case of semaphore and mutex is a special case where the count is 1.
Consider the processes as customers waiting in line at a bank.
The use of semaphore is analogous to the case where there are multiple tellers serving the customers. Usage of mutex is analogous to the case where there is just one teller.
Say there are processes A, B and C that need concurrent access to a resource (lock, file or a data structure in memory, etc.). Further suppose there are 2 instances of the resource. So at most two processes can be granted access at a time.
Process A requests access to an instance of the resource following the required semantics. This request to the kernel involves data structures to identify the resource and maximum number of instances as 2. kernel creates the semaphore with a count of 2, grants A access to the resource and decrements the count to 1, because now only one other process can get access.
Now process B requests access to the resource by following the same semantics. Kernel grants it access and decrements the count to 0.
Now process C requests access, but kernel keeps it in waiting state, because count is 0 and no more than 2 processes can get concurrent access.
Process A is done with the resource and lets kernel know. Kernel notices this and grants access to process C that has been waiting.
In case of mutex, kernel grants access to the resource only one process at a time.
A normal binary semaphore is basically used for synchronization. However, the mutex is for exclusive access to a resource. A mutex is a special variant of semaphore that allows only one locker at a time and with more stringency on ownership than a normal semaphore such as the mutex should be released only by the thread that acquired it. Also, please note that in case of pthreads, fast mutex may not check for this error related to ownership, whereas the error checking mutex shall return error.
For the query related to 2 process A and B, the Process A shall intimate via kernel that it is done with its critical work so that the resource can be made available for waiting processes like B.
You could find some related information in this link too :
When should we use mutex and when should we use semaphore
There is no such thing as "having" a semaphore. Semaphores don't have ownership like mutexes do. The code you describe would simply be buggy. Mutexes won't work if your code is buggy either.
Consider the most classic example of a semaphore -- allowing one train at a time on a section of track. You could implement this with a mutex if the train is a thread. The train would lock the track mutex before going on the track and unlock it after leaving the track.
But what if the train itself is multi-threaded? Which thread should own the track?
And what if the signalling devices are the threads, not the train? Here, the signalling device that detects the train entering the track has to lock the track while the signalling device that detects the train leaving the track has to unlock it.
Mutexes are suitable for cases where there is something that is owned by a particular thread for a short period of time. That thread can "own" the mutex. Semaphores are useful for cases where there is no thread to own anything or nothing for the thread to own.

Is Deadlock recovery possible in MultiThread programming?

Process has some 10 threads and all 10 threads entered DEADLOCK state( assume all are waiting for Mutex variable ).
How can you free process(threads) from DEADLOCK state ? .
Is there any way to kill lower priority thread ?( in Multi process case we can kill lower priority process when all processes in deadlock state).
Can we attach that deadlocked process to the debugger and assign proper value to the Mutex variable ( assume all the threads are waiting on a mutex variable MUT but it is value is 0 and can we assign MUT value to 1 through debugger ) .
If every thread in the app is waiting on every other, and none are set to time out, you're rather screwed. You might be able to run the app in a debugger or something, but locks are generally acquired for a reason -- and manually forcing a mutex to be owned by a thread that didn't legitimately acquire it can cause some big problems (the thread that previously owned it is still going to try and release it, the results of which can be unpredictable if the mutex is unexpectedly yanked away. Could cause an unexpected exception, could cause the mutex to be unlocked while still in use.) Anyway it defeats the whole purpose of mutexes, so you're just covering up a much bigger problem.
There are two common solutions:
Instead of having threads wait forever, set a timeout. This is slightly harder to do in languages like Java that embed mutexes into the language via synchronized or lock blocks, but it's almost always possible. If you time out waiting on the lock, release all the locks/mutexes you had and try later.
Better, but potentially much more complex, is to figure out why everything's fighting for the resource and remove that contention. If you must lock, lock consistently. But if there's 10 threads blocking on a single mutex, that could be a clue either that your operations are badly chunked (ie: that your threads are doing too much or too little at once before trying to acquire a lock), or that there's unnecessary locking going on. Don't lock unless you have to. Some synchronization could be obviated by using collections and algorithms specifically designed to be "lock-free" while still offering thread-safety.
Adding another answer because I don't agree with the solutions proposed by cHao earlier - the analysis is fine.
First, why I disagree with the two solutions offered:
Reduce contention
Contention doesn't lead to deadlocks. It just causes poor performance. Deadlock means no performance whatsoever. Therefore, reducing contention does not solve deadlocks.
timeout on mutex.
A mutex protects a resource, and a thread locks the mutex because it needs the resource. With a timeout, you won't be able to acquire the resource, and your thread fails. Does it solve the deadlock problem? Only if the failing thread releases another resource that was blocking the other threads.
But in that case, there's a much better solution. Mutexes should have a partial ordering. If there is at least one thread that can both mutex A and B, you should decide whether A or B is acquired first, and then stick with that. This must be a transitive order: if you lock A before B, and B before C, then obviously you must lock A before C.
This is a perfect solution to deadlocks. Look back at the timeout example: it only works if the thread that times out waiting on A then releases its lock on B, to release another thread that was waiting on B. In the most simple case, that other thread was itself directly locking A. Thus, the mutexes A and B are not properly ordered. You should have consistently locked either A or B first.
The timeout case could also be the result of a cyclic order problem; one thread locks A then B, another B then C, and a third C then A, with the deadlock happening when each thread owns one lock. The solution again is the same; order the locks.
Alternatively said, mutex lock orders can be described by a directed graph. If a thread locks A before B, there's an arc from A to B. Deadlocks appear if the directed graph is cyclic, and then the arcs of that cycle are the deadlocked threads.
This theory can be a bit complex, but there are some simple insights to be found. For instance, from the graph theory, we know that trees are acyclic graphs. Hence, neither "leaf mutexes" (those that are always locked last) nor "root mutexes" (those that are always locked first) can cause deadlocks. Leaf mutexes are excluded because no thread ever blocks holding them, and root mutexes are excluded because the thread that holds them will be able to lock all subsequent mutexes in due time.

When should we use mutex and when should we use semaphore

When should we use mutex and when should we use semaphore ?
Here is how I remember when to use what -
Semaphore:
Use a semaphore when you (thread) want to sleep till some other thread tells you to wake up. Semaphore 'down' happens in one thread (producer) and semaphore 'up' (for same semaphore) happens in another thread (consumer)
e.g.: In producer-consumer problem, producer wants to sleep till at least one buffer slot is empty - only the consumer thread can tell when a buffer slot is empty.
Mutex:
Use a mutex when you (thread) want to execute code that should not be executed by any other thread at the same time. Mutex 'down' happens in one thread and mutex 'up' must happen in the same thread later on.
e.g.: If you are deleting a node from a global linked list, you do not want another thread to muck around with pointers while you are deleting the node. When you acquire a mutex and are busy deleting a node, if another thread tries to acquire the same mutex, it will be put to sleep till you release the mutex.
Spinlock:
Use a spinlock when you really want to use a mutex but your thread is not allowed to sleep.
e.g.: An interrupt handler within OS kernel must never sleep. If it does the system will freeze / crash. If you need to insert a node to globally shared linked list from the interrupt handler, acquire a spinlock - insert node - release spinlock.
A mutex is a mutual exclusion object, similar to a semaphore but that only allows one locker at a time and whose ownership restrictions may be more stringent than a semaphore.
It can be thought of as equivalent to a normal counting semaphore (with a count of one) and the requirement that it can only be released by the same thread that locked it(a).
A semaphore, on the other hand, has an arbitrary count and can be locked by that many lockers concurrently. And it may not have a requirement that it be released by the same thread that claimed it (but, if not, you have to carefully track who currently has responsibility for it, much like allocated memory).
So, if you have a number of instances of a resource (say three tape drives), you could use a semaphore with a count of 3. Note that this doesn't tell you which of those tape drives you have, just that you have a certain number.
Also with semaphores, it's possible for a single locker to lock multiple instances of a resource, such as for a tape-to-tape copy. If you have one resource (say a memory location that you don't want to corrupt), a mutex is more suitable.
Equivalent operations are:
Counting semaphore Mutual exclusion semaphore
-------------------------- --------------------------
Claim/decrease (P) Lock
Release/increase (V) Unlock
Aside: in case you've ever wondered at the bizarre letters (P and V) used for claiming and releasing semaphores, it's because the inventor was Dutch. In that language:
Probeer te verlagen: means to try to lower;
Verhogen: means to increase.
(a) ... or it can be thought of as something totally distinct from a semaphore, which may be safer given their almost-always-different uses.
It is very important to understand that a mutex is not a semaphore with count 1!
This is the reason there are things like binary semaphores (which are really semaphores with count 1).
The difference between a Mutex and a Binary-Semaphore is the principle of ownership:
A mutex is acquired by a task and therefore must also be released by the same task.
This makes it possible to fix several problems with binary semaphores (Accidental release, recursive deadlock, and priority inversion).
Caveat: I wrote "makes it possible", if and how these problems are fixed is up to the OS implementation.
Because the mutex has to be released by the same task it is not very good for the synchronization of tasks. But if combined with condition variables you get very powerful building blocks for building all kinds of IPC primitives.
So my recommendation is: if you got cleanly implemented mutexes and condition variables (like with POSIX pthreads) use these.
Use semaphores only if they fit exactly to the problem you are trying to solve, don't try to build other primitives (e.g. rw-locks out of semaphores, use mutexes and condition variables for these)
There is a lot of misunderstanding between mutexes and semaphores. The best explanation I found so far is in this 3-Part article:
Mutex vs. Semaphores – Part 1: Semaphores
Mutex vs. Semaphores – Part 2: The Mutex
Mutex vs. Semaphores – Part 3 (final part): Mutual Exclusion Problems
While #opaxdiablo answer is totally correct I would like to point out that the usage scenario of both things is quite different. The mutex is used for protecting parts of code from running concurrently, semaphores are used for one thread to signal another thread to run.
/* Task 1 */
pthread_mutex_lock(mutex_thing);
// Safely use shared resource
pthread_mutex_unlock(mutex_thing);
/* Task 2 */
pthread_mutex_lock(mutex_thing);
// Safely use shared resource
pthread_mutex_unlock(mutex_thing); // unlock mutex
The semaphore scenario is different:
/* Task 1 - Producer */
sema_post(&sem); // Send the signal
/* Task 2 - Consumer */
sema_wait(&sem); // Wait for signal
See http://www.netrino.com/node/202 for further explanations
See "The Toilet Example" - http://pheatt.emporia.edu/courses/2010/cs557f10/hand07/Mutex%20vs_%20Semaphore.htm:
Mutex:
Is a key to a toilet. One person can have the key - occupy the toilet - at the time. When finished, the person gives (frees) the key to the next person in the queue.
Officially: "Mutexes are typically used to serialise access to a section of re-entrant code that cannot be executed concurrently by more than one thread. A mutex object only allows one thread into a controlled section, forcing other threads which attempt to gain access to that section to wait until the first thread has exited from that section."
Ref: Symbian Developer Library
(A mutex is really a semaphore with value 1.)
Semaphore:
Is the number of free identical toilet keys. Example, say we have four toilets with identical locks and keys. The semaphore count - the count of keys - is set to 4 at beginning (all four toilets are free), then the count value is decremented as people are coming in. If all toilets are full, ie. there are no free keys left, the semaphore count is 0. Now, when eq. one person leaves the toilet, semaphore is increased to 1 (one free key), and given to the next person in the queue.
Officially: "A semaphore restricts the number of simultaneous users of a shared resource up to a maximum number. Threads can request access to the resource (decrementing the semaphore), and can signal that they have finished using the resource (incrementing the semaphore)."
Ref: Symbian Developer Library
Mutex is to protect the shared resource.
Semaphore is to dispatch the threads.
Mutex:
Imagine that there are some tickets to sell. We can simulate a case where many people buy the tickets at the same time: each person is a thread to buy tickets. Obviously we need to use the mutex to protect the tickets because it is the shared resource.
Semaphore:
Imagine that we need to do a calculation as below:
c = a + b;
Also, we need a function geta() to calculate a, a function getb() to calculate b and a function getc() to do the calculation c = a + b.
Obviously, we can't do the c = a + b unless geta() and getb() have been finished.
If the three functions are three threads, we need to dispatch the three threads.
int a, b, c;
void geta()
{
a = calculatea();
semaphore_increase();
}
void getb()
{
b = calculateb();
semaphore_increase();
}
void getc()
{
semaphore_decrease();
semaphore_decrease();
c = a + b;
}
t1 = thread_create(geta);
t2 = thread_create(getb);
t3 = thread_create(getc);
thread_join(t3);
With the help of the semaphore, the code above can make sure that t3 won't do its job untill t1 and t2 have done their jobs.
In a word, semaphore is to make threads execute as a logicial order whereas mutex is to protect shared resource.
So they are NOT the same thing even if some people always say that mutex is a special semaphore with the initial value 1. You can say like this too but please notice that they are used in different cases. Don't replace one by the other even if you can do that.
Trying not to sound zany, but can't help myself.
Your question should be what is the difference between mutex and semaphores ?
And to be more precise question should be, 'what is the relationship between mutex and semaphores ?'
(I would have added that question but I'm hundred % sure some overzealous moderator would close it as duplicate without understanding difference between difference and relationship.)
In object terminology we can observe that :
observation.1 Semaphore contains mutex
observation.2 Mutex is not semaphore and semaphore is not mutex.
There are some semaphores that will act as if they are mutex, called binary semaphores, but they are freaking NOT mutex.
There is a special ingredient called Signalling (posix uses condition_variable for that name), required to make a Semaphore out of mutex.
Think of it as a notification-source. If two or more threads are subscribed to same notification-source, then it is possible to send them message to either ONE or to ALL, to wakeup.
There could be one or more counters associated with semaphores, which are guarded by mutex. The simple most scenario for semaphore, there is a single counter which can be either 0 or 1.
This is where confusion pours in like monsoon rain.
A semaphore with a counter that can be 0 or 1 is NOT mutex.
Mutex has two states (0,1) and one ownership(task).
Semaphore has a mutex, some counters and a condition variable.
Now, use your imagination, and every combination of usage of counter and when to signal can make one kind-of-Semaphore.
Single counter with value 0 or 1 and signaling when value goes to 1 AND then unlocks one of the guy waiting on the signal == Binary semaphore
Single counter with value 0 to N and signaling when value goes to less than N, and locks/waits when values is N == Counting semaphore
Single counter with value 0 to N and signaling when value goes to N, and locks/waits when values is less than N == Barrier semaphore (well if they dont call it, then they should.)
Now to your question, when to use what. (OR rather correct question version.3 when to use mutex and when to use binary-semaphore, since there is no comparison to non-binary-semaphore.)
Use mutex when
1. you want a customized behavior, that is not provided by binary semaphore, such are spin-lock or fast-lock or recursive-locks.
You can usually customize mutexes with attributes, but customizing semaphore is nothing but writing new semaphore.
2. you want lightweight OR faster primitive
Use semaphores, when what you want is exactly provided by it.
If you dont understand what is being provided by your implementation of binary-semaphore, then IMHO, use mutex.
And lastly read a book rather than relying just on SO.
I think the question should be the difference between mutex and binary semaphore.
Mutex = It is a ownership lock mechanism, only the thread who acquire the lock can release the lock.
binary Semaphore = It is more of a signal mechanism, any other higher priority thread if want can signal and take the lock.
All the above answers are of good quality,but this one's just to memorize.The name Mutex is derived from Mutually Exclusive hence you are motivated to think of a mutex lock as Mutual Exclusion between two as in only one at a time,and if I possessed it you can have it only after I release it.On the other hand such case doesn't exist for Semaphore is just like a traffic signal(which the word Semaphore also means).
As was pointed out, a semaphore with a count of one is the same thing as a 'binary' semaphore which is the same thing as a mutex.
The main things I've seen semaphores with a count greater than one used for is producer/consumer situations in which you have a queue of a certain fixed size.
You have two semaphores then. The first semaphore is initially set to be the number of items in the queue and the second semaphore is set to 0. The producer does a P operation on the first semaphore, adds to the queue. and does a V operation on the second. The consumer does a P operation on the second semaphore, removes from the queue, and then does a V operation on the first.
In this way the producer is blocked whenever it fills the queue, and the consumer is blocked whenever the queue is empty.
A mutex is a special case of a semaphore. A semaphore allows several threads to go into the critical section. When creating a semaphore you define how may threads are allowed in the critical section. Of course your code must be able to handle several accesses to this critical section.
I find the answer of #Peer Stritzinger the correct one.
I wanted to add to his answer the following quote from the book Programming with POSIX Threads by David R Butenhof. On page 52 of chapter 3 the author writes (emphasis mine):
You cannot lock a mutex when the calling thread already has that mutex locked. The result of attempting to do so may be an error return (EDEADLK), or it may be a self-deadlock, where the unfortunate thread waits forever. You cannot unlock a mutex that is unlocked, or that is locked by another thread. Locked mutexes are owned by the thread that locks them. If you need an "unowned" lock, use a semaphore. Section 6.6.6 discusses semaphores)
With this in mind, the following piece of code illustrates the danger of using a semaphore of size 1 as a replacement for a mutex.
sem = Semaphore(1)
counter = 0 // shared variable
----
Thread 1
for (i in 1..100):
sem.lock()
++counter
sem.unlock()
----
Thread 2
for (i in 1..100):
sem.lock()
++counter
sem.unlock()
----
Thread 3
sem.unlock()
thread.sleep(1.sec)
sem.lock()
If only for threads 1 and 2, the final value of counter should be 200. However, if by mistake that semaphore reference was leaked to another thread and called unlock, than you wouldn't get mutual exclusion.
With a mutex, this behaviour would be impossible by definition.
Binary semaphore and Mutex are different. From OS perspective, a binary semaphore and counting semaphore are implemented in the same way and a binary semaphore can have a value 0 or 1.
Mutex -> Can only be used for one and only purpose of mutual exclusion for a critical section of code.
Semaphore -> Can be used to solve variety of problems. A binary semaphore can be used for signalling and also solve mutual exclusion problem. When initialized to 0, it solves signalling problem and when initialized to 1, it solves mutual exclusion problem.
When the number of resources are more and needs to be synchronized, we can use counting semaphore.
In my blog, I have discussed these topics in detail.
https://designpatterns-oo-cplusplus.blogspot.com/2015/07/synchronization-primitives-mutex-and.html

Conditional Variable vs Semaphore

When to use a semaphore and when to use a conditional variable?
Locks are used for mutual exclusion. When you want to ensure that a piece of code is atomic, put a lock around it. You could theoretically use a binary semaphore to do this, but that's a special case.
Semaphores and condition variables build on top of the mutual exclusion provide by locks and are used for providing synchronized access to shared resources. They can be used for similar purposes.
A condition variable is generally used to avoid busy waiting (looping repeatedly while checking a condition) while waiting for a resource to become available. For instance, if you have a thread (or multiple threads) that can't continue onward until a queue is empty, the busy waiting approach would be to just doing something like:
//pseudocode
while(!queue.empty())
{
sleep(1);
}
The problem with this is that you're wasting processor time by having this thread repeatedly check the condition. Why not instead have a synchronization variable that can be signaled to tell the thread that the resource is available?
//pseudocode
syncVar.lock.acquire();
while(!queue.empty())
{
syncVar.wait();
}
//do stuff with queue
syncVar.lock.release();
Presumably, you'll have a thread somewhere else that is pulling things out of the queue. When the queue is empty, it can call syncVar.signal() to wake up a random thread that is sitting asleep on syncVar.wait() (or there's usually also a signalAll() or broadcast() method to wake up all the threads that are waiting).
I generally use synchronization variables like this when I have one or more threads waiting on a single particular condition (e.g. for the queue to be empty).
Semaphores can be used similarly, but I think they're better used when you have a shared resource that can be available and unavailable based on some integer number of available things. Semaphores are good for producer/consumer situations where producers are allocating resources and consumers are consuming them.
Think about if you had a soda vending machine. There's only one soda machine and it's a shared resource. You have one thread that's a vendor (producer) who is responsible for keeping the machine stocked and N threads that are buyers (consumers) who want to get sodas out of the machine. The number of sodas in the machine is the integer value that will drive our semaphore.
Every buyer (consumer) thread that comes to the soda machine calls the semaphore down() method to take a soda. This will grab a soda from the machine and decrement the count of available sodas by 1. If there are sodas available, the code will just keep running past the down() statement without a problem. If no sodas are available, the thread will sleep here waiting to be notified of when soda is made available again (when there are more sodas in the machine).
The vendor (producer) thread would essentially be waiting for the soda machine to be empty. The vendor gets notified when the last soda is taken from the machine (and one or more consumers are potentially waiting to get sodas out). The vendor would restock the soda machine with the semaphore up() method, the available number of sodas would be incremented each time and thereby the waiting consumer threads would get notified that more soda is available.
The wait() and signal() methods of a synchronization variable tend to be hidden within the down() and up() operations of the semaphore.
Certainly there's overlap between the two choices. There are many scenarios where a semaphore or a condition variable (or set of condition variables) could both serve your purposes. Both semaphores and condition variables are associated with a lock object that they use to maintain mutual exclusion, but then they provide extra functionality on top of the lock for synchronizing thread execution. It's mostly up to you to figure out which one makes the most sense for your situation.
That's not necessarily the most technical description, but that's how it makes sense in my head.
Let's reveal what's under the hood.
Conditional variable is essentially a wait-queue, that supports blocking-wait and wakeup operations, i.e. you can put a thread into the wait-queue and set its state to BLOCK, and get a thread out from it and set its state to READY.
Note that to use a conditional variable, two other elements are needed:
a condition (typically implemented by checking a flag or a counter)
a mutex that protects the condition
The protocol then becomes,
acquire mutex
check condition
block and release mutex if condition is true, else release mutex
Semaphore is essentially a counter + a mutex + a wait queue. And it can be used as it is without external dependencies. You can use it either as a mutex or as a conditional variable.
Therefore, semaphore can be treated as a more sophisticated structure than conditional variable, while the latter is more lightweight and flexible.
Semaphores can be used to implement exclusive access to variables, however they are meant to be used for synchronization. Mutexes, on the other hand, have a semantics which is strictly related to mutual exclusion: only the process which locked the resource is allowed to unlock it.
Unfortunately you cannot implement synchronization with mutexes, that's why we have condition variables. Also notice that with condition variables you can unlock all the waiting threads in the same instant by using the broadcast unlocking. This cannot be done with semaphores.
semaphore and condition variables are very similar and are used mostly for the same purposes. However, there are minor differences that could make one preferable. For example, to implement barrier synchronization you would not be able to use a semaphore.But a condition variable is ideal.
Barrier synchronization is when you want all of your threads to wait until everyone has arrived at a certain part in the thread function. this can be implemented by having a static variable which is initially the value of total threads decremented by each thread when it reaches that barrier. this would mean we want each thread to sleep until the last one arrives.A semaphore would do the exact opposite! with a semaphore, each thread would keep running and the last thread (which will set semaphore value to 0) will go to sleep.
a condition variable on the other hand, is ideal. when each thread gets to the barrier we check if our static counter is zero. if not, we set the thread to sleep with the condition variable wait function. when the last thread arrives at the barrier, the counter value will be decremented to zero and this last thread will call the condition variable signal function which will wake up all the other threads!
I file condition variables under monitor synchronization. I've generally seen semaphores and monitors as two different synchronization styles. There are differences between the two in terms of how much state data is inherently kept and how you want to model code - but there really isn't any problem that can be solved by one but not the other.
I tend to code towards monitor form; in most languages I work in that comes down to mutexes, condition variables, and some backing state variables. But semaphores would do the job too.
semaphore need to know the count upfront for initialization. There is no such requirement for condition variables.
The the mutex and conditional variables are inherited from semaphore.
For mutex, the semaphore uses two states: 0, 1
For condition variables the semaphore uses counter.
They are like syntactic sugar
conditionalVar + mutex == semaphore

Resources