Little problem here with cassandra. Basically my data has a status (INITIALIZED, PERFORMED, ENDED...), and I have different scheduled tasks that will query this data based on the status with an "IN" clause. So one scheduler will work with the data that is INITIALIZED, one with the PERFORMED, some with both, etc...
Once the data is retrieved, it is processed and the status changes accordingly (INITIALIZED -> PERFORMED -> ENDED).
The problem : in order to be able to use the IN clause, the status has to figure among the primary keys of my table. But when I update the status... it creates a new record in my table, since the UPSERT doesn't find any data with the primary keys given...
How do I solve that ?
Instead of including the status column in your primary key columns you can create a secondary index on the column. However, the IN clause is not (yet) supported for secondary index columns. But as you have a very limited number of values to look up you could use equality conditions in your WHERE clause and then merge the results client-side?
Beware that using secondary indexes comes at a cost. Check out "when not to use an index". In your case these points may apply:
On a frequently updated or deleted column. See Problems using an
index on a frequently updated or deleted column below.
To look for a
row in a large partition unless narrowly queried. See Problems using
an index to look for a row in a large partition unless narrowly
queried below.
Related
Is it possible to query a Cassandra database to get records for a certain range?
I have a table definition like this
CREATE TABLE domain(
domain_name text,
status int,
last_scanned_date long
PRIMARY KEY(text,last_scanned_date)
)
My requirement is to get all the domains which are not scanned in the last 24 hours. I wrote the following query, but this query is not efficient as Cassandra is trying to fetch entire dataset because of ALLOW FILTERING
SELECT * FROM domain where last_scanned_date<=<last24hourstimeinmillis> ALLOW FILTERING;
Then I decided to do it in two queries
1st query:
SELECT DISTINCT name from domain;
2nd query:
Use IN operator to query domains which are not scanned i nlast 24 hours
SELECT * FROM domain where
domain_name IN('domain1','domain2')
AND
last_scanned_date<=<last24hourstimeinmillis>
My second approach works, but comes with an extra overhead of querying first for distinct values.
Is there any better approach than this?
You should update your structure table definition. Currently, you are selecting domain name as your partition key while you can not have more than 2 billion records in single Cassandra partition.
I would suggest you should use your time as part of your partition key. If you are not going to receive more than 2 billion requests per day. Try to use day since epoch as the partition key. You can do composite partition keys but they won't be helpful for your query.
While querying you have to scan at max two partitions with an additional filter in a query or in your application filtering out results which do not belong to a
the range you have specified.
Go over following concepts before finalizing your design.
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useCompositePartitionKeyConcept.html
https://docs.datastax.com/en/dse-planning/doc/planning/planningPartitionSize.html
Cassandra can effectively perform range queries only inside one partition. The same is for use of the aggregations, such as DISTINCT. So in your case you'll need to have only one partition that will contain all data. But that's is bad design.
You may try to split this big partition into smaller ones, by using TLDs as separate partition keys, and perform fetching in parallel from every partition - but this also will lead to imbalance, as some TLDs will have more sites than other.
Another issue with your schema is that you have last_scanned_date as clustering column, and this means that when you update last_scanned_date, you're effectively insert a new row into database - you'll need to explicitly remove row for previous last_scanned_date, otherwise the query last_scanned_date<=<last24hourstimeinmillis> will always fetch old rows that you already scanned.
Partially your problem with your current design could be solved by using the Spark that is able to perform effective scanning of full table via token range scan + range scan for every individual row - this will return only data in given time range. Or if you don't want to use Spark, you can perform token range scan in your code, something like this.
I've been doing a lot of reading lately on Cassandra data modelling and best practices.
What escapes me is what the best practice is for choosing a partition key if I want an application to page through results via the token function.
My current problem is that I want to display 100 results per page in my application and be able to move on to the next 100 after.
From this post: https://stackoverflow.com/a/24953331/1224608
I was under the impression a partition key should be selected such that data spreads evenly across each node. That is, a partition key does not necessarily need to be unique.
However, if I'm using the token function to page through results, eg:
SELECT * FROM table WHERE token(partitionKey) > token('someKey') LIMIT 100;
That would mean that the number of results returned from my partition may not necessarily match the number of results I show on my page, since multiple rows may have the same token(partitionKey) value. Or worse, if the number of rows that share the partition key exceeds 100, I will miss results.
The only way I could guarantee 100 results on every page (barring the last page) is if I were to make the partition key unique. I could then read the last value in my page and retrieve the next query with an almost identical query:
SELECT * FROM table WHERE token(partitionKey) > token('lastKeyOfCurrentPage') LIMIT 100;
But I'm not certain if it's good practice to have a unique partition key for a complex table.
Any help is greatly appreciated!
But I'm not certain if it's good practice to have a unique partition key for a complex table.
It depends on requirement and Data Model how you should choose your partition key. If you have one key as partition key it has to be unique otherwise data will be upsert (overridden with new data). If you have wide row (a clustering key), then make your partition key unique (a key that appears once in a table) will not serve the purpose of wide row. In CQL “wide rows” just means that there can be more than one row per partition. But here there will be one row per partition. It would be better if you can provide the schema.
Please follow below link about pagination of Cassandra.
You do not need to use tokens if you are using Cassandra 2.0+.
Cassandra 2.0 has auto paging. Instead of using token function to
create paging, it is now a built-in feature.
Results pagination in Cassandra (CQL)
https://www.datastax.com/dev/blog/client-side-improvements-in-cassandra-2-0
https://docs.datastax.com/en/developer/java-driver/2.1/manual/paging/
Saving and reusing the paging state
You can use pagingState object that represents where you are in the result set when the last page was fetched.
EDITED:
Please check the below link:
Paging Resultsets in Cassandra with compound primary keys - Missing out on rows
I recently did a POC for a similar problem. Maybe adding this here quickly.
First there is a table with two fields. Just for illustration we use only few fields.
1.Say we insert a million rows with this
Along comes the product owner with a (rather strange) requirement that we need to list all the data as pages in the GUI. Assuming that there are hundred entries 10 pages each.
For this we update the table with a column called page_no.
Create a secondary index for this column.
Then do a one time update for this column with page numbers. Page number 10 will mean 10 contiguous rows updated with page_no as value 10.
Since we can query on a secondary index each page can be queried independently.
Code is self explanatory and here - https://github.com/alexcpn/testgo
Note caution on how to use secondary index properly abound. Please check it. In this use case I am hoping that i am using it properly. Have not tested with multiple clusters.
"In practice, this means indexing is most useful for returning tens,
maybe hundreds of results. Bear this in mind when you next consider
using a secondary index." From http://www.wentnet.com/blog/?p=77
I have a table as below
CREATE TABLE test (
day int,
id varchar,
start int,
action varchar,
PRIMARY KEY((day),start,id)
);
I want to run this query
Select * from test where day=1 and start > 1475485412 and start < 1485785654
and action='accept' ALLOW FILTERING
Is this ALLOW FILTERING efficient?
I am expecting that cassandra will filter in this order
1. By Partitioning column(day)
2. By the range column(start) on the 1's result
3. By action column on 2's result.
So the allow filtering will not be a bad choice on this query.
In case of the multiple filtering parameters on the where clause and the non indexed column is the last one, how will the filter work?
Please explain.
Is this ALLOW FILTERING efficient?
When you write "this" you mean in the context of your query and your model, however the efficiency of an ALLOW FILTERING query depends mostly on the data it has to filter. Unless you show some real data this is a hard to answer question.
I am expecting that cassandra will filter in this order...
Yeah, this is what will happen. However, the inclusion of an ALLOW FILTERING clause in the query usually means a poor table design, that is you're not following some guidelines on Cassandra modeling (specifically the "one query <--> one table").
As a solution, I could hint you to include the action field in the clustering key just before the start field, modifying your table definition:
CREATE TABLE test (
day int,
id varchar,
start int,
action varchar,
PRIMARY KEY((day),action,start,id)
);
You then would rewrite your query without any ALLOW FILTERING clause:
SELECT * FROM test WHERE day=1 AND action='accept' AND start > 1475485412 AND start < 1485785654
having only the minor issue that if one record "switches" action values you cannot perform an update on the single action field (because it's now part of the clustering key), so you need to perform a delete with the old action value and an insert it with the correct new value. But if you have Cassandra 3.0+ all this can be done with the help of the new Materialized View implementation. Have a look at the documentation for further information.
In general ALLOW FILTERING is not efficient.
But in the end it depends on the size of the data you are fetching (for which cassandra have to use ALLOW FILTERING) and the size of data its being fetched from.
In your case cassandra do not need filtering upto :
By the range column(start) on the 1's result
As you mentioned. But after that, it will rely on filtering to search data, which you are allowing in query itself.
Now, keep following in mind
If your table contains for example a 1 million rows and 95% of them have the requested value, the query will still be relatively efficient and you should use ALLOW FILTERING.
On the other hand, if your table contains 1 million rows and only 2 rows contain the requested value, your query is extremely inefficient. Cassandra will load 999, 998 rows for nothing. If the query is often used, it is probably better to add an index on the time1 column.
So ensure this first. If it works in you favour, use FILTERING.
Otherwise, it would be wise to add secondary index on 'action'.
PS : There is some minor edit.
I am new to NoSQL database and have just started using apache Cassandra. I created a simple table "emp" with primary key on "empno" column. This is a simple table as we always get in Oracle's default scott schema.
Now I loaded data using the COPY command and issued query Select * from emp order by empno but I was surprised that CQL did not allow Order by on empno column (which is PK). Also when I used Where condition, it did not allow any inequality operations on empno column (it said only EQ or IN conditions are allowed). It also did not allowed Where and Order by on any other column, as they were not used in PK, and did not have an index.
Can someone please help me what should I do if I want to keep empno unique in the table and want a query results in Sorted order of empno?
(My version is:
cqlsh:demodb> show version
[cqlsh 5.0.1 | Cassandra 2.2.0 | CQL spec 3.3.0 | Native protocol v4]
)
There are two parts to a PRIMARY KEY in Cassandra:
partition key(s)
clustering key(s)
PRIMARY KEY (partitionKey1,clusteringKey1,clusteringKey2)
or
PRIMARY KEY ((partitionKey1,partitionKey2),clusteringKey1,clusteringKey2)
The partition key determines which node(s) your data is stored on. The clustering key determines the order of the data within your partition key.
In CQL, the ORDER BY clause is really only used to reverse the defined sort direction of your clustering order. As for the columns themselves, you can only specify the columns defined (and in that exact order...no skipping) in your CLUSTERING ORDER BY clause at table creation time. So you cannot pick arbitrary columns to order your result set at query-time.
Cassandra achieves performance by using the clustering keys to sort your data on-disk, thereby only returning ordered rows in a single read (no random reads). This is why you must take a query-based modeling approach (often duplicating your data into multiple query tables) with Cassandra. Know your queries ahead of time, and build your tables to serve them.
Select * from emp order by empno;
First of all, you need a WHERE clause. It's ok to query without it, if you're working with a relational database. With Cassandra, you should do your best to avoid unbound SELECT queries. Besides, Cassandra can only enforce a sort order within a partition, so querying without a WHERE clause won't return data in the order you want, anyway.
Secondly, as I mentioned above, you need to define clustering keys. If you want to order your result set by empno, then you must find another column to define as your partition key. Try something like this:
CREATE TABLE emp_by_dept (
empno text,
dept text,
name text,
PRIMARY KEY (dept,empno)
) WITH CLUSTERING ORDER BY (empno ASC);
Now, I can query employees by department, and they will be returned to me ordered by empno:
SELECT * FROM emp_by_dept WHERE dept='IT';
But to be clear, you will not be able to query every row in your table, and have it ordered by a single column. The only way to get meaningful order into your result sets, is first partition your data in a way that makes sense to your business case. Running an unbound SELECT will return all of your rows (assuming that the query doesn't time-out while trying to query every node in your cluster), but result set ordering can only be enforced within a partition. So you have to restrict by partition key in order for that to make any sense.
My apologies for self-promoting, but last year I wrote an article for DataStax called We Shall Have Order!, in which I addressed how to solve these types of problems. Give it a read and see if it helps.
Edit for additional questions:
From your answer I concluded 2 things about Cassandra:
(1) There is no
way of getting a result set which is only order by a column that has
been defined as Unique.
(2) When we define a PK
(partition-key+clustering-key), then the results will always be order
by Clustering columns within any fixed partition key (we must restrict
to one partition-key value), that means there is no need of ORDER BY
clause, since it cannot ever change the order of rows (the order in
which rows are actually stored), i.e. Order By is useless.
1) All PRIMARY KEYs in Cassandra are unique. There's no way to order your result set by your partition key. In my example, I order by empno (after partitioning by dept). – Aaron 1 hour ago
2) Stopping short of saying that ORDER BY is useless, I'll say that its only real use is to switch your sort direction between ASC and DESC.
I created an index on "empno" column of "emp" table, it is still not
allowing ORDER BY empno. So, what Indexes are for? are they only for
searching records for specific value of index key?
You cannot order a result set by an indexed column. Secondary indexes are (not the same as their relational counterparts) really only useful for edge-case, analytics-based queries. They don't scale, so the general recommendation is not to use secondary indexes.
Ok, that simply means that one table cannot be used for getting
different result sets with different conditions and different sorting
order.
Correct.
Hence for each new requirement, we need to create a new table.
IT means if we have a billion rows in a table (say Sales table), and
we need sum of sales (1) Product-wise, (2) Region-wise, then we will
duplicate all those billion rows in 2 tables with one in clustering
order of Product, the other in clustering order of Region,. and even
if we need to sum sales per Salesman_id, then we build a 3rd table,
again putting all those billion rows? is it sensible?
It's really up to you to decide how sensible it is. But lack of query flexibility is a drawback of Cassandra. To get around it you can keep creating query tables (I.E., trading disk for performance). But if it gets to a point where it becomes ungainly or difficult to manage, then it's time to think about whether or not Cassandra is really the right solution.
EDIT 20160321
Hi Aaron, you said above "Stopping short of saying that ORDER BY is useless, I'll say that its only real use is to switch your sort direction between ASC and DESC."
But i found even that is not correct. Cassandra only allows ORDER by in the same direction as we define in the "CLUSTERING ORDER BY" caluse of CREATE TABLE. If in that clause we define ASC, it allows only order by ASC, and vice versa.
Without seeing an error message, it's hard to know what to tell you on that one. Although I have heard of queries with ORDER BY failing when you have too many rows stored in a partition.
ORDER BY also functions a little odd if you specify multiple columns to sort by. If I have two clustering columns defined, I can use ORDER BY on the first column indiscriminately. But as soon as I add the second column to the ORDER BY clause, my query only works if I specify both sort directions the same (as the CLUSTERING ORDER BY definition) or both different. If I mix and match, I get this:
InvalidRequest: code=2200 [Invalid query] message="Unsupported order by relation"
I think that has to do with how the data is stored on-disk. Otherwise Cassandra would have more work to do in preparing result sets. Whereas if it requires everything to either to match or mirror the direction(s) specified in the CLUSTERING ORDER BY, it can just relay a sequential read from disk. So it's probably best to only use a single column in your ORDER BY clause, for more predictable results.
Adding a redux answer as the accepted one is quite long.
Order by is currently only supported on the clustered columns of the PRIMARY KEY
and when the partition key is restricted by an Equality or an IN operator in where clause.
That is if you have your primary key defined like this :
PRIMARY KEY ((a,b),c,d)
Then you will be able to use the ORDER BY when & only when your query has :
a where clause with all the primary key restricted either by an equality operator (=) or an IN operator such as :
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY c,d;
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY c;
These two query are the only valid ones.
Also this query would not work :
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY d,c;
because order by currently only support the ordering of columns following their declared order in the PRIMARY KEY that is in primary key definition c has been declared before d and the query violates the ordering by placing d first.
I'm trying to understand the difference between these two and the scenarios in which you would prefer to use one over the other.
My specific use case is using cassandra as an event ingestion system backed by an analytics engine that interprets the event.
My model includes
event id (the partition key)
event time (a clustering column)
event type (i'm not sure whether to use clustering column or secondary index)
I figure the most common read scenario will be to get the events over a time range hence event time is the clustering column. A less frequent read scenario might involve further filtering the event query by event type.
A secondary index is pretty similar to what we know from regular relational databases. If you have a query with a where clause that uses column values that are not part of the primary key, lookup would be slow because a full row search has to be performed. Secondary indexes make it possible to service such queries efficiently. Secondary indexes are stored as extra tables, and just store extra data to make it easy to find your way in the main table.
So that's a good ol' index, which we already know about. So far, there's nothing new to cassandra and its distributed nature.
Partitioning and clustering is all about deciding how rows from the main table are spread among the nodes. This is unique to cassandara since it determines the distribution of data. So, the primary key consists of at least one column. The first column in the primary key is used as the partition key. The partition key is used to decide which node to store a row. If the primary key has additional columns, the columns are used to cluster the data on a given node - the data is stored in lexicographic order on a node by clustering columns.
This question has more specifics on clustering columns: Clustering Keys in Cassandra
So an index on a given column X makes the lookup X --> primary key efficient. The partition key (first column in the primary key) determines which node a row is stored on. Clustering columns (additional columns in the primary key) determine which order rows are stored in on their assigned node.
So your intuition sounds about right - the event ID is presumably guaranteed unique, so is great for building a primary key. Event time is a great way to order rows on disk on a given node.
If you never needed to lookup data by event type, eg, never had a query like SELECT * FROM Events WHERE Type = Warning, then you have no need for your additional indexes, but your demands for partitioning don't change. Indexes make it easy to serve queries with different predicates. Since you mentioned that you indeed were planning on performing queries like that, you do in fact likely want an index on your EventType column.
Check out the cassandra documentation: http://www.datastax.com/documentation/cql/3.0/cql/ddl/ddl_compound_keys_c.html
Cassandra uses the first column name in the primary key definition as the partition key.
...
In the case of the playlists table, the song_order is the clustering column. The data for each partition is clustered by the remaining column or columns of the primary key definition. On a physical node, when rows for a partition key are stored in order based on the clustering columns