What is the best implementation of a recursive struct? - rust

I want to implement a Treep by rust. The node struct of Treep is
#[derive(Clone)]
struct TreepNode {
data: i32,
left: Option<Box<TreepNode>>,
right: Option<Box<TreepNode>>,
}
Then I define a function to implement the right rotate operation.
fn rightRotate(&self) -> Box<TreepNode> {
match self.clone().left {
None => return Box::new(self.clone()),
Some(ref mut leftTree) => {
let mut selfTree = self.clone();
selfTree.left = leftTree.right.clone();
leftTree.right = Some(Box::new(selfTree));
return leftTree.clone()
}
}
}
This code can be compiled. However, the code is ugly because there are lot of clone() and Some in it. Is there any better way to optimize the code?

You can avoid clone() if you consume Self:
fn right_rotate(mut self) -> Box<TreepNode> {
match self.left.take() {
None => Box::new(self),
Some(mut left) => {
self.left = left.right.take();
left.right = Some(Box::new(self));
left
}
}
}

Related

Peek inmplementation for linked list in rust

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=693594655ea355b40e2175542c653879
I want peek() to remove the last element of the list, returning data. What am I missing?
type Link<T> = Option<Box<Node<T>>>;
struct Node<T> {
pub data: T,
pub next: Link<T>,
}
struct List<T> {
pub head: Link<T>,
}
impl<T> List<T> {
fn peek(&mut self) -> Option<T> {
let mut node = &self.head;
while let Some(cur_node) = &mut node {
if cur_node.next.is_some() {
node = &cur_node.next;
continue;
}
}
let last = node.unwrap();
let last = last.data;
return Some(last);
}
}
#[test]
fn peek_test() {
let mut q = List::new();
q.push(1);
q.push(2);
q.push(3);
assert_eq!(q.empty(), false);
assert_eq!(q.peek().unwrap(), 1);
assert_eq!(q.peek().unwrap(), 2);
assert_eq!(q.peek().unwrap(), 3);
assert_eq!(q.empty(), true);
}
To save the head, I need to access the elements by reference, but the puzzle does not fit in my head. I looked at "too-many-lists", but the value is simply returned by reference, and I would like to remove the tail element.
To make this work you have to switch from taking a shared reference (&) to a mutable one.
This results in borrow checker errors with your code wihch is why I had to change the while let loop into one
which checks if the next element is Some and only then borrows node's content mutably and advances it.
At last I Option::take that last element and return it's data. I use Option::map to avoid having to unwrap which would panic for empty lists anyways if you wanted to keep your variant you should replace unwrap with the try operator ?.
So in short you can implement a pop_back like this:
pub fn pop_back(&mut self) -> Option<T> {
let mut node = &mut self.head;
while node.as_ref().map(|n| n.next.is_some()).unwrap_or_default() {
node = &mut node.as_mut().unwrap().next;
}
node.take().map(|last| last.data)
}
I suggest something like below, Just because I spent time on it .-)
fn peek(&mut self) -> Option<T> {
match &self.head {
None => return None,
Some(v) =>
if v.next.is_none() {
let last = self.head.take();
let last = last.unwrap().data;
return Some(last);
}
}
let mut current = &mut self.head;
loop {
match current {
None => return None,
Some(node) if node.next.is_some() && match &node.next { None => false, Some(v) => v.next.is_none()} => {
let last = node.next.take();
let last = last.unwrap().data;
return Some(last);
},
Some(node) => {
current = &mut node.next;
}
}
}
}

Rust: Implement AVL Tree and error: thread 'main' panicked at 'already borrowed: BorrowMutError'

I have the following tree structure:
use std::cell::RefCell;
use std::rc::Rc;
use std::cmp;
use std::cmp::Ordering;
type AVLTree<T> = Option<Rc<RefCell<TreeNode<T>>>>;
#[derive(Debug, PartialEq, Clone)]
struct TreeSet<T: Ord> {
root: AVLTree<T>,
}
impl<T: Ord> TreeSet<T> {
fn new() -> Self {
Self {
root: None
}
}
fn insert(&mut self, value: T) -> bool {
let current_tree = &mut self.root;
while let Some(current_node) = current_tree {
let node_key = &current_node.borrow().key;
match node_key.cmp(&value) {
Ordering::Less => { let current_tree = &mut current_node.borrow_mut().right; },
Ordering::Equal => {
return false;
}
Ordering::Greater => { let current_tree = &mut current_node.borrow_mut().left; },
}
}
*current_tree = Some(Rc::new(RefCell::new(TreeNode {
key: value,
left: None,
right: None,
parent: None
})));
true
}
}
#[derive(Clone, Debug, PartialEq)]
struct TreeNode<T: Ord> {
pub key: T,
pub parent: AVLTree<T>,
left: AVLTree<T>,
right: AVLTree<T>,
}
fn main() {
let mut new_avl_tree: TreeSet<u32> = TreeSet::new();
new_avl_tree.insert(3);
new_avl_tree.insert(5);
println!("Tree: {:#?}", &new_avl_tree);
}
Building with cargo build is fine, but when I run cargo run, I got the below error:
thread 'main' panicked at 'already borrowed: BorrowMutError', src\libcore\result.rs:1165:5
note: run with RUST_BACKTRACE=1 environment variable to display a backtrace. error: process didn't
exit successfully: target\debug\avl-tree.exe (exit code: 101)
If i just call insert(3), it will be fine and my tree gets printed correctly. However, if I insert(5) after insert(3), I will get that error.
How do I fix that?
Manually implementing data structures such as linked list, tree, graph are not task for novices, because of memory safety rules in language. I suggest you to read Too Many Linked Lists tutorial, which discusses how to implement safe and unsafe linked lists in Rust right way.
Also read about name shadowing.
Your error is that inside a cycle you try to borrow mutable something which is already borrowed as immutable.
let node_key = &current_node.borrow().key; // Borrow as immutable
match node_key.cmp(&value) {
Ordering::Less => { let current_tree = &mut current_node.borrow_mut().right; }, // Create a binding which will be immediately deleted and borrow as mutable.
And I recommend you to read Rust book to learn rust.
First let us correct your algorithm. The following lines are incorrect:
let current_tree = &mut current_node.borrow_mut().right;
...
let current_tree = &mut current_node.borrow_mut().left;
Both do not reassign a value to current_tree but create a new (unused) one (#Inline refers to it as Name shadowing). Remove the let and make current_tree mut.
Now we get a compiler error temporary value dropped while borrowed. Probably the compiler error message did mislead you. It tells you to use let to increase the lifetime, and this would be right if you used the result in the same scope, but no let can increase the lifetime beyond the scope.
The problem is that you cannot pass out a reference to a value owned by a loop (as current_node.borrow_mut.right). So it would be better to use current_tree as owned variable. Sadly this means that many clever tricks in your code will not work any more.
Another problem in the code is the multiple borrow problem (your original runtime warning is about this). You cannot call borrow() and borrow_mut() on the same RefCell without panic(that is the purpose of RefCell).
So after finding the problems in your code, I got interested in how I would write the code. And now that it is written, I thought it would be fair to share it:
fn insert(&mut self, value: T) -> bool {
if let None = self.root {
self.root = TreeSet::root(value);
return true;
}
let mut current_tree = self.root.clone();
while let Some(current_node) = current_tree {
let mut borrowed_node = current_node.borrow_mut();
match borrowed_node.key.cmp(&value) {
Ordering::Less => {
if let Some(next_node) = &borrowed_node.right {
current_tree = Some(next_node.clone());
} else {
borrowed_node.right = current_node.child(value);
return true;
}
}
Ordering::Equal => {
return false;
}
Ordering::Greater => {
if let Some(next_node) = &borrowed_node.left {
current_tree = Some(next_node.clone());
} else {
borrowed_node.left = current_node.child(value);
return true;
}
}
};
}
true
}
//...
trait NewChild<T: Ord> {
fn child(&self, value: T) -> AVLTree<T>;
}
impl<T: Ord> NewChild<T> for Rc<RefCell<TreeNode<T>>> {
fn child(&self, value: T) -> AVLTree<T> {
Some(Rc::new(RefCell::new(TreeNode {
key: value,
left: None,
right: None,
parent: Some(self.clone()),
})))
}
}
One will have to write the two methods child(value:T) and root(value:T) to make this compile.

How can I return the combination of two borrowed RefCells?

I have a struct with two Vecs wrapped in RefCells. I want to have a method on that struct that combines the two vectors and returns them as a new RefCell or RefMut:
use std::cell::{RefCell, RefMut};
struct World {
positions: RefCell<Vec<Option<Position>>>,
velocities: RefCell<Vec<Option<Velocity>>>,
}
type Position = i32;
type Velocity = i32;
impl World {
pub fn new() -> World {
World {
positions: RefCell::new(vec![Some(1), None, Some(2)]),
velocities: RefCell::new(vec![None, None, Some(1)]),
}
}
pub fn get_pos_vel(&self) -> RefMut<Vec<(Position, Velocity)>> {
let mut poses = self.positions.borrow_mut();
let mut vels = self.velocities.borrow_mut();
poses
.iter_mut()
.zip(vels.iter_mut())
.filter(|(e1, e2)| e1.is_some() && e2.is_some())
.map(|(e1, e2)| (e1.unwrap(), e2.unwrap()))
.for_each(|elem| println!("{:?}", elem));
}
}
fn main() {
let world = World::new();
world.get_pos_vel();
}
How would I return the zipped contents of the vectors as a new RefCell? Is that possible?
I know there is RefMut::map() and I tried to nest two calls to map, but didn't succeed with that.
You want to be able to modify the positions and velocities. If these have to be stored in two separate RefCells, what about side-stepping the problem and using a callback to do the modification?
use std::cell::RefCell;
struct World {
positions: RefCell<Vec<Option<Position>>>,
velocities: RefCell<Vec<Option<Velocity>>>,
}
type Position = i32;
type Velocity = i32;
impl World {
pub fn new() -> World {
World {
positions: RefCell::new(vec![Some(1), None, Some(2)]),
velocities: RefCell::new(vec![None, None, Some(1)]),
}
}
pub fn modify_pos_vel<F: FnMut(&mut Position, &mut Velocity)>(&self, mut f: F) {
let mut poses = self.positions.borrow_mut();
let mut vels = self.velocities.borrow_mut();
poses
.iter_mut()
.zip(vels.iter_mut())
.filter_map(|pair| match pair {
(Some(e1), Some(e2)) => Some((e1, e2)),
_ => None,
})
.for_each(|pair| f(pair.0, pair.1))
}
}
fn main() {
let world = World::new();
world.modify_pos_vel(|position, velocity| {
// Some modification goes here, for example:
*position += *velocity;
});
}
If you want to return a new Vec, then you don't need to wrap it in RefMut or RefCell:
Based on your code with filter and map
pub fn get_pos_vel(&self) -> Vec<(Position, Velocity)> {
let mut poses = self.positions.borrow_mut();
let mut vels = self.velocities.borrow_mut();
poses.iter_mut()
.zip(vels.iter_mut())
.filter(|(e1, e2)| e1.is_some() && e2.is_some())
.map(|(e1, e2)| (e1.unwrap(), e2.unwrap()))
.collect()
}
Alternative with filter_map
poses.iter_mut()
.zip(vels.iter_mut())
.filter_map(|pair| match pair {
(Some(e1), Some(e2)) => Some((*e1, *e2)),
_ => None,
})
.collect()
You can wrap it in RefCell with RefCell::new, if you really want to, but I would leave it up to the user of the function to wrap it in whatever they need.

Union-Find implementation does not update parent tags

I'm trying to create some sets of Strings and then merge some of these sets so that they have the same tag (of type usize). Once I initialize the map, I start adding strings:
self.clusters.make_set("a");
self.clusters.make_set("b");
When I call self.clusters.find("a") and self.clusters.find("b"), different values are returned, which is fine because I haven't merged the sets yet. Then I call the following method to merge two sets
let _ = self.clusters.union("a", "b");
If I call self.clusters.find("a") and self.clusters.find("b") now, I get the same value. However, when I call the finalize() method and try to iterate through the map, the original tags are returned, as if I never merged the sets.
self.clusters.finalize();
for (address, tag) in &self.clusters.map {
self.clusterizer_writer.write_all(format!("{};{}\n", address,
self.clusters.parent[*tag]).as_bytes()).unwrap();
}
// to output all keys with the same tag as a list.
let a: Vec<(usize, Vec<String>)> = {
let mut x = HashMap::new();
for (k, v) in self.clusters.map.clone() {
x.entry(v).or_insert_with(Vec::new).push(k)
}
x.into_iter().collect()
};
I can't figure out why this is the case, but I'm relatively new to Rust; maybe its an issue with pointers?
Instead of "a" and "b", I'm actually using something like utils::arr_to_hex(&input.outpoint.txid) of type String.
This is the Rust implementation of the Union-Find algorithm that I am using:
/// Tarjan's Union-Find data structure.
#[derive(RustcDecodable, RustcEncodable)]
pub struct DisjointSet<T: Clone + Hash + Eq> {
set_size: usize,
parent: Vec<usize>,
rank: Vec<usize>,
map: HashMap<T, usize>, // Each T entry is mapped onto a usize tag.
}
impl<T> DisjointSet<T>
where
T: Clone + Hash + Eq,
{
pub fn new() -> Self {
const CAPACITY: usize = 1000000;
DisjointSet {
set_size: 0,
parent: Vec::with_capacity(CAPACITY),
rank: Vec::with_capacity(CAPACITY),
map: HashMap::with_capacity(CAPACITY),
}
}
pub fn make_set(&mut self, x: T) {
if self.map.contains_key(&x) {
return;
}
let len = &mut self.set_size;
self.map.insert(x, *len);
self.parent.push(*len);
self.rank.push(0);
*len += 1;
}
/// Returns Some(num), num is the tag of subset in which x is.
/// If x is not in the data structure, it returns None.
pub fn find(&mut self, x: T) -> Option<usize> {
let pos: usize;
match self.map.get(&x) {
Some(p) => {
pos = *p;
}
None => return None,
}
let ret = DisjointSet::<T>::find_internal(&mut self.parent, pos);
Some(ret)
}
/// Implements path compression.
fn find_internal(p: &mut Vec<usize>, n: usize) -> usize {
if p[n] != n {
let parent = p[n];
p[n] = DisjointSet::<T>::find_internal(p, parent);
p[n]
} else {
n
}
}
/// Union the subsets to which x and y belong.
/// If it returns Ok<u32>, it is the tag for unified subset.
/// If it returns Err(), at least one of x and y is not in the disjoint-set.
pub fn union(&mut self, x: T, y: T) -> Result<usize, ()> {
let x_root;
let y_root;
let x_rank;
let y_rank;
match self.find(x) {
Some(x_r) => {
x_root = x_r;
x_rank = self.rank[x_root];
}
None => {
return Err(());
}
}
match self.find(y) {
Some(y_r) => {
y_root = y_r;
y_rank = self.rank[y_root];
}
None => {
return Err(());
}
}
// Implements union-by-rank optimization.
if x_root == y_root {
return Ok(x_root);
}
if x_rank > y_rank {
self.parent[y_root] = x_root;
return Ok(x_root);
} else {
self.parent[x_root] = y_root;
if x_rank == y_rank {
self.rank[y_root] += 1;
}
return Ok(y_root);
}
}
/// Forces all laziness, updating every tag.
pub fn finalize(&mut self) {
for i in 0..self.set_size {
DisjointSet::<T>::find_internal(&mut self.parent, i);
}
}
}
I think you're just not extracting the information out of your DisjointSet struct correctly.
I got sniped by this and implemented union find. First, with a basic usize implemention:
pub struct UnionFinderImpl {
parent: Vec<usize>,
}
Then with a wrapper for more generic types:
pub struct UnionFinder<T: Hash> {
rev: Vec<Rc<T>>,
fwd: HashMap<Rc<T>, usize>,
uf: UnionFinderImpl,
}
Both structs implement a groups() method that returns a Vec<Vec<>> of groups. Clone isn't required because I used Rc.
Playground

wrestling with borrow checker

I'm new to Rust. As a learning exercise I'm trying to make a basic binary tree. This is what I have so far:
fn main() {
let data = vec![6,1,2,3,4,5];
let mut root = Node::<i32> { value: data[0], left: None, right: None };
for val in data {
createAndInsert::<i32>(&root, val);
}
println!("Root value: {}", root.value);
}
fn createAndInsert<T: PartialOrd>(mut root: &Node<T>, value: T) {
let mut n = Node::<T> { value: value, left: None, right: None };
insert::<T>(&root, &n);
}
fn insert<T: PartialOrd>(mut curr: &Node<T>, new: &Node<T>) {
if new.value > curr.value {
match curr.right {
Some(ref n) => insert(n, new),
None => curr.right = Some(Box::new(*new))
}
} else {
match curr.left {
Some(ref n) => insert(n, new),
None => curr.left = Some(Box::new(*new))
}
}
}
struct Node<T: PartialOrd> {
value: T,
left: Option<Box<Node<T>>>,
right: Option<Box<Node<T>>>,
}
The compiler errors I'm getting:
test.rs:21:48: 21:52 error: cannot move out of borrowed content
test.rs:21 None => curr.right = Some(Box::new(*new))
^~~~
test.rs:26:47: 26:51 error: cannot move out of borrowed content
test.rs:26 None => curr.left = Some(Box::new(*new))
^~~~
test.rs:21:21: 21:54 error: cannot assign to immutable field `curr.right`
test.rs:21 None => curr.right = Some(Box::new(*new))
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
test.rs:26:21: 26:53 error: cannot assign to immutable field `curr.left`
test.rs:26 None => curr.left = Some(Box::new(*new))
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
error: aborting due to 4 previous errors
I've got myself tangled in all the refs and muts and &'s and *'s and I'm not sure how to get out. Where am I going wrong?
You have two problems:
Cannot move out of borrowed context: see Cannot move out of borrowed content when borrowing a generic type for an explanation.
Cannot assign to immutable field: you only have a &Node<T>; to modify the Node you need a &mut Node<T>. mut curr in the pattern merely makes the binding mutable, meaning that you can assign a new value to curr. You can’t, however, modify the contents of what curr refers to. Propagate the &-to-&mut conversion throughout the code and it’ll work.
Since you are new to Rust it might help to see how I would have written it:
struct Node<T> {
value: T,
left: Option<Box<Node<T>>>,
right: Option<Box<Node<T>>>,
}
impl<T> Node<T> {
fn new(x: T) -> Node<T> {
Node { value: x, left: None, right: None }
}
fn boxed(x: T) -> Box<Node<T>> {
Box::new(Node::new(x))
}
}
fn insert<T: PartialOrd>(root: &mut Option<Box<Node<T>>>, new: Box<Node<T>>) {
if let Some(ref mut rbx) = *root {
if new.value < rbx.value {
insert(&mut rbx.left, new);
} else {
insert(&mut rbx.right, new);
}
} else {
*root = Some(new);
}
}
fn main() {
let data = vec![6,1,2,3,4,5];
let mut root = None;
for val in data {
insert(&mut root, Node::boxed(val));
}
println!("Root value: {}", root.unwrap().value);
}
I realize that this is more of an exercise but keep in mind that this kind of data structure should not grow beyond a certain tree depth since it might otherwise cause the stack to overflow when the nodes are recursivly deallocated.

Resources