Function pattern matching in Haskell - haskell

I'm trying to learn Haskell in guidance of Learn You a Haskell, but the following puzzles me.
lucky :: (Integral a) => a -> String
lucky 7 = "LUCKY NUMBER SEVEN!"  
lucky x = "Sorry, you're out of luck, pal!"
As you can see, there's one line up there stating the exact types of the function. But is this necessary? Can't the types of parameters and return values be deduced from the patterns below that line?

You are right, they are absolutely not necessary. However, it's a very common practice to state the type of the function nevertheless, for at least two reasons :
To tell the compiler what you actually mean. In case you make a mistake writing the function, the compiler will not infer a bad type, but warn you of your mistake
To tell the people who read your code. They'll have to find out the type of the function anyway while understanding the code, so you might as well make it easier for them. Having the type explicitly makes the code more readable.
This is why, although they are optional, the types of top level functions are almost always spelled out in Haskell code.
To complete with what Zeta said, it is not necessary in this case. However, in some situations, it is necessary to specify the type of the function when the code is too ambiguous to infer.

For documentation purpose, and because for some type extensions the automatic inference fails. Read here.

Related

What is the typed hole exploration development style?

While doing the CIS194 (Spring of 2013) homework 10, I got stuck with Applicative instance of a Parser type. I seek help from Google, an I came across with this Reddit post. The user ephrion gave an answer, which was also an example of typed hole exploration method, which I didn't quite understand. In the comments section of his answer he also said this:
It's extremely useful and one of the things that makes Haskell development so nice.
So question is, what this method is exactly, and are there some explicit order of steps in this method?
I still consider myself as a beginner when it comes to Haskell, and by googling about the subject I didn't find a very clear explanation how this kind of development style could be used.
Almost anywhere on the right hand side of an assignment in Haskell, you can write an underscore (optionally followed by other characters) instead of a value (constant or function). Instead of compiling, GHC will then tell you which type of value you might want to replace the underscore with, and list which identifiers in scope are of that type.
Matthías Páll Gissurarson is expanding the list of hints from GHC to include compound expressions.

About the implementation of Haskell's type classes [duplicate]

On slide 30/78 of this presentation, Simon suggests that implementation of type classes was a "despair" at the beginning. Is anybody aware why that was?
I guess I'm one of the few people who have first hand experience of why it was hard, since I implemented it in hbc when there was no prior art.
So what was clear from the Wadler&Blott paper was that type checking was an extension of Hindley-Milner type checking and that at runtime you should be passing dictionaries around. From that to an actual implementation is a rather big step. A good way to understand the difficulty is to actually implement it starting from just the Wadler-Blott paper.
First, you need to come up with the idea of a type checker that not only checks types but also transforms the program; inserting evidence (dictionaries) while type checking. You also need to figure out how to construct new dictionaries from old ones using the instance declarations as an inference system.
It might all seem obvious in retrospect, but remember that since that time a lot of papers with explanations have been written. Understanding how to do something from a paper is very different from coming up with it in the first place.
Furthermore, you want type classes to be reasonably efficient which leads to its own set of problems.

Haskell without types

Is it possible to disable or work around the type system in Haskell? There are situations where it is convenient to have everything untyped as in Forth and BCPL or monotyped as in Mathematica. I'm thinking along the lines of declaring everything as the same type or of disabling type checking altogether.
Edit: In conformance with SO principles, this is a narrow technical question, not a request for discussion of the relative merits of different programming approaches. To rephrase the question, "Can Haskell be used in a way such that avoidance of type conflicts is entirely the responsibility of the programmer?"
Also look at Data.Dynamic which allows you to have dynamically typed values in parts of your code without disabling type-checking throughout.
GHC 7.6 (not released yet) has a similar feature, -fdefer-type-errors:
http://hackage.haskell.org/trac/ghc/wiki/DeferErrorsToRuntime
It will defer all type errors until runtime. It's not really untyped but it allows almost as much freedom.
Even with fdefer-type-errors one wouldn't be avoiding the type system. Nor does it really allow type independence. The point of the flag is to allow code with type errors to compile, so long as the errors are not called by the Main function. In particular, any code with a type error, when actually called by a Haskell interpreter, will still fail.
While the prospect of untyped functions in Haskell might be tempting, it's worth noting that the type system is really at the heart of the language. The code proves its own functionality in compilation, and the rigidity of the type system prevents a large number of errors.
Perhaps if you gave a specific example of the problem you're having, the community could address it. Interconverting between number types is something that I've asked about before, and there are a number of good tricks.
Perhaps fdefer-type-errors combined with https://hackage.haskell.org/package/base-4.14.1.0/docs/Unsafe-Coerce.html offers what you need.

How does one avoid creating an ad-hoc type system in dynamically typed languages?

In every project I've started in languages without type systems, I eventually begin to invent a runtime type system. Maybe the term "type system" is too strong; at the very least, I create a set of type/value-range validators when I'm working with complex data types, and then I feel the need to be paranoid about where data types can be created and modified.
I hadn't thought twice about it until now. As an independent developer, my methods have been working in practice on a number of small projects, and there's no reason they'd stop working now.
Nonetheless, this must be wrong. I feel as if I'm not using dynamically-typed languages "correctly". If I must invent a type system and enforce it myself, I may as well use a language that has types to begin with.
So, my questions are:
Are there existing programming paradigms (for languages without types) that avoid the necessity of using or inventing type systems?
Are there otherwise common recommendations on how to solve the problems that static typing solves in dynamically-typed languages (without sheepishly reinventing types)?
Here is a concrete example for you to consider. I'm working with datetimes and timezones in erlang (a dynamic, strongly typed language). This is a common datatype I work with:
{{Y,M,D},{tztime, {time, HH,MM,SS}, Flag}}
... where {Y,M,D} is a tuple representing a valid date (all entries are integers), tztime and time are atoms, HH,MM,SS are integers representing a sane 24-hr time, and Flag is one of the atoms u,d,z,s,w.
This datatype is commonly parsed from input, so to ensure valid input and a correct parser, the values need to be checked for type correctness, and for valid ranges. Later on, instances of this datatype are compared to each other, making the type of their values all the more important, since all terms compare. From the erlang reference manual
number < atom < reference < fun < port < pid < tuple < list < bit string
Aside from the confsion of static vs. dynamic and strong vs. weak typing:
What you want to implement in your example isn't really solved by most existing static typing systems. Range checks and complications like February 31th and especially parsed input are usually checked during runtime no matter what type system you have.
Your example being in Erlang I have a few recommendations:
Use records. Besides being usefull and helpfull for a whole bunch of reasons, the give you easy runtime type checking without a lot of effort e.g.:
is_same_day(#datetime{year=Y1, month=M1, day=D1},
#datetime{year=Y2, month=M2, day=D2}) -> ...
Effortless only matches for two datetime records. You could even add guards to check for ranges if the source is untrusted. And it conforms to erlangs let it crash method of error handling: if no match is found you get a badmatch, and can handle this on the level where it is apropriate (usually the supervisor level).
Generally write your code that it crashes when the assumptions are not valid
If this doesn't feel static checked enough: use typer and dialyzer to find the kind of errors that can be found statically, whatever remains will be checkd at runtime.
Don't be too restrictive in your functions what "types" you accept, sometimes the added functionality of just doing someting useful even for different inputs is worth more than checking the types and ranges on every function. If you do it where it matters usually you will catch the error early enough for it to be easy fixable. This is especially true for a functionaly language where you allways know where every value comes from.
A lot of good answers, let me add:
Are there existing programming paradigms (for languages without types) that avoid the necessity of using or inventing type systems?
The most important paradigm, especially in Erlang, is this: Assume the type is right, otherwise let it crash. Don't write excessively checking paranoid code, but assume that the input you get is of the right type or the right pattern. Don't write (there are exceptions to this rule, but in general)
foo({tag, ...}) -> do_something(..);
foo({tag2, ...}) -> do_something_else(..);
foo(Otherwise) ->
report_error(Otherwise),
try to fix problem here...
Kill the last clause and have it crash right away. Let a supervisor and other processes do the cleanup (you can use monitors() for janitorial processes to know when a crash has occurred).
Do be precise however. Write
bar(N) when is_integer(N) -> ...
baz([]) -> ...
baz(L) when is_list(L) -> ...
if the function is known only to work with integers or lists respectively. Yes, it is a runtime check but the goal is to convey information to the programmer. Also, HiPE tend to utilize the hint for optimization and eliminate the type check if possible. Hence, the price may be less than what you think it is.
You choose an untyped/dynamically-typed language so the price you have to pay is that type checking and errors from clashes will happen at runtime. As other posts hint, a statically typed language is not exempt from doing some checks as well - the type system is (usually) an approximation of a proof of correctness. In most static languages you often get input which you can't trust. This input is transformed at the "border" of the application and then converted to an internal format. The conversion serves to mark trust: From now on, the thing has been validated and we can assume certain things about it. The power and correctness of this assumption is directly tied to its type signature and how good the programmer is with juggling the static types of the language.
Are there otherwise common recommendations on how to solve the problems that static typing solves in dynamically-typed languages (without sheepishly reinventing types)?
Erlang has the dialyzer which can be used to statically analyze and infer types of your programs. It will not come up with as many type errors as a type checker in e.g., Ocaml, but it won't "cry wolf" either: An error from the dialyzer is provably an error in the program. And it won't reject a program which may be working ok. A simple example is:
and(true, true) -> true;
and(true, _) -> false;
and(false, _) -> false.
The invocation and(true, greatmistake) will return false, yet a static type system will reject the program because it will infer from the first line that the type signature takes a boolean() value as the 2nd parameter. The dialyzer will accept this function in contrast and give it the signature (boolean(), term()) -> boolean(). It can do this, because there is no need to protect a priori for an error. If there is a mistake, the runtime system has a type check that will capture it.
In order for a statically-typed language to match the flexibility of a dynamically-typed one, I think it would need a lot, perhaps infinitely many, features.
In the Haskell world, one hears a lot of sophisticated, sometimes to the point of being scary, teminology. Type classes. Parametric polymorphism. Generalized algebraic data types. Type families. Functional dependencies. The Ωmega programming language takes it even further, with the website listing "type-level functions" and "level polymorphism", among others.
What are all these? Features added to static typing to make it more flexible. These features can be really cool, and tend to be elegant and mind-blowing, but are often difficult to understand. Learning curve aside, type systems often fail to model real-world problems elegantly. A particularly good example of this is interacting with other languages (a major motivation for C# 4's dynamic feature).
Dynamically-typed languages give you the flexibility to implement your own framework of rules and assumptions about data, rather than be constrained by the ever-limited static type system. However, "your own framework" won't be machine-checked, meaning the onus is on you to ensure your "type system" is safe and your code is well-"typed".
One thing I've found from learning Haskell is that I can carry lessons learned about strong typing and sound reasoning over to weaker-typed languages, such as C and even assembly, and do the "type checking" myself. Namely, I can prove that sections of code are correct in and of themselves, by bearing in mind the rules my functions and values are supposed to follow, and the assumptions I am allowed to make about other functions and values. When debugging, I go through and check things again, and think through whether or not my approach is sound.
The bottom line: dynamic typing puts more flexibility at your fingertips. On the other hand, statically-typed languages tend to be more efficient (by orders of magnitude), and good static type systems drastically cut down on debugging time by letting the computer do much of it for you. If you want the benefits of both, install a static type checker in your brain by learning decent, strongly-typed languages.
Sometimes data need validation. Validating any data received from the network is almost always a good idea — especially data from a public network. Being paranoid here is only good. If something resembling a static type system helps this in the least painful way, so be it. There's a reason why Erlang allows type annotations. Even pattern matching can be seen as just a kind of dynamic type checking; nevertheless, it's a central feature of the language. The very structure of data is its 'type' in Erlang.
The good thing is that you can custom-tailor your 'type system' to your needs, make it flexible and smart, while type systems of OO languages typically have fixed features. When data structures you use are immutable, once you've validated such a structure, you're safe to assume it conforms your restrictions, just like with static typing.
There's no point in being ready to process any kind of data at any point of a program, dynamically-typed or not. A 'dynamic type' is essentially a union of all possible types; limiting it to a useful subset is a valid way to program.
A statically typed language detects type errors at compile time. A dynamically typed language detects them at runtime. There are some modest restrictions on what one can write in a statically typed language such that all type errors can be caught at compile time.
But yes, you still have types even in a dynamically typed language, and that's a good thing. The problem is you wander into lots of runtime checks to ensure that you have the types you think you do, since the compiler hasn't taken care of that for you.
Erlang has a very nice tool for specifying and statically verifying lots of types -- dialyzer: Erlang type system, for references.
So don't reinvent types, use the typing tools that Erlang already provides, to handle the types that already exist in your program (but which you haven't yet specified).
And this on its own won't eliminate range checks, unfortunately. Without lots of special sauce you really have to enforce this on your own by convention (and smart constructors, etc. to help), or fall back to runtime checks, or both.

why do some languages require function to be declared in code before calling?

Suppose you have this pseudo-code
do_something();
function do_something(){
print "I am saying hello.";
}
Why do some programming languages require the call to do_something() to appear below the function declaration in order for the code to run?
Programming languages use a symbol table to hold the various classes, functions, etc. that are used in the source code. Some languages compile in a single pass, whereby the symbols are pulled out of the symbol table as soon as they are used. Others use two passes, where the first pass is used to populate the table, and then the second is used to find the entries.
Most languages with a static type system are designed to require definition before use, which means there must be some sort of declaration of a function before the call so that the call can be checked (e.g., is the function getting the right number and types of arguments). This sort of design helps both a person and a compiler reading the program: everything you see has already been defined. The ease of reading and the popularity of one-pass compilers may explain the popularity of this design rule.
Unfortunately definition before use does not play well with mutual recursion, and so language designers resorted to an ugly hack whereby you have
Declaration (sometimes called a "forward declaration" from the keyword in Pascal)
Use
Definition
You see the same phenomenon at the type level in C in the form of the "incomplete struct declaration."
Around 1990 some language designers figured out that the one-pass compiler with no abstract-syntax tree should be a thing of the past, and two very nice designs from that era—Modula-3 and Haskell got rid of definition before use: in those languages, any defined function or variable is visible throughout its scope, including parts of the program textually before the definition. In other words, mutual recursion is the default for both types and functions. Good on them, I say—these languages have no ugly and unnecessary forward declarations.
Why [have definition before use]?
Easy to write a one-pass compiler in 1975.
without definition before use, you have to think harder about mutual recursion, especially mutually recursive type definitions.
Some people think it makes it easier for a person to read the code.

Resources