Hi I'm doing a code MessageDlgPos running five threads at the same time, the code is this:
type
TMyThread = class(TThread)
protected
procedure Execute; override;
public
text: string;
property ReturnValue;
end;
procedure TMyThread.Execute;
begin
if Terminated then
Exit;
MessageDlgPos(text, mtInformation, [mbOk], 0, 100, 200);
end;
procedure TForm1.btnTestClick(Sender: TObject);
var
LThread: TMyThread;
i: Integer;
begin
For i := 1 to 5 do
begin
LThread := TMyThread(Sender);
try
LThread.text := 'hi';
LThread.FreeOnTerminate := True;
except
LThread.Free;
raise;
end;
LThread.Resume;
end;
end;
The problem is that Delphi XE always returns the following error and does not execute anything:
First chance exception at $ 7524B727. Exception class EAccessViolation with message 'Access violation at address 00D0B9AB. Write of address 8CC38309 '. Process tester.exe (6300)
How do I fix this problem?
As David Heffernan pointed out, MessageDlgPos() cannot safely be called outside of the main UI thread, and you are not managing the thread correctly. Your code needs to look more like this instead:
type
TMyThread = class(TThread)
protected
procedure Execute; override;
public
text: string;
property ReturnValue;
end;
procedure TMyThread.Execute;
begin
// no need to check Terminated here, TThread already
// does that before calling Execute()...
TThread.Synchronize(nil,
procedure
begin
MessageDlgPos(text, mtInformation, [mbOk], 0, 100, 200);
end
);
end;
procedure TForm1.btnTestClick(Sender: TObject);
var
LThread: TMyThread;
i: Integer;
begin
For i := 1 to 5 do
begin
LThread := TMyThread.Create(True);
LThread.text := 'hi';
LThread.FreeOnTerminate := True;
LThread.Start;
end;
end;
I would suggest a slightly different variation:
type
TMyThread = class(TThread)
private
fText: string;
protected
procedure Execute; override;
public
constructor Create(const aText: string); reintroduce;
property ReturnValue;
end;
constructor TMyThread.Create(const aText: string);
begin
inherited Create(False);
FreeOnTerminate := True;
fText := aText;
end;
procedure TMyThread.Execute;
begin
// no need to check Terminated here, TThread already
// does that before calling Execute()...
TThread.Synchronize(nil,
procedure
begin
MessageDlgPos(fText, mtInformation, [mbOk], 0, 100, 200);
end
);
end;
procedure TForm1.btnTestClick(Sender: TObject);
var
i: Integer;
begin
For i := 1 to 5 do
begin
TMyThread.Create('hi');
end;
end;
But either way, if you don't like using TThread.Synchronize() to delegate to the main thread (thus only displaying 1 dialog at a time) then you cannot use MessageDlgPos() at all, since it is only safe to call in the main UI thread. You can use Windows.MessageBox() instead, which can be safely called in a worker thread without delegation (but then you lose the ability to specify its screen position, unless you access its HWND directly by using a thread-local hook via SetWindowsHookEx() to intercept the dialog's creation and discover its HWND):
procedure TMyThread.Execute;
begin
Windows.MessageBox(0, PChar(fText), PChar(Application.Title), MB_OK or MB_ICONINFORMATION);
);
end;
There are many problems. The biggest one is here:
LThread := TMyThread(Sender);
Sender is a button. Casting to a thread is simply wrong and the cause of your exception. Casting a button to a thread doesn't make it so. It's still a button.
You likely mean to create a thread instead.
LThread := TMyThread.Create(True);
You cannot show VCL UI outside the main thread. The call to MessageDlgPos breaks that rule. If you do need to show UI at that point, you'll need to use TThread.Synchronize to have the code execute in the main thread.
Your exception handler makes no sense to me. I think you should remove it.
Resume is deprecated. Use Start instead.
Related
I've coding a multithread application that send and receive TCP packages. I'm with the problem that when I call twice event confirmBoxRecognized(peerIP: string) of the code bellow. I'm getting the following exception:
Cannot call Start on a running or suspended thread
If I check in the thread object I've that terminated == true and suspended == false. Why am I coding wrong?
Following the code:
TThreadReadTCP = class(TThread)
private
context: TfrmBoxTest;
looping: Boolean;
procedure readTCP;
protected
procedure DoTerminate; override;
procedure Execute; override;
public
peerIP: String;
responseObject: TProtocolObject;
constructor Create(CreateSuspended: Boolean; ctx: TFrmBoxTest); overload;
end;
{ TThreadReadTCP }
constructor TThreadReadTCP.Create(CreateSuspended: Boolean; ctx: TFrmBoxTest);
begin
inherited Create(CreateSuspended);
Self.context := ctx;
FreeOnTerminate := True;
end;
procedure TThreadReadTCP.DoTerminate;
begin
looping := false;
inherited DoTerminate();
end;
procedure TThreadReadTCP.Execute;
begin
inherited;
looping := true;
readTCP;
end;
procedure TThreadReadTCP.readTCP;
var
buffer: TBytes;
begin
while looping do
begin
if context.tcpClientBox.Connected then
begin
try
buffer := TEncoding.ASCII.GetBytes(context.tcpClientBox.Socket.ReadLn());
//do something else
except on E:Exception do
ShowMessage('Error receiving TCP buffer with message: ' + e.Message);
end;
end;
end;
end;
procedure TfrmBoxTest.confirmBoxRecognized(peerIP: string);
begin
if (connectBoxTCP(peerIP)) then
begin
if Assigned(threadReadTCP) then
begin
threadReadTCP.Terminate();
threadReadTCP.Start(); // I get the exception here when I run this code twice...
end;
showBoxRecognized();
end;
sendBoxRecognized();
end;
Are there running thread status can I get? Or anyone can explain how can I improve this code to solve this problem?
Thanks a lot!
You get the exception because you can only call Start() on a TThread object one time. Once the thread has been started, you cannot restart it. Once it has been signaled to terminate, all you can do is wait for it to finish terminating, and then destroy the object.
If you want another thread to start running, you have to create a new TThread object, eg:
type
TThreadReadTCP = class(TThread)
private
context: TfrmBoxTest;
protected
procedure Execute; override;
procedure TerminatedSet; override;
public
peerIP: String;
responseObject: TProtocolObject;
constructor Create(ctx: TFrmBoxTest); reintroduce;
end;
constructor TThreadReadTCP.Create(ctx: TFrmBoxTest);
begin
inherited Create(False);
Self.context := ctx;
// NEVER use FreeOnTerminate=True with a thread object that you keep a reference to!
// FreeOnTerminate := True;
end;
procedure TThreadReadTCP.Execute;
var
buffer: TBytes;
begin
while not Terminated do
begin
try
buffer := TEncoding.ASCII.GetBytes(context.tcpClientBox.Socket.ReadLn());
// do something else
except
on E: Exception do
begin
// do something
raise;
end;
end;
end;
end;
procedure TThreadReadTCP.TerminatedSet;
begin
try
context.tcpClientBox.Disconnect(False);
except
end;
end;
...
procedure TfrmBoxTest.confirmBoxRecognized(peerIP: string);
begin
if Assigned(threadReadTCP) then
begin
threadReadTCP.Terminate();
threadReadTCP.WaitFor();
FreeAndNil(threadReadTCP);
end;
if connectBoxTCP(peerIP) then
begin
threadReadTCP := TThreadReadTCP.Create(Self);
showBoxRecognized();
end;
sendBoxRecognized();
end;
I'm using Delphi XE6.
I have a thread where I pass a ID and would like to get back a string created by the thread. I looked at all examples, but they all getting values back when thread is running I just need it OnTerminate.
Calling the thread from a form:
StringReturnedFromThread := PrintThread.Create(MacId);
PrintThread = class(TThread)
private
MyReturnStr, PrinterMacId : String;
public
constructor Create(MacId: String); reintroduce;
procedure OnThreadTerminate(Sender: TObject);
protected
procedure Execute; override;
end;
constructor PrintThread.Create(MacId: String);
begin
inherited Create(False);
OnTerminate := OnThreadTerminate;
FreeOnTerminate := True;
PrinterMacId := MacId;
end;
procedure PrintThread.Execute;
begin
PrepareConnection;
MyReturnStr:= RequestPrintJobs(PrinterMacId);
end;
procedure PrintThread.OnThreadTerminate(Sender: TObject);
begin
end;
Thanks for any help.
You need to intercept thread termination. One way is to use TThread.OnTerminate event/callback.
Below a sample code.
Thread unit:
unit Processes;
interface
uses
System.Classes;
type
TProcess = class(TThread)
private
FReturnStr: string;
FMacId: string;
protected
procedure Execute; override;
public
property MacId: string read FMacId write FMacId;
property ReturnStr: string read FReturnStr write FReturnStr;
constructor Create;
end;
implementation
constructor TProcess.Create;
begin
inherited Create(True);
FreeOnTerminate := True;
end;
procedure TProcess.Execute;
begin
// Some hard calculation here
FReturnStr := FMacId + 'BLA';
end;
end.
Thread usage:
uses Processes;
procedure TForm1.Button1Click(Sender: TObject);
var P: TProcess;
begin
// Create the thread
P := TProcess.Create;
// Initialize it
P.MacId := 'MID123';
// Callback handler
P.OnTerminate := OnProcessTerminate;
// Let's go
P.Start;
end;
procedure TForm1.OnProcessTerminate(Sender: TObject);
var P: TProcess;
begin
// The thread has been terminated
P := TProcess(Sender);
ShowMessage(P.ReturnStr);
end;
The thread will return MID123BLA on it's termination.
I'm using the TThread.DoTerminate method to notify to the main thread which the TThread has terminated. but as soon try to change the properties of some controls (buttons) from inside of the DoTerminate both controls just disappear of the form.
Also when I close the Form I'm getting this message
Project ProjectTest.exe raised exception class EOSError with message
'System Error. Code: 1400. Invalid window handle'.
This is a sample application to reproduce the issue.
type
TFooThread = class;
TFormSample = class(TForm)
Button1: TButton;
Button2: TButton;
Button3: TButton;
ProgressBar1: TProgressBar;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
private
FooThread : TFooThread;
procedure ThreadIsDone;
public
end;
TFooThread = class(TThread)
private
FForm : TFormSample;
protected
procedure DoTerminate; override;
public
procedure Execute; override;
constructor Create(AForm : TFormSample); reintroduce;
destructor Destroy; override;
end;
var
FormSample: TFormSample;
implementation
{$R *.dfm}
{ TFooThread }
constructor TFooThread.Create(AForm: TFormSample);
begin
inherited Create(False);
FreeOnTerminate := False;
FForm := AForm;
end;
destructor TFooThread.Destroy;
begin
inherited;
end;
procedure TFooThread.DoTerminate;
begin
FForm.ThreadIsDone;
inherited;
end;
procedure TFooThread.Execute;
var
i : Integer;
begin
for i := 1 to 100 do
begin
Synchronize(
procedure
begin
FForm.ProgressBar1.Position := i;
end
);
Sleep(50);
end;
Terminate();
end;
{ TFormSample }
procedure TFormSample.Button1Click(Sender: TObject);
begin
FooThread := TFooThread.Create(Self);
TButton(Sender).Enabled := false;
end;
procedure TFormSample.FormCreate(Sender: TObject);
begin
FooThread := nil;
Button3.Visible := False;
end;
procedure TFormSample.FormDestroy(Sender: TObject);
begin
if (FooThread<>nil) then
begin
if not FooThread.Terminated then
FooThread.WaitFor;
FooThread.Free;
end;
end;
procedure TFormSample.ThreadIsDone;
begin
//this code is executed but the controls are not updated
//both buttons just disappear from the form !!!!
//Also if I remove these lines, no error is raised.
Button2.Visible := False;
Button3.Visible := True;
end;
end.
The question is : How I can update the properties of some VCL control as soon the TThread is finished?
It should be fine to update controls inside DoTerminate (as you are).
DoTerminate runs in the context of the thread. Therefore it is not safe to update controls from that method. The base implementation synchronises a call to the OnTerminate event.
So OnTerminate is already synchronised. And it will be safe to update controls from an OnTerminate event handler.
However, I would be more inclined to not have code inside the thread class calling the form because this creates a circular dependency. Rather have the form assign a handler for the OnTerminateevent. This way code that controls the form will be in the form class. You can do the same with the control updates to indicate thread progress.
FooThread := TFooThread.Create(...);
//WARNING: If you need to do **any**
//initialisation after creating a
//thread, it's better to create it
//in a Suspended state.
FooThread.OnTerminate := ThreadIsDone;
//Of course you'll have to change the signature of ThreadIsDone accordingly.
FooThread.OnProgress := ThreadProgress;
//You'd have to define a suitable callback event on the thread.
//Finally, if the thread started in a suspended state, resume it.
FooThread.Start;
Avoiding circular dependencies is a little more work, but greatly simplifies an application.
David mentions that you can create your thread in a running state. To do so safely you must:
Pass all necessary initialisation information into the constructor.
And inside the constructor perform all initialisation before calling the inherited constructor.
Also you have a mistake in your Execute method:
procedure TFooThread.Execute;
var
i : Integer;
begin
...
Terminate(); //This is pointless.
//All it does is set Terminated := True;
end;
The thread terminates when it exits. All the call to Terminate does is set an internal flag to indicate the thread should terminate. You'd normally write your Execute method as follows:
begin
while not Terminated do
begin
...
end;
end;
Then your form might have a button which calls: FooThread.Terminate();
This will cause your while loop to exit at the end of the current iteration. This allows the thread to exit "gracefully".
I am designing a thread pool with following features.
New thread should be spawned only when all other threads are running.
Maximum number of thread should be configurable.
When a thread is waiting, it should be able to handle new requests.
Each IO operation should call a callback on completion
Thread should have a way to manage request its serving and IO callbacks
Here is the code:
unit ThreadUtilities;
interface
uses
Windows, SysUtils, Classes;
type
EThreadStackFinalized = class(Exception);
TSimpleThread = class;
// Thread Safe Pointer Queue
TThreadQueue = class
private
FFinalized: Boolean;
FIOQueue: THandle;
public
constructor Create;
destructor Destroy; override;
procedure Finalize;
procedure Push(Data: Pointer);
function Pop(var Data: Pointer): Boolean;
property Finalized: Boolean read FFinalized;
end;
TThreadExecuteEvent = procedure (Thread: TThread) of object;
TSimpleThread = class(TThread)
private
FExecuteEvent: TThreadExecuteEvent;
protected
procedure Execute(); override;
public
constructor Create(CreateSuspended: Boolean; ExecuteEvent: TThreadExecuteEvent; AFreeOnTerminate: Boolean);
end;
TThreadPoolEvent = procedure (Data: Pointer; AThread: TThread) of Object;
TThreadPool = class(TObject)
private
FThreads: TList;
fis32MaxThreadCount : Integer;
FThreadQueue: TThreadQueue;
FHandlePoolEvent: TThreadPoolEvent;
procedure DoHandleThreadExecute(Thread: TThread);
procedure SetMaxThreadCount(const pis32MaxThreadCount : Integer);
function GetMaxThreadCount : Integer;
public
constructor Create( HandlePoolEvent: TThreadPoolEvent; MaxThreads: Integer = 1); virtual;
destructor Destroy; override;
procedure Add(const Data: Pointer);
property MaxThreadCount : Integer read GetMaxThreadCount write SetMaxThreadCount;
end;
implementation
constructor TThreadQueue.Create;
begin
//-- Create IO Completion Queue
FIOQueue := CreateIOCompletionPort(INVALID_HANDLE_VALUE, 0, 0, 0);
FFinalized := False;
end;
destructor TThreadQueue.Destroy;
begin
//-- Destroy Completion Queue
if (FIOQueue = 0) then
CloseHandle(FIOQueue);
inherited;
end;
procedure TThreadQueue.Finalize;
begin
//-- Post a finialize pointer on to the queue
PostQueuedCompletionStatus(FIOQueue, 0, 0, Pointer($FFFFFFFF));
FFinalized := True;
end;
function TThreadQueue.Pop(var Data: Pointer): Boolean;
var
A: Cardinal;
OL: POverLapped;
begin
Result := True;
if (not FFinalized) then
//-- Remove/Pop the first pointer from the queue or wait
GetQueuedCompletionStatus(FIOQueue, A, Cardinal(Data), OL, INFINITE);
//-- Check if we have finalized the queue for completion
if FFinalized or (OL = Pointer($FFFFFFFF)) then begin
Data := nil;
Result := False;
Finalize;
end;
end;
procedure TThreadQueue.Push(Data: Pointer);
begin
if FFinalized then
Raise EThreadStackFinalized.Create('Stack is finalized');
//-- Add/Push a pointer on to the end of the queue
PostQueuedCompletionStatus(FIOQueue, 0, Cardinal(Data), nil);
end;
{ TSimpleThread }
constructor TSimpleThread.Create(CreateSuspended: Boolean;
ExecuteEvent: TThreadExecuteEvent; AFreeOnTerminate: Boolean);
begin
FreeOnTerminate := AFreeOnTerminate;
FExecuteEvent := ExecuteEvent;
inherited Create(CreateSuspended);
end;
Changed the code as suggested by J... also added critical sections but the problem i am facing now is that when i am trying call multiple task only one thread is being used, Lets say if i added 5 threads in the pool then only one thread is being used which is thread 1. Please check my client code as well in the below section.
procedure TSimpleThread.Execute;
begin
// if Assigned(FExecuteEvent) then
// FExecuteEvent(Self);
while not self.Terminated do begin
try
// FGoEvent.WaitFor(INFINITE);
// FGoEvent.ResetEvent;
EnterCriticalSection(csCriticalSection);
if self.Terminated then break;
if Assigned(FExecuteEvent) then
FExecuteEvent(Self);
finally
LeaveCriticalSection(csCriticalSection);
// HandleException;
end;
end;
end;
In the Add method, how can I check if there is any thread which is not busy, if it is not busy then reuse it else create a new thread and add it in ThreadPool list?
{ TThreadPool }
procedure TThreadPool.Add(const Data: Pointer);
begin
FThreadQueue.Push(Data);
// if FThreads.Count < MaxThreadCount then
// begin
// FThreads.Add(TSimpleThread.Create(False, DoHandleThreadExecute, False));
// end;
end;
constructor TThreadPool.Create(HandlePoolEvent: TThreadPoolEvent;
MaxThreads: Integer);
begin
FHandlePoolEvent := HandlePoolEvent;
FThreadQueue := TThreadQueue.Create;
FThreads := TList.Create;
FThreads.Add(TSimpleThread.Create(False, DoHandleThreadExecute, False));
end;
destructor TThreadPool.Destroy;
var
t: Integer;
begin
FThreadQueue.Finalize;
for t := 0 to FThreads.Count-1 do
TThread(FThreads[t]).Terminate;
while (FThreads.Count = 0) do begin
TThread(FThreads[0]).WaitFor;
TThread(FThreads[0]).Free;
FThreads.Delete(0);
end;
FThreadQueue.Free;
FThreads.Free;
inherited;
end;
procedure TThreadPool.DoHandleThreadExecute(Thread: TThread);
var
Data: Pointer;
begin
while FThreadQueue.Pop(Data) and (not TSimpleThread(Thread).Terminated) do begin
try
FHandlePoolEvent(Data, Thread);
except
end;
end;
end;
function TThreadPool.GetMaxThreadCount: Integer;
begin
Result := fis32MaxThreadCount;
end;
procedure TThreadPool.SetMaxThreadCount(const pis32MaxThreadCount: Integer);
begin
fis32MaxThreadCount := pis32MaxThreadCount;
end;
end.
Client Code :
This the client i created to log the data in text file :
unit ThreadClient;
interface
uses Windows, SysUtils, Classes, ThreadUtilities;
type
PLogRequest = ^TLogRequest;
TLogRequest = record
LogText: String;
end;
TThreadFileLog = class(TObject)
private
FFileName: String;
FThreadPool: TThreadPool;
procedure HandleLogRequest(Data: Pointer; AThread: TThread);
public
constructor Create(const FileName: string);
destructor Destroy; override;
procedure Log(const LogText: string);
procedure SetMaxThreadCount(const pis32MaxThreadCnt : Integer);
end;
implementation
(* Simple reuse of a logtofile function for example *)
procedure LogToFile(const FileName, LogString: String);
var
F: TextFile;
begin
AssignFile(F, FileName);
if not FileExists(FileName) then
Rewrite(F)
else
Append(F);
try
Writeln(F, DateTimeToStr(Now) + ': ' + LogString);
finally
CloseFile(F);
end;
end;
constructor TThreadFileLog.Create(const FileName: string);
begin
FFileName := FileName;
//-- Pool of one thread to handle queue of logs
FThreadPool := TThreadPool.Create(HandleLogRequest, 5);
end;
destructor TThreadFileLog.Destroy;
begin
FThreadPool.Free;
inherited;
end;
procedure TThreadFileLog.HandleLogRequest(Data: Pointer; AThread: TThread);
var
Request: PLogRequest;
los32Idx : Integer;
begin
Request := Data;
try
for los32Idx := 0 to 100 do
begin
LogToFile(FFileName, IntToStr( AThread.ThreadID) + Request^.LogText);
end;
finally
Dispose(Request);
end;
end;
procedure TThreadFileLog.Log(const LogText: string);
var
Request: PLogRequest;
begin
New(Request);
Request^.LogText := LogText;
FThreadPool.Add(Request);
end;
procedure TThreadFileLog.SetMaxThreadCount(const pis32MaxThreadCnt: Integer);
begin
FThreadPool.MaxThreadCount := pis32MaxThreadCnt;
end;
end.
This is the form application where i added three buttons, each button click will write some value to the file with thread id and text msg. But the problem is thread id is always same
unit ThreadPool;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ThreadClient;
type
TForm5 = class(TForm)
Button1: TButton;
Button2: TButton;
Button3: TButton;
Edit1: TEdit;
procedure Button1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Edit1Change(Sender: TObject);
private
{ Private declarations }
fiFileLog : TThreadFileLog;
public
{ Public declarations }
end;
var
Form5: TForm5;
implementation
{$R *.dfm}
procedure TForm5.Button1Click(Sender: TObject);
begin
fiFileLog.Log('Button one click');
end;
procedure TForm5.Button2Click(Sender: TObject);
begin
fiFileLog.Log('Button two click');
end;
procedure TForm5.Button3Click(Sender: TObject);
begin
fiFileLog.Log('Button three click');
end;
procedure TForm5.Edit1Change(Sender: TObject);
begin
fiFileLog.SetMaxThreadCount(StrToInt(Edit1.Text));
end;
procedure TForm5.FormCreate(Sender: TObject);
begin
fiFileLog := TThreadFileLog.Create('C:/test123.txt');
end;
end.
First, and probably most strongly advisable, you might consider using a library like OmniThread to implement a threadpool. The hard work is done for you and you will likely end up making a substandard and buggy product with a roll-your-own solution. Unless you have special requirements this is probably the fastest and easiest solution.
That said, if you want to try to do this...
What you might consider is to just make all of the threads in your pool at startup rather than on-demand. If the server is going to busy at any point then it will eventually end up with a pool of MaxThreadCount soon enough anyway.
In any case, if you want to keep a pool of threads alive and available for work then they would need to follow a slightly different model than what you have written.
Consider:
procedure TSimpleThread.Execute;
begin
if Assigned(FExecuteEvent) then
FExecuteEvent(Self);
end;
Here when you run your thread it will execute this callback and then terminate. This doesn't seem to be what you want. What you seem to want is to keep the thread alive but waiting for its next work package. I use a base thread class (for pools) with an execute method that looks something like this (this is somewhat simplified):
procedure TMyCustomThread.Execute;
begin
while not self.Terminated do begin
try
FGoEvent.WaitFor(INFINITE);
FGoEvent.ResetEvent;
if self.Terminated then break;
MainExecute;
except
HandleException;
end;
end;
end;
Here FGoEvent is a TEvent. The implementing class defines what the work package looks like in the abstract MainExecute method, but whatever it is the thread will perform its work and then return to waiting for the FGoEvent to signal that it has new work to do.
In your case, you need to keep track of which threads are waiting and which are working. You will probably want a manager class of some sort to keep track of these thread objects. Assigning something simple like a threadID to each one seems sensible. For each thread, just before launching it, make a record that it is currently busy. At the very end of your work package you can then post a message back to the manager class telling it that the work is done (and that it can flag the thread as available for work).
When you add work to the queue you can first check for available threads to run the work (or create a new one if you wish to follow the model you outlined). If there are threads then launch the task, if there are not then push the work onto the work queue. When worker threads report complete the manager can check the queue for outstanding work. If there is work it can immediately re-deploy the thread. If there isn't work it can flag the thread as available for work (here you might use a second queue for available workers).
A full implementation is too complex to document in a single answer here - this aims just to rough out some general ideas.
I have a Query and open it in my Thread. It works correctly and I don't want to use Synchronize, because Synchronize makes main Form don't response while the Query not complete fetch.
When close the Form blow error shown:
System Error. Code: 1400. Invalid window handle
type
TMyThread = class(TThread)
public
procedure Execute; override;
procedure doProc;
end; { type }
.
.
.
procedure TMyThread.doProc;
begin
Form1.Query1.Open;
end;
procedure TMyThread.Execute;
begin
inherited;
doProc;
end;
.
.
.
procedure TForm1.Button1Click(Sender: TObject);
begin
thrd := TMyThread.Create(True);
thrd.FreeOnTerminate := True;
thrd.Resume;
end;
Note : Query has a lot of record.
The problem is that the VCL is not thread safe.
In order to have the query execute in parallel to all other things going on you'll have to decouple it from the Form.
That means you'll have to create the Query at runtime using code:
type
TMyThread = class(TThread)
private
FQuery: TQuery;
FOnTerminate: TNotifyEvent;
public
constructor Create(AQuery: TQuery);
destructor Destroy; override;
procedure Execute; override;
procedure doProc;
//Add an event handler to do cleanup on termination.
property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate;
end; { type }
constructor TMyThread.Create(AQuery: TQuery);
begin
inherited Create(True);
FQuery:= AQuery;
end;
procedure TMyThread.doProc;
begin
FQuery1.Open;
Synchronize(
//anonymous method, use a separate procedure in older Delphi versions
procedure
begin
Form1.Button1.Enabled:= true; //reenable the button when we're done.
end
);
end;
procedure TMyThread.Execute;
begin
inherited;
doProc;
end;
destructor TMyThread.Destroy;
begin
if Assigned(FOnterminate) then FOnTerminate(Self);
inherited;
end;
In the OnClick for Button1 you'll do the following:
type
TForm1 = class(TForm)
private
AQuery: TQuery;
...
end; {type}
procedure TForm1.Button1Click(Sender: TObject);
begin
Button1.Enabled:= false; //disable the button so it cannot be started twice.
thrd.Free;
AQuery:= TQuery.Create;
AQuery.SQL.Text:= .....
thrd := TMyThread.Create(AQuery);
thrd.OnTerminate:= MyTerminationHandler;
thrd.FreeOnTerminate:= False;
thrd.Resume;
end;
Finally assign cleanup code to the termination handler of the thread.
If you destroy the Query in the thread then you cannot use FreeOnTerminate:= true, but you'll have to Free the thread yourself.
procedure TForm1.MyTerminationHandler(Sender: TObject);
begin
FreeAndNil(AQuery);
end;
Warning
This code will only work if you start 1 thread.
If you want start this thread multiple times (i.e. run multiple queries at the same time), you'll have to create an array of threads e.g.:
TQueryThreads = record
MyThread: TMyThread;
MyQuery: TQuery;
constructor Create(SQL: string);
end; {record}
TForm1 = class(TForm)
private
Threads: array of TQueryThreads;
....
end; {TForm1}
Note that this code will not work in the BDE, because that library does not support multiple running queries at the same time
If you want to do that you'll have to use ZEOS or something like that.
As per TLama's suggestion:
I would suggest switching the BDE TQuery component to ADO, or downloading something like ZEOS components. The BDE is very outdated and has a lot of quirks that will never get fixed because it is no longer maintained.
The only issue that remains is cleaning up the connection if Form1 is closed.
If it's your main form it really does not matter because your whole application will go down.
If it's not your main form than you'll need to disable closing the form by filling the OnCanClose handler.
TForm1.CanClose(Sender: TObject; var CanClose: boolean);
begin
CanClose:= thrd.Finished;
end;
You should prevent any action (user and program) in the MainThread without blocking it. This can easily be done by a modal form, that cannot be closed by the user.
The thread can do anything as long as it takes and the final (synchronized) step is to close that modal form.
procedure OpenDataSetInBackground( ADataSet : TDataSet );
var
LWaitForm : TForm;
begin
LWaitForm := TForm.Create( nil );
try
LWaitForm.BorderIcons := []; // no close buttons
TThread.CreateAnonymousThread(
procedure
begin
try
ADataSet.Open;
finally
TThread.Synchronize( nil,
procedure
begin
LWaitForm.Close;
end );
end;
end );
try
LWaitForm.ShowModal;
finally
LWorkThread.Free;
end;
finally
LWaitForm.Free;
end;
end;
But you have to be careful with this and you should never try do start more than one parallel thread with this code unless you really know, what you are doing.