Spark Jobs crashing with ExitCodeException exitCode=15 - apache-spark

I am running a very long spark job which crashes with the following error
Application application_1456200816465_347125 failed 2 times due to AM Container for appattempt_1456200816465_347125_000002 exited with exitCode: 15
For more detailed output, check application tracking page:http://foo.com:8088/proxy/application_1456200816465_347125/Then, click on links to logs of each attempt.
Diagnostics: Exception from container-launch.
Container id: container_e24_1456200816465_347125_02_000001
Exit code: 15
Stack trace: ExitCodeException exitCode=15:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:538)
at org.apache.hadoop.util.Shell.run(Shell.java:455)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:715)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Container exited with a non-zero exit code 15
Failing this attempt. Failing the application.
I click on the link provided in the error message above and that shows me
java.io.IOException: Target log file already exists (hdfs://nameservice1/user/spark/applicationHistory/application_1456200816465_347125)
at org.apache.spark.scheduler.EventLoggingListener.stop(EventLoggingListener.scala:201)
at org.apache.spark.SparkContext$$anonfun$stop$5.apply(SparkContext.scala:1394)
at org.apache.spark.SparkContext$$anonfun$stop$5.apply(SparkContext.scala:1394)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1394)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$3.run(ApplicationMaster.scala:107)
at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:54)
If I restart the job it works fine for 1 hour or so and then again fails with this error. Note that hdfs://nameservice1/user/spark/applicationHistory/application_1456200816465_347125 is some system generated thing. this folder has nothing to do with my application.
I searched the internet and many people got this error because they were setting the master to local in their code. This is how I initialize my spark context
val conf = new SparkConf().setAppName("Foo")
val context = new SparkContext(conf)
context.hadoopConfiguration.set("mapreduce.input.fileinputformat.input.dir.recursive","true")
val sc = new SQLContext(context)
and I run my spark job like
sudo -u web nohup spark-submit --class com.abhi.Foo--master yarn-cluster
Foo-assembly-1.0.jar "2015-03-18" "2015-03-30" > fn_output.txt 2> fn_error.txt &

Related

When running "local-cluster" model in Apache Spark, how to prevent executor from dissociating prematurely?

I have a Spark application that should be tested in both local mode & local-cluster mode, using scalatest.
The local-cluster mode is submitted using this method:
How to scala-test a Spark program under "local-cluster" mode?
The test run successfully, but when terminating the test I got the following error in the log:
22/05/16 17:45:25 ERROR TaskSchedulerImpl: Lost executor 0 on 172.16.224.18: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
22/05/16 17:45:25 ERROR Worker: Failed to launch executor app-20220516174449-0000/2 for Test.
java.lang.IllegalStateException: Shutdown hooks cannot be modified during shutdown.
at org.apache.spark.util.SparkShutdownHookManager.add(ShutdownHookManager.scala:195)
at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:153)
at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:142)
at org.apache.spark.deploy.worker.ExecutorRunner.start(ExecutorRunner.scala:77)
at org.apache.spark.deploy.worker.Worker$$anonfun$receive$1.applyOrElse(Worker.scala:547)
at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:117)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:215)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:102)
at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:221)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
22/05/16 17:45:25 ERROR Worker: Failed to launch executor app-20220516174449-0000/3 for Test.
java.lang.IllegalStateException: Shutdown hooks cannot be modified during shutdown.
at org.apache.spark.util.SparkShutdownHookManager.add(ShutdownHookManager.scala:195)
at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:153)
at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:142)
at org.apache.spark.deploy.worker.ExecutorRunner.start(ExecutorRunner.scala:77)
at org.apache.spark.deploy.worker.Worker$$anonfun$receive$1.applyOrElse(Worker.scala:547)
at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:117)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:215)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:102)
at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:221)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
22/05/16 17:45:25 ERROR Worker: Failed to launch executor app-20220516174449-0000/4 for Test.
java.lang.IllegalStateException: Shutdown hooks cannot be modified during shutdown.
at org.apache.spark.util.SparkShutdownHookManager.add(ShutdownHookManager.scala:195)
at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:153)
at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:142)
at org.apache.spark.deploy.worker.ExecutorRunner.start(ExecutorRunner.scala:77)
at org.apache.spark.deploy.worker.Worker$$anonfun$receive$1.applyOrElse(Worker.scala:547)
at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:117)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:215)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:102)
at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:221)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
22/05/16 17:45:25 ERROR Worker: Failed to launch executor app-20220516174449-0000/5 for Test.
java.lang.IllegalStateException: Shutdown hooks cannot be modified during shutdown.
at org.apache.spark.util.SparkShutdownHookManager.add(ShutdownHookManager.scala:195)
at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:153)
at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:142)
at org.apache.spark.deploy.worker.ExecutorRunner.start(ExecutorRunner.scala:77)
at org.apache.spark.deploy.worker.Worker$$anonfun$receive$1.applyOrElse(Worker.scala:547)
at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:117)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:215)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:102)
at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dis
...
It turns out executor 0 was dropped before the SparkContext is stopped, this triggered a violent self-healing reaction from Spark master that tries to repeatedly launch new executors to compensate for the loss. How do I prevent this from happening?
Spark attempts to recover from failed tasks by attempting to run them again. What you can do to avoid this is to set some properties to 1 in
spark.task.maxFailures (default is 4)
spark.stage.maxConsecutiveAttempts (default is 4)
These properties can be set in $SPARK_HOME/conf/spark-defaults.conf or given as options to spark-submit:
spark-submit --conf spark.task.maxFailures=1 --conf spark.stage.maxConsecutiveAttempts=1
or in the Spark context/session configuration before starting the session.
EDIT:
It looks like your executors are lost due to insufficient memory. You could try to increase:
spark.executor.memory
spark.executor.memoryOverhead
spark.memory.offHeap.size with (spark.memory.offHeap.enabled=true)
(see Spark configuration)
The maximum memory size of container to running executor is determined by the sum of spark.executor.memoryOverhead, spark.executor.memory, spark.memory.offHeap.size and spark.executor.pyspark.memory.

Spark runs in local but can't find file when running in YARN

I've been trying to submit a simple python script to run it in a cluster with YARN. When I execute the job in local, there's no problem, everything works fine but when I run it in the cluster it fails.
I executed the submit with the following command:
spark-submit --master yarn --deploy-mode cluster test.py
The log error I'm receiving is the following one:
17/11/07 13:02:48 INFO yarn.Client: Application report for application_1510046813642_0010 (state: ACCEPTED)
17/11/07 13:02:49 INFO yarn.Client: Application report for application_1510046813642_0010 (state: ACCEPTED)
17/11/07 13:02:50 INFO yarn.Client: Application report for application_1510046813642_0010 (state: FAILED)
17/11/07 13:02:50 INFO yarn.Client:
client token: N/A
diagnostics: Application application_1510046813642_0010 failed 2 times due to AM Container for appattempt_1510046813642_0010_000002 exited with exitCode: -1000
For more detailed output, check application tracking page:http://myserver:8088/proxy/application_1510046813642_0010/Then, click on links to logs of each attempt.
**Diagnostics: File does not exist: hdfs://myserver:8020/user/josholsan/.sparkStaging/application_1510046813642_0010/test.py**
java.io.FileNotFoundException: File does not exist: hdfs://myserver:8020/user/josholsan/.sparkStaging/application_1510046813642_0010/test.py
at org.apache.hadoop.hdfs.DistributedFileSystem$20.doCall(DistributedFileSystem.java:1266)
at org.apache.hadoop.hdfs.DistributedFileSystem$20.doCall(DistributedFileSystem.java:1258)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1258)
at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:251)
at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:61)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:357)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1917)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:356)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:60)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Failing this attempt. Failing the application.
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: root.users.josholsan
start time: 1510056155796
final status: FAILED
tracking URL: http://myserver:8088/cluster/app/application_1510046813642_0010
user: josholsan
Exception in thread "main" org.apache.spark.SparkException: Application application_1510046813642_0010 finished with failed status
at org.apache.spark.deploy.yarn.Client.run(Client.scala:1025)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1072)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:730)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/11/07 13:02:50 INFO util.ShutdownHookManager: Shutdown hook called
17/11/07 13:02:50 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-5cc8bf5e-216b-4d9e-b66d-9dc01a94e851
I put special attention to this line
Diagnostics: File does not exist: hdfs://myserver:8020/user/josholsan/.sparkStaging/application_1510046813642_0010/test.py
I don't know why it can't finde the test.py, I also tried to put it in HDFS under the directory of the user executing the job: /user/josholsan/
To finish my post I would like to share also my test.py script:
from pyspark import SparkContext
file="/user/josholsan/concepts_copy.csv"
sc = SparkContext("local","Test app")
textFile = sc.textFile(file).cache()
linesWithOMOP=textFile.filter(lambda line: "OMOP" in line).count()
linesWithICD=textFile.filter(lambda line: "ICD" in line).count()
print("Lines with OMOP: %i, lines with ICD9: %i" % (linesWithOMOP,linesWithICD))
Could the error also be in here?:
sc = SparkContext("local","Test app")
Thanks you so much for your help in advance.
Transferred from the comments section:
sc = SparkContext("local","Test app"): having "local" here will override any command line settings; from the docs:
Any values specified as flags or in the properties file will be passed on to the application and merged with those specified through SparkConf. Properties set directly on the SparkConf take highest precedence, then flags passed to spark-submit or spark-shell, then options in the spark-defaults.conf file.
The test.py file must be placed somewhere where it is visible throughout the whole cluster. E.g. spark-submit --master yarn --deploy-mode cluster http://somewhere/accessible/to/master/and/workers/test.py
Any additional files and resources can be specified using the --py-files argument (tested in mesos, not in yarn unfortunately), e.g. --py-files http://somewhere/accessible/to/all/extra_python_code_my_code_uses.zip
Edit: as #desertnaut commented, this argument should be used before the script to be executed.
yarn logs -applicationId <app ID> will give you the output of your submitted job. More here and here
Hope this helps, good luck!

AWS EMR using spark steps in cluster mode. Application application_ finished with failed status

I'm trying to launch a cluster using AWS Cli. I use the following command:
aws emr create-cluster --name "Config1" --release-label emr-5.0.0 --applications Name=Spark --use-default-role --log-uri 's3://aws-logs-813591802533-us-west-2/elasticmapreduce/' --instance-groups InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m1.medium InstanceGroupType=CORE,InstanceCount=2,InstanceType=m1.medium
The cluster is created successfully. Then I add this command:
aws emr add-steps --cluster-id ID_CLUSTER --region us-west-2 --steps Name=SparkSubmit,Jar="command-runner.jar",Args=[spark-submit,--deploy-mode,cluster,--master,yarn,--executor-memory,1G,--class,Traccia2014,s3://tracceale/params/scalaProgram.jar,s3://tracceale/params/configS3.txt,30,300,2,"s3a://tracceale/Tempi1"],ActionOnFailure=CONTINUE
After some time, the step failed. This is the LOG file:
17/02/22 11:00:07 INFO RMProxy: Connecting to ResourceManager at ip-172-31- 31-190.us-west-2.compute.internal/172.31.31.190:8032
17/02/22 11:00:08 INFO Client: Requesting a new application from cluster with 2 NodeManagers
17/02/22 11:00:08 INFO Client: Verifying our application has not requested
Exception in thread "main" org.apache.spark.SparkException: Application application_1487760984275_0001 finished with failed status
at org.apache.spark.deploy.yarn.Client.run(Client.scala:1132)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1175)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:729)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/02/22 11:01:02 INFO ShutdownHookManager: Shutdown hook called
17/02/22 11:01:02 INFO ShutdownHookManager: Deleting directory /mnt/tmp/spark-27baeaa9-8b3a-4ae6-97d0-abc1d3762c86
Command exiting with ret '1'
Locally (on SandBox Hortonworks HDP 2.5) I run:
./spark-submit --class Traccia2014 --master local[*] --executor-memory 2G /usr/hdp/current/spark2-client/ScalaProjects/ScripRapportoBatch2.1/target/scala-2.11/traccia-22-ottobre_2.11-1.0.jar "/home/tracce/configHDFS.txt" 30 300 3
and everything works fine.
I've already read something related to my problem, but I can't figure it out.
UPDATE
Checked into Application Master, I get this error:
17/02/22 15:29:54 ERROR ApplicationMaster: User class threw exception: java.io.FileNotFoundException: s3:/tracceale/params/configS3.txt (No such file or directory)
at java.io.FileInputStream.open0(Native Method)
at java.io.FileInputStream.open(FileInputStream.java:195)
at java.io.FileInputStream.<init>(FileInputStream.java:138)
at scala.io.Source$.fromFile(Source.scala:91)
at scala.io.Source$.fromFile(Source.scala:76)
at scala.io.Source$.fromFile(Source.scala:54)
at Traccia2014$.main(Rapporto.scala:40)
at Traccia2014.main(Rapporto.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:627)
17/02/22 15:29:55 INFO ApplicationMaster: Final app status: FAILED, exitCode: 15, (reason: User class threw exception: java.io.FileNotFoundException: s3:/tracceale/params/configS3.txt (No such file or directory))
I pass the path mentioned "s3://tracceale/params/configS3.txt" from S3 to the function 'fromFile' like this:
for(line <- scala.io.Source.fromFile(logFile).getLines())
How could I solve it? Thanks in advance.
Because you are using cluster deploy mode, the logs you have included are not useful at all. They just say that the application failed but not why it failed. To figure out why it failed, you at least need to look at the Application Master logs, since that is where the Spark driver runs in cluster deploy mode, and it will probably give a better hint as to why the application failed.
Since you have configured your cluster with a --log-uri, you will find the logs for the Application Master underneath s3://aws-logs-813591802533-us-west-2/elasticmapreduce/<CLUSTER ID>/containers/<YARN Application ID>/ where the YARN Application ID is (based on the logs you included above) application_1487760984275_0001, and the container ID should be something like container_1487760984275_0001_01_000001. (The first container for an application is the Application Master.)
What you have there is a URL to an object store, reachable from the Hadoop filesystem APIs, and a stack trace coming from java.io.File, which can't read it because it doesn't refer to anything in the local disk.
Use SparkContext.hadoopRDD() as the operation to convert the path into an RDD
There is a probability of file missing in the location, may be you can see it after ssh into EMR cluster but still the steps command wouldn't be able to figure out by itself and starts throwing that file not found exception.
In this scenario what I did is :
Step 1: Checked for the file existence in the project directory which we copied to EMR.
for example mine was in `//usr/local/project_folder/`
Step 2: Copy the script which you're expecting to run on the EMR.
for example I copied from `//usr/local/project_folder/script_name.sh` to `/home/hadoop/`
Step 3: Then executed the script from /home/hadoop/ by passing the absolute path to the command-runner.jar
command-runner.jar bash /home/hadoop/script_name.sh
Thus I found my script running. Hope this may be helpful to someone

Spark-Submit is throwing exception when running in yarn-cluster mode

i have a simple spark app for learning puprose ... this scala program parallelizr the data List and writes the RDD on a file in Hadoop.
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
object HelloSpark {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("HelloSPark1").setMaster(args(0))
val sc = new SparkContext(conf)
val i = List(1,4,2,11,23,45,67,8,909,5,1,8,"agarwal",19,11,12,34,8031,"aditya")
val b = sc.parallelize(i,3)
b.saveAsTextFile(args(1))
}
}
i create a jar file and when i run it on my cluster it throws error when i run it as --master YARN and --deploy-mode cluster using following command
spark-submit --class "HelloSpark" --master yarn --deploy-mode cluster sparkappl_2.11-1.0.jar yarn /user
/letsbigdata9356/sparktest/run6
client token: N/A
diagnostics: Application application_1483332319047_3791 failed 2 times due to AM Container for appattempt_1483332319047_3791_000002 e
xited with exitCode: 15
For more detailed output, check application tracking page:http://a.cloudxlab.com:8088/cluster/app/application_1483332319047_3791Then, click on
links to logs of each attempt.
Diagnostics: Exception from container-launch.
Container id: container_e77_1483332319047_3791_02_000001
Exit code: 15
Stack trace: ExitCodeException exitCode=15:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:576)
at org.apache.hadoop.util.Shell.run(Shell.java:487)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:753)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Container exited with a non-zero exit code 15
Failing this attempt. Failing the application.
Container exited with a non-zero exit code 15
Failing this attempt. Failing the application.
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1484231621733
final status: FAILED
tracking URL: http://a.cloudxlab.com:8088/cluster/app/application_1483332319047_3791
user: letsbigdata9356
Exception in thread "main" org.apache.spark.SparkException: Application application_1483332319047_3791 finished with failed status
at org.apache.spark.deploy.yarn.Client.run(Client.scala:974)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1020)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:685)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/01/12 14:34:10 INFO ShutdownHookManager: Shutdown hook called
but when i run it using following command in yarn-client mode or local mode it works fine
spark-submit --class "HelloSpark" sparkappl_2.11-1.0.jar yarn-client /user/letsbigdata9356/sparktest/run
5
or
spark-submit --class "HelloSpark" sparkappl_2.11-1.0.jar local /user/letsbigdata9356/sparktest/run
7
I am new to spark cloud you please help me resolving and learning about this issue.

Spark streaming job fails after getting stopped by Driver

I have a spark streaming job which reads in data from Kafka and does some operations on it. I am running the job over a yarn cluster, Spark 1.4.1, which has two nodes with 16 GB RAM each and 16 cores each.
I have these conf passed to the spark-submit job :
--master yarn-cluster --num-executors 3 --driver-memory 4g --executor-memory 2g --executor-cores 3
The job returns this error and finishes after running for a short while :
INFO yarn.ApplicationMaster: Final app status: FAILED, exitCode: 11,
(reason: Max number of executor failures reached)
.....
ERROR scheduler.ReceiverTracker: Deregistered receiver for stream 0:
Stopped by driver
Updated :
These logs were found too :
INFO yarn.YarnAllocator: Received 3 containers from YARN, launching executors on 3 of them.....
INFO yarn.ApplicationMaster$AMEndpoint: Driver terminated or disconnected! Shutting down.
....
INFO yarn.YarnAllocator: Received 2 containers from YARN, launching executors on 2 of them.
INFO yarn.ExecutorRunnable: Starting Executor Container.....
INFO yarn.ApplicationMaster$AMEndpoint: Driver terminated or disconnected! Shutting down...
INFO yarn.YarnAllocator: Completed container container_e10_1453801197604_0104_01_000006 (state: COMPLETE, exit status: 1)
INFO yarn.YarnAllocator: Container marked as failed: container_e10_1453801197604_0104_01_000006. Exit status: 1. Diagnostics: Exception from container-launch.
Container id: container_e10_1453801197604_0104_01_000006
Exit code: 1
Stack trace: ExitCodeException exitCode=1:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:576)
at org.apache.hadoop.util.Shell.run(Shell.java:487)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:753)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Container exited with a non-zero exit code 1
What might be the reasons for this? Appreciate some help.
Thanks
can you please show your scala/java code that is reading from kafka? I suspect you probably not creating your SparkConf correctly.
Try something like
SparkConf sparkConf = new SparkConf().setAppName("ApplicationName");
also try running application in yarn-client mode and share the output.
I got the same issue. and I have found 1 solution to fix the issue by removing sparkContext.stop() at the end of main function, leave the stop action for GC.
Spark team has resolved the issue in Spark core, however, the fix has just been master branch so far. We need to wait until the fix has been updated into the new release.
https://issues.apache.org/jira/browse/SPARK-12009

Resources