How to control host from docker container?
For example, how to execute copied to host bash script?
This answer is just a more detailed version of Bradford Medeiros's solution, which for me as well turned out to be the best answer, so credit goes to him.
In his answer, he explains WHAT to do (named pipes) but not exactly HOW to do it.
I have to admit I didn't know what named pipes were when I read his solution. So I struggled to implement it (while it's actually very simple), but I did succeed.
So the point of my answer is just detailing the commands you need to run in order to get it working, but again, credit goes to him.
PART 1 - Testing the named pipe concept without docker
On the main host, chose the folder where you want to put your named pipe file, for instance /path/to/pipe/ and a pipe name, for instance mypipe, and then run:
mkfifo /path/to/pipe/mypipe
The pipe is created.
Type
ls -l /path/to/pipe/mypipe
And check the access rights start with "p", such as
prw-r--r-- 1 root root 0 mypipe
Now run:
tail -f /path/to/pipe/mypipe
The terminal is now waiting for data to be sent into this pipe
Now open another terminal window.
And then run:
echo "hello world" > /path/to/pipe/mypipe
Check the first terminal (the one with tail -f), it should display "hello world"
PART 2 - Run commands through the pipe
On the host container, instead of running tail -f which just outputs whatever is sent as input, run this command that will execute it as commands:
eval "$(cat /path/to/pipe/mypipe)"
Then, from the other terminal, try running:
echo "ls -l" > /path/to/pipe/mypipe
Go back to the first terminal and you should see the result of the ls -l command.
PART 3 - Make it listen forever
You may have noticed that in the previous part, right after ls -l output is displayed, it stops listening for commands.
Instead of eval "$(cat /path/to/pipe/mypipe)", run:
while true; do eval "$(cat /path/to/pipe/mypipe)"; done
(you can nohup that)
Now you can send unlimited number of commands one after the other, they will all be executed, not just the first one.
PART 4 - Make it work even when reboot happens
The only caveat is if the host has to reboot, the "while" loop will stop working.
To handle reboot, here what I've done:
Put the while true; do eval "$(cat /path/to/pipe/mypipe)"; done in a file called execpipe.sh with #!/bin/bash header
Don't forget to chmod +x it
Add it to crontab by running
crontab -e
And then adding
#reboot /path/to/execpipe.sh
At this point, test it: reboot your server, and when it's back up, echo some commands into the pipe and check if they are executed.
Of course, you aren't able to see the output of commands, so ls -l won't help, but touch somefile will help.
Another option is to modify the script to put the output in a file, such as:
while true; do eval "$(cat /path/to/pipe/mypipe)" &> /somepath/output.txt; done
Now you can run ls -l and the output (both stdout and stderr using &> in bash) should be in output.txt.
PART 5 - Make it work with docker
If you are using both docker compose and dockerfile like I do, here is what I've done:
Let's assume you want to mount the mypipe's parent folder as /hostpipe in your container
Add this:
VOLUME /hostpipe
in your dockerfile in order to create a mount point
Then add this:
volumes:
- /path/to/pipe:/hostpipe
in your docker compose file in order to mount /path/to/pipe as /hostpipe
Restart your docker containers.
PART 6 - Testing
Exec into your docker container:
docker exec -it <container> bash
Go into the mount folder and check you can see the pipe:
cd /hostpipe && ls -l
Now try running a command from within the container:
echo "touch this_file_was_created_on_main_host_from_a_container.txt" > /hostpipe/mypipe
And it should work!
WARNING: If you have an OSX (Mac OS) host and a Linux container, it won't work (explanation here https://stackoverflow.com/a/43474708/10018801 and issue here https://github.com/docker/for-mac/issues/483 ) because the pipe implementation is not the same, so what you write into the pipe from Linux can be read only by a Linux and what you write into the pipe from Mac OS can be read only by a Mac OS (this sentence might not be very accurate, but just be aware that a cross-platform issue exists).
For instance, when I run my docker setup in DEV from my Mac OS computer, the named pipe as explained above does not work. But in staging and production, I have Linux host and Linux containers, and it works perfectly.
PART 7 - Example from Node.JS container
Here is how I send a command from my Node.JS container to the main host and retrieve the output:
const pipePath = "/hostpipe/mypipe"
const outputPath = "/hostpipe/output.txt"
const commandToRun = "pwd && ls-l"
console.log("delete previous output")
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath)
console.log("writing to pipe...")
const wstream = fs.createWriteStream(pipePath)
wstream.write(commandToRun)
wstream.close()
console.log("waiting for output.txt...") //there are better ways to do that than setInterval
let timeout = 10000 //stop waiting after 10 seconds (something might be wrong)
const timeoutStart = Date.now()
const myLoop = setInterval(function () {
if (Date.now() - timeoutStart > timeout) {
clearInterval(myLoop);
console.log("timed out")
} else {
//if output.txt exists, read it
if (fs.existsSync(outputPath)) {
clearInterval(myLoop);
const data = fs.readFileSync(outputPath).toString()
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath) //delete the output file
console.log(data) //log the output of the command
}
}
}, 300);
Use a named pipe.
On the host OS, create a script to loop and read commands, and then you call eval on that.
Have the docker container read to that named pipe.
To be able to access the pipe, you need to mount it via a volume.
This is similar to the SSH mechanism (or a similar socket-based method), but restricts you properly to the host device, which is probably better. Plus you don't have to be passing around authentication information.
My only warning is to be cautious about why you are doing this. It's totally something to do if you want to create a method to self-upgrade with user input or whatever, but you probably don't want to call a command to get some config data, as the proper way would be to pass that in as args/volume into docker. Also, be cautious about the fact that you are evaling, so just give the permission model a thought.
Some of the other answers such as running a script. Under a volume won't work generically since they won't have access to the full system resources, but it might be more appropriate depending on your usage.
The solution I use is to connect to the host over SSH and execute the command like this:
ssh -l ${USERNAME} ${HOSTNAME} "${SCRIPT}"
UPDATE
As this answer keeps getting up votes, I would like to remind (and highly recommend), that the account which is being used to invoke the script should be an account with no permissions at all, but only executing that script as sudo (that can be done from sudoers file).
UPDATE: Named Pipes
The solution I suggested above was only the one I used while I was relatively new to Docker. Now in 2021 take a look on the answers that talk about Named Pipes. This seems to be a better solution.
However, nobody there mentioned anything about security. The script that will evaluate the commands sent through the pipe (the script that calls eval) must actually not use eval for the whole pipe output, but to handle specific cases and call the required commands according to the text sent, otherwise any command that can do anything can be sent through the pipe.
That REALLY depends on what you need that bash script to do!
For example, if the bash script just echoes some output, you could just do
docker run --rm -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
Another possibility is that you want the bash script to install some software- say the script to install docker-compose. you could do something like
docker run --rm -v /usr/bin:/usr/bin --privileged -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
But at this point you're really getting into having to know intimately what the script is doing to allow the specific permissions it needs on your host from inside the container.
My laziness led me to find the easiest solution that wasn't published as an answer here.
It is based on the great article by luc juggery.
All you need to do in order to gain a full shell to your linux host from within your docker container is:
docker run --privileged --pid=host -it alpine:3.8 \
nsenter -t 1 -m -u -n -i sh
Explanation:
--privileged : grants additional permissions to the container, it allows the container to gain access to the devices of the host (/dev)
--pid=host : allows the containers to use the processes tree of the Docker host (the VM in which the Docker daemon is running)
nsenter utility: allows to run a process in existing namespaces (the building blocks that provide isolation to containers)
nsenter (-t 1 -m -u -n -i sh) allows to run the process sh in the same isolation context as the process with PID 1.
The whole command will then provide an interactive sh shell in the VM
This setup has major security implications and should be used with cautions (if any).
Write a simple server python server listening on a port (say 8080), bind the port -p 8080:8080 with the container, make a HTTP request to localhost:8080 to ask the python server running shell scripts with popen, run a curl or writing code to make a HTTP request curl -d '{"foo":"bar"}' localhost:8080
#!/usr/bin/python
from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
import subprocess
import json
PORT_NUMBER = 8080
# This class will handles any incoming request from
# the browser
class myHandler(BaseHTTPRequestHandler):
def do_POST(self):
content_len = int(self.headers.getheader('content-length'))
post_body = self.rfile.read(content_len)
self.send_response(200)
self.end_headers()
data = json.loads(post_body)
# Use the post data
cmd = "your shell cmd"
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
p_status = p.wait()
(output, err) = p.communicate()
print "Command output : ", output
print "Command exit status/return code : ", p_status
self.wfile.write(cmd + "\n")
return
try:
# Create a web server and define the handler to manage the
# incoming request
server = HTTPServer(('', PORT_NUMBER), myHandler)
print 'Started httpserver on port ' , PORT_NUMBER
# Wait forever for incoming http requests
server.serve_forever()
except KeyboardInterrupt:
print '^C received, shutting down the web server'
server.socket.close()
If you are not worried about security and you're simply looking to start a docker container on the host from within another docker container like the OP, you can share the docker server running on the host with the docker container by sharing it's listen socket.
Please see https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface and see if your personal risk tolerance allows this for this particular application.
You can do this by adding the following volume args to your start command
docker run -v /var/run/docker.sock:/var/run/docker.sock ...
or by sharing /var/run/docker.sock within your docker compose file like this:
version: '3'
services:
ci:
command: ...
image: ...
volumes:
- /var/run/docker.sock:/var/run/docker.sock
When you run the docker start command within your docker container,
the docker server running on your host will see the request and provision the sibling container.
credit: http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
As Marcus reminds, docker is basically process isolation. Starting with docker 1.8, you can copy files both ways between the host and the container, see the doc of docker cp
https://docs.docker.com/reference/commandline/cp/
Once a file is copied, you can run it locally
docker run --detach-keys="ctrl-p" -it -v /:/mnt/rootdir --name testing busybox
# chroot /mnt/rootdir
#
I have a simple approach.
Step 1: Mount /var/run/docker.sock:/var/run/docker.sock (So you will be able to execute docker commands inside your container)
Step 2: Execute this below inside your container. The key part here is (--network host as this will execute from host context)
docker run -i --rm --network host -v /opt/test.sh:/test.sh alpine:3.7
sh /test.sh
test.sh should contain the some commands (ifconfig, netstat etc...) whatever you need.
Now you will be able to get host context output.
You can use the pipe concept, but use a file on the host and fswatch to accomplish the goal to execute a script on the host machine from a docker container. Like so (Use at your own risk):
#! /bin/bash
touch .command_pipe
chmod +x .command_pipe
# Use fswatch to execute a command on the host machine and log result
fswatch -o --event Updated .command_pipe | \
xargs -n1 -I "{}" .command_pipe >> .command_pipe_log &
docker run -it --rm \
--name alpine \
-w /home/test \
-v $PWD/.command_pipe:/dev/command_pipe \
alpine:3.7 sh
rm -rf .command_pipe
kill %1
In this example, inside the container send commands to /dev/command_pipe, like so:
/home/test # echo 'docker network create test2.network.com' > /dev/command_pipe
On the host, you can check if the network was created:
$ docker network ls | grep test2
8e029ec83afe test2.network.com bridge local
In my scenario I just ssh login the host (via host ip) within a container and then I can do anything I want to the host machine
I found answers using named pipes awesome. But I was wondering if there is a way to get the output of the executed command.
The solution is to create two named pipes:
mkfifo /path/to/pipe/exec_in
mkfifo /path/to/pipe/exec_out
Then, the solution using a loop, as suggested by #Vincent, would become:
# on the host
while true; do eval "$(cat exec_in)" > exec_out; done
And then on the docker container, we can execute the command and get the output using:
# on the container
echo "ls -l" > /path/to/pipe/exec_in
cat /path/to/pipe/exec_out
If anyone interested, my need was to use a failover IP on the host from the container, I created this simple ruby method:
def fifo_exec(cmd)
exec_in = '/path/to/pipe/exec_in'
exec_out = '/path/to/pipe/exec_out'
%x[ echo #{cmd} > #{exec_in} ]
%x[ cat #{exec_out} ]
end
# example
fifo_exec "curl https://ip4.seeip.org"
Depending on the situation, this could be a helpful resource.
This uses a job queue (Celery) that can be run on the host, commands/data could be passed to this through Redis (or rabbitmq). In the example below, this is occurring in a django application (which is commonly dockerized).
https://www.codingforentrepreneurs.com/blog/celery-redis-django/
To expand on user2915097's response:
The idea of isolation is to be able to restrict what an application/process/container (whatever your angle at this is) can do to the host system very clearly. Hence, being able to copy and execute a file would really break the whole concept.
Yes. But it's sometimes necessary.
No. That's not the case, or Docker is not the right thing to use. What you should do is declare a clear interface for what you want to do (e.g. updating a host config), and write a minimal client/server to do exactly that and nothing more. Generally, however, this doesn't seem to be very desirable. In many cases, you should simply rethink your approach and eradicate that need. Docker came into an existence when basically everything was a service that was reachable using some protocol. I can't think of any proper usecase of a Docker container getting the rights to execute arbitrary stuff on the host.
CMD ['sleep', 100000]
gets stuck and becomes unresponsive for ctrl + c.
Any suggestions?
The issue is when the CMD is not running properly, it is usually easier to exec --it into the server and do those things manually to get them up and running properly.
Without a CMD, run will exit, and therefore exec won't be possible.
I've used sleep for this, but i saw a ping, but ping is not default in ubuntu 18, and perhaps there are better ways than installing it for this simple purpose.
You can provide an alternate command when you run the image. That can be anything you want -- a debugging command, an interactive shell, an alternate process.
docker run --rm myimage ls -l /app
docker run --rm -it myimage bash
# If you're using Compose
docker-compose run myservice bash
This generally gets around the need to "keep the container alive" so that you can docker exec into it. Say you have a container command that doesn't work right:
CMD ["my_command", "--crash"]
Without modifying the Dockerfile, you can run an interactive shell as above. When you get a shell prompt, you can run my_command --crash, and when it crashes, you can look around at what got left behind in the filesystem.
It's important that CMD be a complete command for this to work. If you have an ENTRYPOINT, it needs to use the JSON-array syntax and it needs to run the command that gets passed to it as command line parameters (often, it's a shell script that ends in exec "$#").
Having troubles with attaching to the bash instance keeping the container running.
To be more detailed. I am running container as here:
$ docker run -dt --name test ubuntu bash
Now it should be actually running, not finished.
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
f3596c613cfe ubuntu "bash" 4 seconds ago Up 2 seconds test
After this, I am trying to attach to that instance of bash that keeps the container running. Like this:
$ docker attach test
Running this command I am able to write something to stdin, but no result following. I am not sure if bash is getting lines I typed.
Is there some other way to bash that keeps the container running?
I know, that I can run a different instance of bash and use it docker exec -it test bash. But being more general, is there a way to connect to process that's running in Docker container?
Sometimes it can be useful to save the session of a process running inside the container.
SOLUTION
Thanks to user2915097 for pointing out the missing -i flag.
So now we can have persistent bash session. For example, let's set some alias and reuse after stopping and restarting the container.
$ docker run -itd --name test ubuntu bash
To attach to bash instance just run
$ docker attach test
root#3534cbe1e994:/# alias test="Hello, world!"
To detach from container and not to stop the container press Ctrl+p, Ctrl+q
Then we can stop and restart the container
$ docker stop test
$ docker start test
Now we can attach to the same bash instance and check our alias
$ docker attach test
root#3534cbe1e994:/# test
Hello, world!
Everything is working perfectly!
As I have pointed out in my comment use-case for this can be running some interactive shells as bash, octave, ipython in Docker container persisting all the history, imports, variables and temporary settings just
by reattaching to the same instance.
Your container is running, it is not finished, as you can see
it appears in docker ps, so it is a running container
it show up n seconds
you launch it with -dt so you want it
detached (for d)
allocate a tty (for t)
but not interactive, as you do not add -i
Usually, you nearly always provide -it together, it may be -idt
See this thread
When would I use `--interactive` without `--tty` in a Docker container?
as you want bash, I think you should add -i
I am not sure why you use -d
Usually it is
docker run -it --rm --name=mytest ubuntu bash
and you can test
A container's running lifecycle is determined by its root process, which is bash in your example. When your start your ubuntu container with bash as the process, bash is immediately exiting because it has nothing to keep it running. That's why the container immediately exits and there's nothing to attach to.
I create my docker container in detached mode with the following command:
docker run [OPTIONS] --name="my_image" -d container_name /bin/bash -c "/opt/init.sh"
so I need that "/opt/init.sh" executed at container created. What I saw that the container is stopped after scripts finish executed.
How to keep container started in detached with script/services execution at container creation ?
There are 2 modes of running docker container
Detached mode - This mode you execute a command and will terminate container after the command is done
Foreground mode - This mode you run a bash shell, but will also terminate container after you exit the shell
What you need is Background mode. This is not given in parameters but there are many ways to do this.
Run an infinite command in detached mode so the command never ends and the container never stops. I usually use "tail -f /dev/null" simply because it is quite light weight and /dev/null is present in most linux images
docker run -d --name=name container tail -f /dev/null
Then you can bash in to running container like this:
docker exec -it name /bin/bash -l
If you use -l parameter, it will login as login mode which will execute .bashrc like normal bash login. Otherwise, you need to bash again inside manually
Entrypoint - You can create any sh script such as /entrypoint.sh. in entrypoint.sh you can run any never ending script as well
#!/bin/sh
#/entrypoint.sh
service mysql restart
...
tail -f /dev/null <- this is never ending
After you save this entrypoint.sh, chmod a+x on it, exit docker bash, then start it like this:
docker run --name=name container --entrypoint /entrypoint.sh
This allows each container to have their own start script and you can run them without worrying about attaching the start script each time
A Docker container will exit when its main process ends. In this case, that means when init.sh ends. If you are only trying to start a single application, you can just use exec to launch it at the end, making sure to run it in the foreground. Using exec will effectively turn the called service/application into the main process.
If you have more than one service to start, you are best off using a process manager such as supervisord or runit. You will need to start the process manager daemon in the foreground. The Docker documentation includes an example of using supervisord.