Assembly AMD64 gradient error - linux

I'm not sure where I have errored, I'm trying to output a gradient pattern from 0-255 red horizontally and 0-255 green vertically. I know the linked files worked correctly as they have been throughly tested. Any help would be very appreciated.
global _start
global start
extern writeRGB
extern writeHeader
_start:
call start
sys_write: equ 1
sys_open: equ 2
sys_close: equ 3
sys_exit: equ 60
newLine : equ 10
section .data
filename: db "gradient.ppm", 0
section .bss
buffer: resb 4096
section .text
start:
push r12
push r13
push r14
push r15
push rbx
push rbp
mov rax, sys_open ; setup to open file
mov rdi, filename ; move filename
mov rsi, 577 ; given
mov rdx, 0o644 ; given
syscall ; open file
cmp rax, 0 ; check status
jl end
mov r12, 0 ; red
mov r13, 0 ; green
mov r14, rax ; opened file
mov r15, buffer ; buffer
mov rbx, 0 ; buffer counter
lea rdi, [r15+rbx] ; setup for writeheader call
mov rsi, 256
mov rdx, 256
call writeHeader
add rbx, rax ; add buffer space used by writeheader
call makeRGB ; create 0 0 0 rgb
lea rdi, [r15+rbx] ; setup for writeRGB
call writeRGB
add rbx, rax ; add buffer space used by writeRGB
call incRed
incRed:
call addSpace
inc r12 ; red++
call makeRGB ; convert to RBG
lea rdi, [r15+rbx] ; setup for writeRGB call
call writeRGB
add rbx, rax ; add buffer space used by writeRGB
cmp r12, 255 ; check to see if end of row
jl incRed ; if not end of row repeat
je incGreen ; if end of row start new row
incGreen:
cmp r13, 255 ; if last line is written move to end
je write
call addNewLine
mov r12, 0 ; reset red to 0
inc r13 ; green++
call makeRGB ; convert to RGB
lea rdi, [r15+rbx] ; setup for writeRGB call
call writeRGB
add rbx, rax ; add buffer space used by writeRGB
call addSpace
jmp incRed ; ret to incRed
makeRGB:
mov r12, rsi ; mov red into rsi
shl rsi, 8 ; shift left 8 to make room for green
add rsi, r13 ; add green
shl rsi, 8 ; shift left to set blue to 0
ret
addSpace:
mov al, ' ' ; insert space
mov [r15+rbx], al
inc rbx
ret
addNewLine:
mov al, newLine ; insert newline
mov [r15+rbx], al
inc rbx
ret
write:
mov rax, sys_write
mov rdi, r14 ; move opened file into rdi
mov rsi, r15 ; buffer location
mov rdx, rbx ; load buffer size
syscall ; write to file
mov rbp, rax ; status stored in rbp
cmp rbp, 0 ; check status
jl end
mov rdi, r14 ; move opened file into rdi
mov rax, sys_close ; close file
syscall
call end ; end
end:
pop rbp
pop rbx
pop r15
pop r14
pop r13
pop r12
mov rdi, rax ; prepare to exit
mov rax, sys_exit
syscall ; exit

Related

Nasm: Print on console

I made this program that open a image file and find a hidden message in the file. I have to print the message on the console.
i think the part where i open the file and search for the hidden message is right, but i don´t know for sure because i can´t print the output to confirm.
this is the code:
; Example program to demonstrate file I/O.
; This example will open/create a file, write some
; information to the file, and close the file.
; Note, the file name is hard-coded for this example.
; This example program will open a file, read the
; contents, and write the contents to the screen.
; This routine also provides some very simple examples
; regarding handling various errors on system services.
; -------------------------------------------------------
section .data
; -----
; Define standard constants.
LF equ 10 ; line feed
NULL equ 0 ; end of string
TRUE equ 1
FALSE equ 0
EXIT_SUCCESS equ 0 ; success code
STDIN equ 0 ; standard input
STDOUT equ 1 ; standard output
STDERR equ 2 ; standard error
SYS_write equ 1; write
SYS_read equ 0 ; read
SYS_open equ 2 ; file open
SYS_close equ 3 ; file close
SYS_exit equ 60 ; terminate
SYS_creat equ 85 ; file open/create
SYS_time equ 201 ; get time
O_CREAT equ 0x40
O_TRUNC equ 0x200
O_APPEND equ 0x400
O_RDONLY equ 000000q ; read only
O_WRONLY equ 000001q ; write only
S_IRUSR equ 00400q
S_IWUSR equ 00200q
S_IXUSR equ 00100q
; -----
; Variables/constants for main.
BUFF_SIZE equ 256
newLine db LF, NULL
db LF, LF, NULL
fileName dq 6
fileDesc dq 0
errMsgOpen db "Error opening the file.", LF, NULL
errMsgRead db "Error reading from the file.", LF, NULL
offset db 1
size db 1
; -------------------------------------------------------
section .bss
readBuffer: resb BUFF_SIZE
; -------------------------------------------------------
section .text
global _start
_start:
xor rax, rax
xor rcx, rcx
xor rdx, rdx
xor rbx, rbx
mov rbx, rsp
mov rax, qword [rbx+16]
mov [fileName], rax
xor rax, rax
push rsp
; Attempt to open file - Use system service for file open
openInputFile:
pop rax ; pop argc value - should be 2
cmp rax, 0x2
jne done
mov rax, SYS_open ; file open
mov rdi, fileName ; file name string
mov rsi, O_RDONLY ; read only access
syscall ; call the kernel
cmp rax, 0 ; check for success
jl errorOnOpen
mov qword [fileDesc], rax ; save descriptor
; -----
; Read from file.
;
mov rax, SYS_read
mov rdi, qword [fileDesc]
mov rsi, readBuffer
mov rdx, BUFF_SIZE
syscall
cmp rax, 0
jl errorOnRead
; -----
; Print the buffer.
; add the NULL for the print string
mov rax, qword [readBuffer+2] ;SSSS
mov qword [size], rax
mov rax, qword [readBuffer+10] ;OOOO
mov [offset], rax
mov rcx, 0
ler: ;ler um caracter
mov rbp, 0
xor rbx, rbx
xor rdx, rdx
lerloop:
inc rax
cmp rax, [size]
je errorOnRead
saltaQuartobyte:
inc ecx
cmp ecx, 4
jne continua
inc rax ;incremneta rax outra vez para saltar o quarto
cmp rax, [size]
je errorOnRead
mov ecx, 0
continua:
mov bl, byte [readBuffer+rax]
shl rdx, 1
shr rbx, 1
adc rdx, 0
inc rbp
cmp rbp, 7 ;fim do caracter ASCII, 0X 0XXX XXXX
jne lerloop
mov rdi, rdx
call printString ; imprime caracter ASCII
cmp rax, [size] ;comea o priximo
jne ler
; -----
; Close the file.
mov rax, SYS_close
mov rdi, qword [fileDesc]
syscall
jmp done
; -----
; Error on open.
errorOnOpen:
mov rdi, errMsgOpen
call printString
jmp done
; Error on read.
errorOnRead:
mov rdi, errMsgRead
call printString
jmp done
; -----
; program done.
done:
mov rax, SYS_exit
mov rdi, EXIT_SUCCESS
syscall
; **********************************************************
; Generic procedure to display a string to the screen.
global printString
printString:
push rbp
mov rbp, rsp
push rbp
; -----
; Call OS to output string.
mov rax, SYS_write ; code for write()
mov rsi, rdi ; addr of characters
mov rdi, STDOUT ; file descriptor
; count set above
syscall ; system call
; -----
; String printed, return to calling routine.
prtDone:
pop rbx
pop rbp
ret
this is my last attempt of the print but the program still don't print anything, and I don't understand why? or what's wrong?
A fundamental error
push rsp
; Attempt to open file - Use system service for file open
openInputFile:
pop rax ; pop argc value - should be 2
cmp rax, 0x2
jne done
mov rax, SYS_open ; file open
Your program starts with copying the stackpointer RSP to the accumulator RAX, and then compares to see if the value is 2, but when is the stackpointer ever going to be 2? And so, the program will always prematurely exit. No wonder that nothing gets printed.
A selection of other errors
offset db 1
size db 1
...
mov rax, qword [readBuffer+2] ;SSSS
mov qword [size], rax
mov rax, qword [readBuffer+10] ;OOOO
mov [offset], rax
You have reserved not enough room to store the qwords size and offset!
Better store them in the .bss section using resq:
section .bss
readBuffer: resb BUFF_SIZE
offset resq 1
size resq 1
mov rax, qword [readBuffer+2] ;SSSS
mov qword [size], rax
mov rax, qword [readBuffer+10] ;OOOO
mov [offset], rax
If the file is a .BMP (I'm considering those well-known offsets), then the size and offset fields are actually dwords. You would have to write instead (loading EAX automatically zero extends the value into RAX):
mov eax, [readBuffer+2] ;SSSS
mov [size], rax
mov eax, [readBuffer+10] ;OOOO
mov [offset], rax
printString:
push rbp
mov rbp, rsp
push rbp <<<<
...
pop rbx <<<<
pop rbp
ret
Because of the mismatch, you're destroying RBX on return.
The code that you used depends on calculating the length of the ASCIIZ string. You cannot just leave that out!

How to compare the count of command line arguments correctly in NASM?

I am learning x86_64 NASM assembly on Ubuntu 16.10 on Docker for Mac.
The following program takes two command line arguments, and sum these.
If number of command line arguments is not two, print error message (jump to argcError).
When I exec this program, it jump to argcError section despite passed to two command line arguments.
Why this program jump to argError?
section .data
SYS_WRITE equ 1
STD_IN equ 1
SYS_EXIT equ 60
EXIT_CODE equ 0
NEW_LINE db 0xa
WRONG_ARGC db "Must be two command line arguments", 0xa
section .text
global _start
_start:
pop rcx
cmp rcx, 3
jne argcError
add rsp, 8
pop rsi
call str_to_int
mov r10, rax
pop rsi
call str_to_int
mov r11, rax
add r10, r11
argcError:
mov rax, 1
mov rdi, 1
mov rsi, WRONG_ARGC
mov rdx, 35
syscall
jmp exit
str_to_int:
xor rax, rax
mov rcx, 10
next:
cmp [rsi], byte 0
je return_str
mov bl, [rsi]
sub bl, 48
mul rcx ; rax = rax * rcx
add rax, rbx
inc rsi
jmp next
return_str:
ret
int_to_str:
mov rdx, 0
mov rbx, 10
div rbx
add rdx, 48
add rdx, 0x0
push rdx
inc r12
cmp rax, 0x0
jne int_to_str
jmp print
print:
; calculate byte length of number string
mov rax, 1
mul r12
mov r12, 8
mul r12
mov rdx, rax
; print sum
mov rax, SYS_WRITE
mov rdi, STD_IN
mov rsi, rsp
syscall
jmp printNewline
printNewline:
mov rax, SYS_WRITE
mov rdi, STD_IN
mov rsi, NEW_LINE
mov rdx, 1
syscall
jmp exit
exit:
mov rax, SYS_EXIT
mov rdi, EXIT_CODE
syscall
There probably other errors in your code as pointed out by Micheal Petch, but the way you've initialized RSI is incorrect. Yes, ESP does point to the number of arguments passed, but popping it off the stack and then adding 8 to ESP again is functionally equivalent too.
mov rcx, [rsp]
Then by popping into RSI it only becomes a copy of RCX. If you want to do that it should look like this
pop rcx
.......
add rsp, 24 ; Now RSP is pointing to proper place in array of pointers
pop rsi
add rsp, 16 ; Now point to pointer to second argument
pop rsi
An alternative would be this next example only because my personal preference is not to use stack pointer for other than that which it was intended.
mov rsi, rsp
lodsq ; Read # of arguments passed by OS
add rsi, 8 ; bounce over application name
cmp al, 3
jnz argError
push rsi
lodsq
mov rsi, rax ; RSI points to first agument
call Convert
pop rsi
lodsq
mov rsi, rax
call Convert

Open a .ppm file and write some data to it. AMD64 linux Assembly Nasm

I am writing a program in AMD64 linux Assembly code (assembler Nasm) that does a whole bunch of stuff. Basicly, my question right now is how can I open a file, and write some data to it.
My code I have seems like it should work.
Basically I want to open a .ppm image file and write the header to it. My professor gave me some pseudo code to to help and here is that code for just the part I am trying to accomplish.
fd = open("gradient.ppm", 577, 0o644)
if fd < 0: return 1 (error)
bufsize = writeHeader(buffer, 256, 256)
status = write(fd, buffer, bufsize)
if status < 0: return 2 (error)
Here is my code. My professor has some test program written in c++ that will run my code and test to see if it works correctly, so I am not running directly from this file. (BTW, the writeheader file has been confirmed to work)
global start
extern writeRGB
extern writeHeader
section .data
filename: db "gradient.ppm",0
section .bss
buffer resb 5000
section .text
; rdi,rsi,rdx
start:
push r8
push r9
push r10
push r11
push r12
push r13
push r14
push r15
; open file
; sys_open: rax=2, rdi=char filename, rsi=int flags, rdx=int mode
mov rax, 2 ; 2 is system call number for sys_open
mov rdi, filename ; filname is in data section
mov rsi, 577 ; flag that is just given to me
mov rdx, 0o644 ; Octol number of the mode that is just given to me
syscall ; execute the sys_open system call
mov r9, rax ; r9 will hold file handle (fd)
; check for error
; compare 0 and data returned to rax from opening file.
; if data in rax < 0, store 1 in r11 and jump .error which will return the 1
mov r11, 1
cmp r9, 0
jl .error
; call writeheader
; writeHeader(rdi = buffer, rsi = 256, rdx = 256)
mov rdi, buffer
mov rsi, 256
mov rdx, 256
call writeHeader
mov r8, rax ; store the buffer size (bufsize) in r8
; status = write(fd, buffer, bufsize)
; sys_write: rax=1, rdi=fd, rsi=buffer, rdx=bufsize)
mov rax, 1 ; 1 is the system call number for sys_write
mov rdi, r9 ; the file handle (fd) is stored in r9
mov rsi, buffer ; the buffer is in the .bss section
mov rdx, r8 ; r8 holds the buffer size (bufsize)
syscall ; execute the sys_write system call
mov r10, rax ; status will be stored in r10
; check for error
; compare 0 and data returned to rax from opening file.
mov r11, 2
cmp r9, 0
jl .error
pop r15
pop r14
pop r13
pop r12
pop r11
pop r10
pop r9
pop r8
mov rax, 0
ret
.error:
; mov error code in r11 into rax to indicate error, and return it
mov rax, r11 ; rll holds error code
ret
If my code should work, then there is probably something wrong in which the way the test file is accessing it, if thats the case just let me know so that I can focus my resources on fixing that problem rather than fixing my code that already works.
cmp r9, 0
jb .error ; <-- This will never happen!
When testing for a negative number don't use jb. That's reserved to work with unsigned numbers. Use jl.
cmp r9, 0
jl .error
;open file give it a name in section .data file: db "......", 0
mov rsi, 577
mov rdx, 0o644
mov rdi, file
mov rax, sys_open
syscall
mov r13, rax ;save file descriptor
cmp rax, 0 ;return error if negative
jl .error
Copy/paste related error in your code!
; status = write(fd, buffer, bufsize)
; sys_write: rax=1, rdi=fd, rsi=buffer, rdx=bufsize)
mov rax, 1 ; 1 is the system call number for sys_write
mov rdi, r9 ; the file handle (fd) is stored in r9
mov rsi, buffer ; the buffer is in the .bss section
mov rdx, r8 ; r8 holds the buffer size (bufsize)
syscall ; execute the sys_write system call
mov r10, rax ; status will be stored in r10
; check for error
; compare 0 and data returned to rax from opening file.
mov r11, 2
cmp r9, 0
jl .error
You have put the status in R10 but are comparing the value in R9.

64bit NASM file handling problems

I managed to write a NASM program on my 64bit Linux system which removes non-letter symbols from an input and prints each word in separate line. The problem is that I get RCX = -1 where i have to get the readed character number , and as a result I get segmentation fault. I've already spent hours trying to figure out how to fix this bug. Hope you guys will be able to help me. Thanks in advance.
Heres my code:
section .data
file1 db "data", 0
file2 db "results", 0
text times 255 db 0
textSize equ $ - text
buff times 255 db 0
buffSize equ $ - buff
section .text
global main
main:
mov rax, 2
mov rdi, file1
mov rsi, 0 ;read only
mov rdx, 0x7777
syscall ;open file1
mov rbx, rax ;save fd to rbx
mov rsi, text ; a pointer to the current character
mov rax, 0
mov rdi, rbx ;fd of file1
mov rsi, text
mov rdx, textSize
syscall ;read the text from file1
mov rax, 3
mov rdi, rbx
syscall ;close file1
mov rcx, rax ; rcx - character counter
mov rbx, buff ;rbx will be our buffer
cmp rcx, 0
je exit ; if nothing to read - exit
process_loop1:
mov dl, byte[rsi]
cmp byte[rsi], 0x41 ; "A"
jl inc1
cmp byte[rsi], 0x5a ; "Z"
jle save
cmp byte[rsi], 0x61 ; "a"
jl inc1
cmp byte[rsi], 0x7a ; "z"
jle save
jmp inc1 ;check text
inc1:
inc rsi
dec rcx
jnz process_loop1
jmp print
save:
mov byte [ebx], dl
jmp inc2 ;save letters
inc2:
inc rsi
inc rbx
dec rcx
jnz process_loop2
jmp print
process_loop2:
mov dl, byte[rsi]
cmp byte[rsi], 0x41 ; "A"
jl enter
cmp byte[rsi], 0x5a ; "Z"
jle save
cmp byte[rsi], 0x61 ; "a"
jl enter
cmp byte[rsi], 0x7a ; "z"
jle save
jmp enter
enter:
mov byte [ebx], 10 ;enter
inc rsi
inc rbx
dec rcx
jnz process_loop1
jmp print
print:
mov rax, 2
mov rdi, file2
mov rsi, 1 ;write only
mov rdx, 0x7777
syscall ;open file2
mov rbx, rax ;save fd to rbx
mov rax, 1
mov rdi, rbx
mov rsi, buff
mov rdx, buffSize
syscall ;print result
mov rax, 3
mov rdi, rbx
syscall ;close file2
jmp exit
exit:
mov rax, 60
mov rdi, 0
syscall
You have a sys_close between the sys_read and the time you try to check the number of bytes received. Thus, you are checking the return value of the close, not the read. Also note that rcx is destroyed by syscall so you can't just move up the mov rcx, rax line.
Also, in a few places you use [ebx] instead of [rbx].
Furthermore, you probably want use O_CREAT for the result file and only write as many bytes as you have processed, not buffSize.
section .data
filename db 'AVG.asm'
section .bss
buffer resb 2000
fd_in resb 1
section .text
global _start
_start:
mov rax,2
mov rdi,filename
mov rsi,0
mov rdx,0777
syscall
mov [fd_in],rax
mov rax,0
mov rdi,[fd_in]
mov rsi,buffer
mov rdx,2000
syscall
mov rax,1
mov rdi,1
mov rsi,buffer
mov rdx,2000
syscall
mov rax,3
mov rdi,[fd_in]
syscall
mov rax,60
mov rdi,0
syscall

Printing a number in x86-64 assembly

Okay, all I am trying to do is print a number (up to 18446744073709551616) in x86-64 assembly for Linux. Can anyone please tell me why this program will not work? All that happens is that it runs and exits. Thank you for all the help you can give!
GLOBAL _start
SECTION .text
;PRINTCHAR
; MOV [LETTER],RAX
;
; MOV RAX,1
; MOV RDI,1
; MOV RSI,LETTER
; MOV RDX,1
; SYSCALL
; RET
PRINTDEC:
MOV R9,18 ;SO IT CAN POINT TO THE END OF THE BUFFER
MOV R10,0
START:
MOV R8,NUMBER
MOV RDX,0 ;CLEAR OUT RDX TO AVOID ERRORS
MOV RBX,10 ;WHAT TO DIVIDE BY
DIV RBX ;DIVIDE OUR NUMBER BY TEN
CMP RAX,0 ;IF OUR QUOTENT IS ZERO THEN WE ARE DONE, PRINT THE BUFFER
JE END
JMP ADDBUF
ADDBUF:
ADD R8,R9 ;MOV TO THE CURRENT LOCATION IN OUR BUFFER
ADD RDX,0x30
; ADD R8,R10
MOV [R8],RDX ;MOV THE LAST NUMBER IN OUR BUFFER TO RDX
DEC R9
INC R10
JMP START
END:
ADD R8,R9 ;add the very last digit
MOV [R8],RDX
INC R10
MOV RAX,1
MOV RDI,1
MOV RSI,R8
MOV RDX,R10
SYSCALL
RET
_start:
MOV RAX,55
CALL PRINTDEC
MOV RAX,60
MOV RDI,0
SYSCALL
SECTION .bss
LETTER: RESB 1
NUMBER: RESB 19
PRINTDEC:
LEA R9, [NUMBER + 18] ; last character of buffer
MOV R10, R9 ; copy the last character address
MOV RBX, 10 ; base10 divisor
DIV_BY_10:
XOR RDX, RDX ; zero rdx for div
DIV RBX ; rax:rdx = rax / rbx
ADD RDX, 0x30 ; convert binary digit to ascii
TEST RAX,RAX ; if rax == 0 exit DIV_BY_10
JZ LAST_REMAINDER
MOV byte [R9], DL ; save remainder
SUB R9, 1 ; decrement the buffer address
JMP DIV_BY_10
LAST_REMAINDER:
TEST DL, DL ; if DL (last remainder) != 0 add it to the buffer
JZ CHECK_BUFFER
MOV byte [R9], DL ; save remainder
SUB R9, 1 ; decrement the buffer address
CHECK_BUFFER:
CMP R9, R10 ; if the buffer has data print it
JNE PRINT_BUFFER
MOV byte [R9], '0' ; place the default zero into the empty buffer
SUB R9, 1
PRINT_BUFFER:
ADD R9, 1 ; address of last digit saved to buffer
SUB R10, R9 ; end address minus start address
ADD R10, 1 ; R10 = length of number
MOV RAX, 1 ; NR_write
MOV RDI, 1 ; stdout
MOV RSI, R9 ; number buffer address
MOV RDX, R10 ; string length
SYSCALL
RET

Resources