Reducing the latency between Spark and HBase nodes - apache-spark

I am experiencing a high latency between Spark nodes and HBase nodes.
The current resources I have require me to run HBase and Spark on different servers.
The HFiles are compressed with Snappy algorithm, which reduces the data size of each region from 50GB to 10GB.
Nevertheless, the data transferred on the wire is always decompressed, so reading takes lot of time - approximately 20 MB per sec, which is about 45 minutes for each 50GB region.
What can I do to make data reading faster? (Or, is the current throughput considered high for HBase?)
I was thinking to clone the HBase HFiles locally to the Spark machines, instead of continuously requesting data from the HBase. Is it possible?
What is the best practice for solving such an issue?
Thanks

You are thinking in right direction. You can copy HFiles to HDFS cluster(or Machines) where spark is running. That would result in saving decompression and reduced data transfer over the wire. You would need to read HFiles from Snappy compression and write a parser to read.
Alternatively you can apply Column and ColumnFamily filters if you don't need all the data from Hbase.

Related

Spark SQL data storage life cycle

I recently had a issue with with one of my spark jobs, where I was reading a hive table having several billion records, that resulted in job failure due to high disk utilization, But after adding AWS EBS volume, the job ran without any issues. Although it resolved the issue, I have few doubts, I tried doing some research but couldn't find any clear answers. So my question is?
when a spark SQL reads a hive table, where the data is stored for processing initially and what is the entire life cycle of data in terms of its storage , if I didn't explicitly specify anything? And How adding EBS volumes solves the issue?
Spark will read the data, if it does not fit in memory, it will spill it out on disk.
A few things to note:
Data in memory is compressed, from what I read, you gain about 20% (e.g. a 100MB file will take only 80MB of memory).
Ingestion will start as soon as you read(), it is not part of the DAG, you can limit how much you ingest in the SQL query itself. The read operation is done by the executors. This example should give you a hint: https://github.com/jgperrin/net.jgp.books.spark.ch08/blob/master/src/main/java/net/jgp/books/spark/ch08/lab300_advanced_queries/MySQLWithWhereClauseToDatasetApp.java
In latest versions of Spark, you can push down the filter (for example if you filter right after the ingestion, Spark will know and optimize the ingestion), I think this works only for CSV, Avro, and Parquet. For databases (including Hive), the previous example is what I'd recommend.
Storage MUST be seen/accessible from the executors, so if you have EBS volumes, make sure they are seen/accessible from the cluster where the executors/workers are running, vs. the node where the driver is running.
Initially the data is in table location in HDFS/S3/etc. Spark spills data on local storage if it does not fit in memory.
Read Apache Spark FAQ
Does my data need to fit in memory to use Spark?
No. Spark's operators spill data to disk if it does not fit in memory,
allowing it to run well on any sized data. Likewise, cached datasets
that do not fit in memory are either spilled to disk or recomputed on
the fly when needed, as determined by the RDD's storage level.
Whenever spark reads data from hive tables, it stores it in RDD. One point i want to make clear here is hive is just a warehouse so it is like a layer which is above HDFS, when spark interacts with hive , hive provides the spark the location where the hdfs loaction exists.
Thus, Spark reads a file from HDFS, it creates a single partition for a single input split. Input split is set by the Hadoop (whatever the InputFormat used to read this file. ex: if you use textFile() it would be TextInputFormat in Hadoop, which would return you a single partition for a single block of HDFS (note:the split between partitions would be done on line split, not the exact block split), unless you have a compressed file format like Avro/parquet.
If you manually add rdd.repartition(x) it would perform a shuffle of the data from N partititons you have in rdd to x partitions you want to have, partitioning would be done on round robin basis.
If you have a 10GB uncompressed text file stored on HDFS, then with the default HDFS block size setting (256MB) it would be stored in 40blocks, which means that the RDD you read from this file would have 40partitions. When you call repartition(1000) your RDD would be marked as to be repartitioned, but in fact it would be shuffled to 1000 partitions only when you will execute an action on top of this RDD (lazy execution concept)
Now its all up to spark that how it will process the data as Spark is doing lazy evaluation , before doing the processing, spark prepare a DAG for optimal processing. One more point spark need configuration for driver memory, no of cores , no of executors etc and if the configuration is inappropriate the job will fail.
Once it prepare the DAG , then it start processing the data. So it divide your job into stages and stages into tasks. Each task will further use specific executors, shuffle , partitioning. So in your case when you do processing of bilions of records may be your configuration is not adequate for the processing. One more point when we say spark load the data in RDD/Dataframe , its managed by spark, there are option to keep the data in memory/disk/memory only etc ref -storage_spark.
Briefly,
Hive-->HDFS--->SPARK>>RDD(Storage depends as its a lazy evaluation).
you may refer the following link : Spark RDD - is partition(s) always in RAM?

Apache Spark ---- how spark reads large partitions from source when there is no enough memory

Suppose my data source contains data in 5 partitions each partition size is 10gb ,so total data size 50gb , my doubt here is ,when my spark cluster doesn't have 50gb of main memory how spark handles out of memory exceptions , and what is the best practice to avoid these scenarios in spark.
50GB is data that can fit in memory and you probably don't need Spark for this kind of data - it would run slower than other solutions.
Also depending on the job and data format, a lot of times, not all the data needs to be read into memory (e.g. reading just needed columns from columnar storage format like parquet)
Generally speaking - when the data can't fit in memory Spark will write temporary files to disk. you may need to tune the job to more smaller partitions so each individual partition will fit in memory. see Spark Memory Tuning
Arnon

Spark based processing of data stored on SSD

We are currently using Spark 2.1 based application which analyses and process huge number of records to generate some stats which is used for report generation. Now our we are using 150 executors, 2 core per executor and 10 GB per executor for our spark jobs and size of data is ~3TB stored in parquet format. For processing 12 months of data it is taking ~15 mins of time.
Now to improve performance we want to try full SSD based node to store data in HDFS. Well the question is, are there any special configuration/optimisation to be done for SSD? Are there any study done for Spark processing performance on SSD based HDFS vs HDD based HDFS?
http://spark.apache.org/docs/latest/hardware-provisioning.html#local-disks
SPARK_LOCAL_DIRS is config that you need to change.
https://www.slideshare.net/databricks/optimizing-apache-spark-throughput-using-intel-optane-and-intel-memory-drive-technology-with-ravikanth-durgavajhala
Use case is K means algo but will help.

Apache Spark running out of memory with smaller amount of partitions

I have an Spark application that keeps running out of memory, the cluster has two nodes with around 30G of RAM, and the input data size is about few hundreds of GBs.
The application is a Spark SQL job, it reads data from HDFS and create a table and cache it, then do some Spark SQL queries and writes the result back to HDFS.
Initially I split the data into 64 partitions and I got OOM, then I was able to fix the memory issue by using 1024 partitions. But why using more partitions helped me solve the OOM issue?
The solution to big data is partition(divide and conquer). Since not all data could be fit into the memory, and it also could not be processed in a single machine.
Each partition could fit into memory and processed(map) in relative short time. After the data is processed for each partition. It need be merged (reduce). This is tradition map reduce
Splitting data to more partitions means that each partition getting smaller.
[Edit]
Spark using revolution concept called Resilient Distributed DataSet(RDD).
There are two types of operations, transformation and acton
Transformations are mapping from one RDD to another. It is lazy evaluated. Those RDD could be treated as intermediate result we don't wanna get.
Actions is used when you really want get the data. Those RDD/data could be treated as what we want it, like take top failing.
Spark will analysed all the operation and create a DAG(Directed Acyclic Graph) before execution.
Spark start compute from source RDD when actions are fired. Then forget it.
(source: cloudera.com)
I made a small screencast for a presentation on Youtube Spark Makes Big Data Sparking.
Spark's operators spill data to disk if it does not fit in memory,
allowing it to run well on any sized data". The issue with large
partitions generating OOM
Partitions determine the degree of parallelism. Apache Spark doc says that, the partitions size should be atleast equal to the number of cores in the cluster.
Less partitions results in
Less concurrency,
Increase memory pressure for transformation which involves shuffle
More susceptible for data skew.
Many partitions might also have negative impact
Too much time spent in scheduling multiple tasks
Storing your data on HDFS, it will be partitioned already in 64 MB or 128 MB blocks as per your HDFS configuration When reading HDFS files with spark, the number of DataFrame partitions df.rdd.getNumPartitions depends on following properties
spark.default.parallelism (Cores available for the application)
spark.sql.files.maxPartitionBytes (default 128MB)
spark.sql.files.openCostInBytes (default 4MB)
Links :
https://spark.apache.org/docs/latest/tuning.html
https://databricks.com/session/a-deeper-understanding-of-spark-internals
https://spark.apache.org/faq.html
During Spark Summit Aaron Davidson gave some tips about partitions tuning. He also defined a reasonable number of partitions resumed to below 3 points:
Commonly between 100 and 10000 partitions (note: two below points are more reliable because the "commonly" depends here on the sizes of dataset and the cluster)
lower bound = at least 2*the number of cores in the cluster
upper bound = task must finish within 100 ms
Rockie's answer is right, but he does't get the point of your question.
When you cache an RDD, all of his partitions are persisted (in term of storage level) - respecting spark.memory.fraction and spark.memory.storageFraction properties.
Besides that, in an certain moment Spark can automatically drop's out some partitions of memory (or you can do this manually for entire RDD with RDD.unpersist()), according with documentation.
Thus, as you have more partitions, Spark is storing fewer partitions in LRU so that they are not causing OOM (this may have negative impact too, like the need to re-cache partitions).
Another importante point is that when you write result back to HDFS using X partitions, then you have X tasks for all your data - take all the data size and divide by X, this is the memory for each task, that are executed on each (virtual) core. So, that's not difficult to see that X = 64 lead to OOM, but X = 1024 not.

How does Spark parallelize the processing of a 1TB file?

Imaginary problem
A gigantic CSV log file, let's say 1 TB in size, the file is located on a USB drive
The log contains activities logs of users around the world, let's assume that the line contains 50 columns, among those there is Country.
We want a line count per country, descending order.
Let's assume the Spark cluster has enough nodes with RAM to process the entire 1TB in memory (20 nodes, 4 cores CPU, each node has 64GB RAM)
My Poorman's conceptual solution
Using SparkSQL & Databricks spark-csv
$ ./spark-shell --packages com.databricks:spark-csv_2.10:1.4.0
val dfBigLog = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true")
.load("/media/username/myUSBdrive/bogusBigLog1TB.log")
dfBigLog.select("Country")
.groupBy("Country")
.agg(count($"Country") as "CountryCount")
.orderBy($"CountryCount".desc).show
Question 1: How does Spark parallelize the processing?
I suppose the majority of the execution time (99% ?) of the above solution is to read the 1TB file from the USB drive into the Spark cluster. Reading the file from the USB drive is not parallelizable. But after reading the entire file, what does Spark do under the hood to parallelize the processing?
How many nodes used for creating the DataFrame? (maybe only one?)
How many nodes used for groupBy & count? Let's assume there are 100+ countries (but Spark doesn't know that yet). How would Spark partition to distribute the 100+ country values on 20 nodes?
Question 2: How to make the Spark application the fastest possible?
I suppose the area of improvement would be to parallelize the reading of the 1TB file.
Convert the CSV File into a Parquet file format + using Snappy compression. Let's assume this can be done in advance.
Copy the Parquet file on HDFS. Let's assume the Spark cluster is within the same Hadoop cluster and the datanodes are independant from the 20 nodes Spark cluster.
Change the Spark application to read from HDFS. I suppose Spark would now use several nodes to read the file as Parquet is splittable.
Let's assume the Parquet file compressed by Snappy is 10x smaller, size = 100GB, HDFS block = 128 MB in size. Total 782 HDFS blocks.
But then how does Spark manage to use all the 20 nodes for both creating the DataFrame and the processing (groupBy and count)? Does Spark use all the nodes each time?
Question 1: How does Spark parallelize the processing (of reading a
file from a USB drive)?
This scenario is not possible.
Spark relies on a hadoop compliant filesystem to read a file. When you mount the USB drive, you can only access it from the local host. Attempting to execute
.load("/media/username/myUSBdrive/bogusBigLog1TB.log")
will fail in cluster configuration, as executors in the cluster will not have access to that local path.
It would be possible to read the file with Spark in local mode (master=local[*]) in which case you only will have 1 host and hence the rest of the questions would not apply.
Question 2: How to make the Spark application the fastest possible?
Divide and conquer.
The strategy outlined in the question is good. Using Parquet will allow Spark to do a projection on the data and only .select("Country") column, further reducing the amount of data required to be ingested and hence speeding things up.
The cornerstone to parallelism in Spark are partitions. Again, as we are reading from a file, Spark relies on the Hadoop filesystem. When reading from HDFS, the partitioning will be dictated by the splits of the file on HDFS. Those splits will be evenly distributed among the executors. That's how Spark will initially distribute the work across all available executors for the job.
I'm not deeply familiar with the Catalist optimizations, but I think I could assume that .groupBy("Country").agg(count($"Country") will become something similar to: rdd.map(country => (country,1)).reduceByKey(_+_)
The map operation will not affect partitioning, so can be applied on site.
The reduceByKey will be applied first locally on each partition and partial results will be combined on the driver. So most counting happens distributed in the cluster, and adding it up will be centralized.
Reading the file from the USB drive is not parallelizable.
USB drive or any other data source the same rules apply. Either source is accessible from the driver and all worker machines and data is accessed in parallel (up to the source limits) or data is not accessed at all you get an exception.
How many nodes used for creating the DataFrame? (maybe only one?)
Assuming that files is accessible from all machines it depends on a configuration. For starters you should take a look at the split size.
How many nodes used for the GroupBy & Count?
Once again it depends on a configuration.

Resources