Creating Three.js meshes in a WebWorker - multithreading

I'm trying to offload as many Threejs computations as possible to a Web Worker. It seems to be relatively doable when just wanting the worker to create geometries. However, I still need to create a significant amount of meshes, which implies a hefty cycle on the main thread.
Is it possible to offload mesh creation to a web worker and just have the main thread add it to the scene (when ready)?
The idea would be to have the worker create an array of meshes, based on some data, and have it send it over to the main thread.
Many thanks

I am currently willing to tackle this problem in one of my projects. If you haven't started yet yours, I would suggest to have a look at https://github.com/kripken/webgl-worker first. There are two examples (one simple, one a bit more complex) that could help to start with.
I will update later this answer with more details about how to integrate wegl-worker with three.js, which might require more setup than simple webgl/worker implementation.

Unfortunately, THREEJS 3D objects (classes) are to "heavy" to be used in workers (object can't pass through "worker thread"-"main thread" boundary, even after I patched threejs lib to be used inside worker).
But I successfully use workers to load pretty large objects asynchronously.
I use Catiline.js for convenience.
The idea is to use THREEJS objects native format (and buffer geometry) and simply parse it to js object inside worker. After it, you can use THREE.ObjectLoader in the main thread to get real scene object. The benefit from such approach is to move parsing (which can take quite a long time for the large object) to background and minify freezing.
I use 6 workers, choose worker randomly, pass data url to it and additionaly get benefits from XMLHttpRequest caching

Threejs objects can't be passed through a postMessage.
Instead we want to set up a connection back to the main page via web-sockets. This should let us freely pass whatever is needed.

This thread might be helpful to you... I recently had to do some SSR with Three.js and the concepts are similar expect you are parsing Buffer Geometries with ObjectLoader in the worker.
https://discourse.threejs.org/t/error-with-ssr-three-js-objects/8643

Related

Loading/removing dynamically buffers with Vulkan

I switched to Vulkan from OpenGL to use multi-threading improvements.
In OpenGL, I was able to load dynamically object to the scene (buffer, textures, etc) while rendering by using a waiting system. I was loading all app-side stuffs in a thread, then when it was ready, just before a frame render in the main thread, I was sending everything into the video memory. That was fine.
With Vulkan, I know I can call some functions between threads without provoking the well known segfault from OpenGL. But, this doesn't works with vkQueueSubmit(). I already know, I tried the naive way. To me, it seems logical you can't bother a queue from multiple threads.
I came with some ideas, but I don't know which one is good or bad.
First, I would go the OpenGL way, I will prepare everything I can from the CPU/App side, then just before render a frame, I will submit buffers (with transfer queue) to the video memory. But I feel there is no a real improvement from OpenGL way...
Second, I will try to use the synchronization mechanism to be able to send buffers in a thread and render from an other. But I keep reading there is a lot of way to slow down everything by causing irrelevant locks or by using incorrectly semaphores and fences.
So my question, is basically what path to pick to solve this problem ? How can I load a buffer dynamically from an other thread while the main thread is rendering without making too much pain to performances ? How Vulkan can help ?
If you want to stream resources for immediate use (i.e. the main render cannot proceed without them), then you're pretty much going to either block the main thread waiting, or have it spin doing something visually interesting (e.g. an animated loading screen) waiting for the resources to load.
If you want to stream resources while the app is doing real rendering then the main trick here is to load resources asynchronously in the background and only switch to using those resources in the main thread once they are already loaded. If the main thread ever ends up actually blocked on a semaphore then you've probably already started dropping frames, so your "engine" design needs to ensure that never happens. A lot of game use simple low-detail proxy objects as stand-in versions while the high-detail version is loading in the background.
None of this is particularly related to the graphics API - both GL and Vulkan need the same macro-scale behavior. Vulkan API features don't particularly help because the major bottlenecks which cause problems here are storage/network/CPU which have nothing to do with the graphics part of the problem.
I decided to trust threads !
In the first place it seems to work, I get a lot of :
[MESSAGE:Validation Error: [ UNASSIGNED-Threading-MultipleThreads ] Object 0: handle = 0x56414228bad8, type = VK_OBJECT_TYPE_QUEUE; | MessageID = 0x141cb623 | THREADING ERROR : vkQueueSubmit(): object of type VkQueue is simultaneously used in thread 0x7f6b977fe640 and thread 0x7f6bc2bcb740]
But it works !
So, the basic idea is to have a thread for loading objects while the engine is drawing. This thread takes care of creating the UBO for the location of the object, then when the geometry is loaded from RAM, it creates the VBO and IBO (I left material with image/UBO on hold for now), then creates the graphics pipeline (with layout, descriptor layout, shaders compiled with GLSLang on the fly) (The next idea is to reuse pipeline for similar needs) and finallly sets a flag to say the object is ready to use. In the other hand, I have my main thread rendering and takes new objects when they shows up ready.
I think it works because I have a gentle video card (GTX 1070) with multiple queues setup, I had one for graphics and an other one for transfer setup.
I'm pretty sure, this will crash or goes poorly with a GPU with a single queue, and this should be why the validation layers tolds me these messages.

Is this a decent structure for a multithreaded videocoacher program?

Hi I’m currently working on a project for a videocoacher program for recording and replaying video, as well as showing delayed real-time video, and tracking placement via color.
The software is running on linux , on a 4 core odroid, and initially I started to make it multi threaded with threads implemented as a part of each new class. Each of these threads taking care of their own gui elements.
I’ve later found out that I need to show all gui elements/video in the main/gui thread. Earlier I’ve used opencv and boost. But it seems like using the Qt might be a better idea since some of the code already depends on the QT library. I am currently a novice at programming, and not very familiar with either opencv, qt, or threading.
My question is:
Is this relatively sound as a structure for the program, or is there something inherently wrong with how I am planning to do it now?
Main/GUI Thread
will show all visual & video content
will start a thread for ButtonControl object
ButtonControl
will handle all button input, controlling what happens in the program
depending on what buttons are pressed will start and end threads
like:
StoreToFile object ( starts storing video to a file, while sending a
video stream to GUI thread to show what it is storing in real-time)
ReadFromFile object ( reads the file currently stored and sends data
to display it in GUI thread
DelayedVideoStream object (stores video to buffer, and shows a
continuous delayed view of what happened 5seconds in the past)
ColorTracking object (tracks where a color placement is in the image
)
Kind regards, and thank you for taking the time to look at my question.
TLDR - is a structure where threads are implemented as classes and the image data is sent back to the gui/main thread a decent way to do a multithreaded program ?
Performance-wise, the best approach is not to deal with threads directly at all, but use QtConcurrent::run. It is safe to paint QImages that are simply passed via signals to a GUI object to display. I wrote a complete example demonstrating that approach. It leads to some very concise and easy-to-understand code thanks to related code being adjacent.
If you do want to use explicit threads, it will be much easier not to derive from QThread, but to simply move various worker objects into their threads, and have them communicate via signals and slots. I have a complete example for that approach as well.

Designing concurrency in a Python program

I'm designing a large-scale project, and I think I see a way I could drastically improve performance by taking advantage of multiple cores. However, I have zero experience with multiprocessing, and I'm a little concerned that my ideas might not be good ones.
Idea
The program is a video game that procedurally generates massive amounts of content. Since there's far too much to generate all at once, the program instead tries to generate what it needs as or slightly before it needs it, and expends a large amount of effort trying to predict what it will need in the near future and how near that future is. The entire program, therefore, is built around a task scheduler, which gets passed function objects with bits of metadata attached to help determine what order they should be processed in and calls them in that order.
Motivation
It seems to be like it ought to be easy to make these functions execute concurrently in their own processes. But looking at the documentation for the multiprocessing modules makes me reconsider- there doesn't seem to be any simple way to share large data structures between threads. I can't help but imagine this is intentional.
Questions
So I suppose the fundamental questions I need to know the answers to are thus:
Is there any practical way to allow multiple threads to access the same list/dict/etc... for both reading and writing at the same time? Can I just launch multiple instances of my star generator, give it access to the dict that holds all the stars, and have new objects appear to just pop into existence in the dict from the perspective of other threads (that is, I wouldn't have to explicitly grab the star from the process that made it; I'd just pull it out of the dict as if the main thread had put it there itself).
If not, is there any practical way to allow multiple threads to read the same data structure at the same time, but feed their resultant data back to a main thread to be rolled into that same data structure safely?
Would this design work even if I ensured that no two concurrent functions tried to access the same data structure at the same time, either for reading or for writing?
Can data structures be inherently shared between processes at all, or do I always explicitly have to send data from one process to another as I would with processes communicating over a TCP stream? I know there are objects that abstract away that sort of thing, but I'm asking if it can be done away with entirely; have the object each thread is looking at actually be the same block of memory.
How flexible are the objects that the modules provide to abstract away the communication between processes? Can I use them as a drop-in replacement for data structures used in existing code and not notice any differences? If I do such a thing, would it cause an unmanageable amount of overhead?
Sorry for my naivete, but I don't have a formal computer science education (at least, not yet) and I've never worked with concurrent systems before. Is the idea I'm trying to implement here even remotely practical, or would any solution that allows me to transparently execute arbitrary functions concurrently cause so much overhead that I'd be better off doing everything in one thread?
Example
For maximum clarity, here's an example of how I imagine the system would work:
The UI module has been instructed by the player to move the view over to a certain area of space. It informs the content management module of this, and asks it to make sure that all of the stars the player can currently click on are fully generated and ready to be clicked on.
The content management module checks and sees that a couple of the stars the UI is saying the player could potentially try to interact with have not, in fact, had the details that would show upon click generated yet. It produces a number of Task objects containing the methods of those stars that, when called, will generate the necessary data. It also adds some metadata to these task objects, assuming (possibly based on further information collected from the UI module) that it will be 0.1 seconds before the player tries to click anything, and that stars whose icons are closest to the cursor have the greatest chance of being clicked on and should therefore be requested for a time slightly sooner than the stars further from the cursor. It then adds these objects to the scheduler queue.
The scheduler quickly sorts its queue by how soon each task needs to be done, then pops the first task object off the queue, makes a new process from the function it contains, and then thinks no more about that process, instead just popping another task off the queue and stuffing it into a process too, then the next one, then the next one...
Meanwhile, the new process executes, stores the data it generates on the star object it is a method of, and terminates when it gets to the return statement.
The UI then registers that the player has indeed clicked on a star now, and looks up the data it needs to display on the star object whose representative sprite has been clicked. If the data is there, it displays it; if it isn't, the UI displays a message asking the player to wait and continues repeatedly trying to access the necessary attributes of the star object until it succeeds.
Even though your problem seems very complicated, there is a very easy solution. You can hide away all the complicated stuff of sharing you objects across processes using a proxy.
The basic idea is that you create some manager that manages all your objects that should be shared across processes. This manager then creates its own process where it waits that some other process instructs it to change the object. But enough said. It looks like this:
import multiprocessing as m
manager = m.Manager()
starsdict = manager.dict()
process = Process(target=yourfunction, args=(starsdict,))
process.run()
The object stored in starsdict is not the real dict. instead it sends all changes and requests, you do with it, to its manager. This is called a "proxy", it has almost exactly the same API as the object it mimics. These proxies are pickleable, so you can pass as arguments to functions in new processes (like shown above) or send them through queues.
You can read more about this in the documentation.
I don't know how proxies react if two processes are accessing them simultaneously. Since they're made for parallelism I guess they should be safe, even though I heard they're not. It would be best if you test this yourself or look for it in the documentation.

No OpenGL context found in the current thread

I am using LibGDX to make a game. I want to simultaneously load/unload assets on the fly as needed. However, waiting for assets to load in the main thread causes lag. In order to remedy this, I've created a background thread that monitors which assets need to be loaded (textures, sounds, etc.) and loads/unloads them appropriately.
Unfortunately, I get the following error when calling AssetManager.update() from that thread.
com.badlogic.gdx.utils.GdxRuntimeException: java.lang.RuntimeException: No OpenGL context found in the current thread.
I've tried runing the background thread in the main thread in the beginning and just dealing with the first few screens, and everything works fine. I can also change the algorithm to just load everything into memory from the start in the same thread, and that works as well. However, neither works in the background thread.
When I run this on Android with OpenGL ES 2.0 (which is flexible in odd ways) instead of on Windows, everything runs fine, and I can even get the pixel dimensions of the images - but the textures render black.
My searches have told me that this is an issue of the OpenGL context being bound to a single thread, but not much else. This explains why everything works when I shove it in the main thread, and not when I put it in a different one. How do I fix this context problem?
First things first, you should not access the OpenGL context outside of the rendering thread.
I assume you have looked at these already, but just to make sure read up on the AssetManager wiki article, which talks a bit about how to use the AssetManager for asynchronous managing of assets. In addition to the wiki article, check out the AssetManagerTest to better understand how to use it. The asset manager test is probably your best bet into loading at how to dynamically load assets.
If you are loading a ton of stuff, you may want to look into creating a loading bar to load anything large upfront. It might work to check assets and such from another thread (and set a flag to call update), but at the end of the day you will need to call update() on the rendering thread.
Keeping in mind you have to call update() it from a different thread, I don't see why you would want another thread to check conditions and set a flag. There is probably more overhead using another thread and synchronizing the update() call than to just do it all on the rendering thread. Also, the update() method only pauses for a couple milliseconds at a time as it incrementally loads files. Typically, you would simply call load() for your asset, then check isLoaded() on your asset. If it isn't loaded you would then call update() once per frame until isLoaded() returns true. Once it returns true, you can then call get() and get whatever asset you were loading. This can all be done via the main rendering thread without having the app lag while its loading.
If you really want your other thread to call update(), you need to create a Runnable object and call postRunnable() such as how they have it described in the wiki article on multi-threading with libGDX. However, this defeats the whole point of using other threads because anything you use with postRunnable runs synchronously on the rendering thread.

How can I load a texture in separate thread in cocos2d-x?

I faced the need to use multi-threading to load an additional texture on-the-fly in order to reduce the memory footprint.
The example case is that I have 10 types of enemy to use in the a single level but the enemies will come out type by type. The context of "type by type" means one type of enemy comes out and the player kills all of its instances, then it's time to call in another type. The process goes like this until all types come out, then the level is complete.
You can see it's better to not initially load all enemy's texture at once in the starting time (it's pretty big 2048*2048 with lots of animation frames inside which I need to create them in time of creation for each type of enemy). I turn this to multi-thread to load an additional texture when I need it. But I knew that cocos2d-x is not thread-safe. I planned to use CCSpriteFrameCache class to load a texture from .plist + .png file then re-create animation there and finally create a CCSprite from it to represent a new type of enemy instance. If I don't use multi-thread, I might suffer from delay of lag that would occur of loading a large size of texture.
So how can I load a texture in separate thread in cocos2d-x following my goal above? Any idea to avoid thread-safe issue but still can accomplish my goal is also appreciated.
Note: I'm developing on iOS platform.
I found that async-loading of image is already there inside cocos2d-x.
You can build a testing project of cocos2d-x and look into "Texture2DTest", then tap on the left arrow to see how async-loading look like.
I have taken a look inside the code.
You can use addImageAsync method of CCtextureCache to load additional texture on-the-fly without interfere or slow down other parts such as the current animation that is running.
In fact, addImageAsync of CCTextureCache will load CCTexture2D object for you and return back to its callback method to receive. You have additional task to make use of it on your behalf.
Please note that CCSpriteFrameCache uses CCTextureCache to load frames. So this applies to it as well for my case to load spritesheet consisting of frames to be used in animation creation. But unfortunately async type of method is not provided for CCSpriteFrameCache class. You have to manually load texture object via CCTextureCache then plug it in
void CCSpriteFrameCache::addSpriteFramesWithFile(const char *pszPlist, CCTexture2D *pobTexture)
There's 2 file in testing project you can take a look at.
Texture2dTest.cpp
TextureCacheTest.cpp

Resources