PixelFormat JavaFX scaling - graphics

I am trying to capture a portion of my JavafX canvas. However, only the operating system screen from below is captured, and the scaling is all wrong. I thought the glass.ui robot was supposed to work with Javafx. Also, I'm confused by how to calculate the scanLine. Can anyone please help? Thanks.
com.sun.glass.ui.Robot robot = com.sun.glass.ui.Application.GetApplication().createRobot();
Pixels p =robot.getScreenCapture(1,1,1000,1000);
Buffer buf = p.getPixels();
java.nio.IntBuffer intBuffer = (IntBuffer) buf;
byte[] bytes = new byte[1001*1001];
int i=0;
while(buf.hasRemaining()){
bytes[i++] = (byte) intBuffer.get();
}
PixelFormat<ByteBuffer> pixelFormat = PixelFormat.getByteRgbInstance();
PixelWriter pw = canvas.getGraphicsContext2D().getPixelWriter();
pw.setPixels(1, 1, 1000, 1000, pixelFormat, bytes, 1, 1000);

Related

zoom in / out the image inside a pictureBox in VC++2015 (OpenCV used)

OS : Win 10
IDE: Visual Studio 2015
Language: C++
Others: I use OpenCV 3.4
I just create a Window Form using CLR empty project,
then put on a pictureBox & three buttons.
First button: load a local image and show on the pictureBox:
pictureBox1->Image = Image::FromFile("D:/something.png");
global_mat = imread("D:/something.png", 1); // global_mat is a global Mat.
zoom_in_counter = 0; // zoom_in_counter is a global int.
Second button: zoom in the image in the pictureBox
if (zoom_in_counter < 5) // You can only enlarge the image 5 times.
{
Mat new_mat = Mat::zeros(0, 0, CV_8UC3);
resize(global_mat, new_mat, cv::Size(global_mat.cols * 2, global_mat.rows * 2));
global_mat = new_mat;
if ((pictureBox1->Width != new_mat.cols) || (pictureBox1->Height != new_mat.rows))
{
pictureBox1->Width = new_mat.cols;
pictureBox1->Height = new_mat.rows;
pictureBox1->Image = gcnew System::Drawing::Bitmap(new_mat.cols, new_mat.rows);
}
System::Drawing::Bitmap^ bmpImage = gcnew Bitmap(
new_mat.cols, new_mat.rows, new_mat.step,
System::Drawing::Imaging::PixelFormat::Format24bppRgb,
System::IntPtr(new_mat.data)
);
Graphics^ g = Graphics::FromImage(pictureBox1->Image);
g->DrawImage(bmpImage, 0, 0, new_mat.cols, new_mat.rows);
pictureBox1->Refresh();
delete g;
zoom_in_counter++;
}
Third buttin: zoom out the image in the pictureBox
if (zoom_in_counter > 0) // You can't shrink the image.
{
Mat new_mat = Mat::zeros(0, 0, CV_8UC3);
resize(global_mat, new_mat, cv::Size(global_mat.cols * 0.5, global_mat.rows * 0.5));
global_mat = new_mat;
if ((pictureBox1->Width != new_mat.cols) || (pictureBox1->Height != new_mat.rows))
{
pictureBox1->Width = new_mat.cols;
pictureBox1->Height = new_mat.rows;
pictureBox1->Image = gcnew System::Drawing::Bitmap(new_mat.cols, new_mat.rows);
}
System::Drawing::Bitmap^ bmpImage = gcnew Bitmap(
new_mat.cols, new_mat.rows, new_mat.step,
System::Drawing::Imaging::PixelFormat::Format24bppRgb,
System::IntPtr(new_mat.data)
);
Graphics^ g = Graphics::FromImage(pictureBox1->Image);
g->DrawImage(bmpImage, 0, 0, new_mat.cols, new_mat.rows);
pictureBox1->Refresh();
delete g;
zoom_in_counter--;
}
And then,
every I zoom in or zoom out, it works,
excludeingthe image is zoomed back to the original size.
I'll get such error message:
An unhandled exception of type 'System.ArgumentException' occurred in System.Drawing.dll
It's really odd!
Finally, my friend figure out what's wrong,
please refer to:
https://msdn.microsoft.com/zh-tw/library/windows/desktop/ms536315(v=vs.85).aspx
stride [in]
Type: INT
Integer that specifies the byte offset between the beginning of one scan line and the next. This is usually (but not necessarily) the number of bytes in the pixel format (for example, 2 for 16 bits per pixel) multiplied by the width of the bitmap. The value passed to this parameter must be a multiple of four.

OpenCL image2d_t writing mostly zeros

I am trying to use OpenCL and image2d_t objects to speed up image convolution. When I noticed that the output was a blank image of all zeros, I simplified the OpenCL kernel to a basic read from the input and write to the output (shown below). With a little bit of tweaking, I got it to write a few scattered pixels of the image into the output image.
I have verified that the image is intact up until the call to read_imageui() in the OpenCL kernel. I wrote the image to GPU memory with CommandQueue::enqueueWriteImage() and immediately read it back into a brand new buffer in CPU memory with CommandQueue::enqueueReadImage(). The result of this call matched the original input image. However, when I retrieve the pixels with read_imageui() in the kernel, the vast majority of the pixels are set to 0.
C++ source:
int height = 112;
int width = 9216;
unsigned int numPixels = height * width;
unsigned int numInputBytes = numPixels * sizeof(uint16_t);
unsigned int numDuplicatedInputBytes = numInputBytes * 4;
unsigned int numOutputBytes = numPixels * sizeof(int32_t);
cl::size_t<3> origin;
origin.push_back(0);
origin.push_back(0);
origin.push_back(0);
cl::size_t<3> region;
region.push_back(width);
region.push_back(height);
region.push_back(1);
std::ifstream imageFile("hri_vis_scan.dat", std::ifstream::binary);
checkErr(imageFile.is_open() ? CL_SUCCESS : -1, "hri_vis_scan.dat");
uint16_t *image = new uint16_t[numPixels];
imageFile.read((char *) image, numInputBytes);
imageFile.close();
// duplicate our single channel image into all 4 channels for Image2D
cl_ushort4 *imageDuplicated = new cl_ushort4[numPixels];
for (int i = 0; i < numPixels; i++)
for (int j = 0; j < 4; j++)
imageDuplicated[i].s[j] = image[i];
cl::Buffer imageBufferOut(context, CL_MEM_WRITE_ONLY, numOutputBytes, NULL, &err);
checkErr(err, "Buffer::Buffer()");
cl::ImageFormat inFormat;
inFormat.image_channel_data_type = CL_UNSIGNED_INT16;
inFormat.image_channel_order = CL_RGBA;
cl::Image2D bufferIn(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, inFormat, width, height, 0, imageDuplicated, &err);
checkErr(err, "Image2D::Image2D()");
cl::ImageFormat outFormat;
outFormat.image_channel_data_type = CL_UNSIGNED_INT16;
outFormat.image_channel_order = CL_RGBA;
cl::Image2D bufferOut(context, CL_MEM_WRITE_ONLY, outFormat, width, height, 0, NULL, &err);
checkErr(err, "Image2D::Image2D()");
int32_t *imageResult = new int32_t[numPixels];
memset(imageResult, 0, numOutputBytes);
cl_int4 *imageResultDuplicated = new cl_int4[numPixels];
for (int i = 0; i < numPixels; i++)
for (int j = 0; j < 4; j++)
imageResultDuplicated[i].s[j] = 0;
std::ifstream kernelFile("convolutionKernel.cl");
checkErr(kernelFile.is_open() ? CL_SUCCESS : -1, "convolutionKernel.cl");
std::string imageProg(std::istreambuf_iterator<char>(kernelFile), (std::istreambuf_iterator<char>()));
cl::Program::Sources imageSource(1, std::make_pair(imageProg.c_str(), imageProg.length() + 1));
cl::Program imageProgram(context, imageSource);
err = imageProgram.build(devices, "");
checkErr(err, "Program::build()");
cl::Kernel basic(imageProgram, "basic", &err);
checkErr(err, "Kernel::Kernel()");
basic.setArg(0, bufferIn);
basic.setArg(1, bufferOut);
basic.setArg(2, imageBufferOut);
queue.finish();
cl_ushort4 *imageDuplicatedTest = new cl_ushort4[numPixels];
for (int i = 0; i < numPixels; i++)
{
imageDuplicatedTest[i].s[0] = 0;
imageDuplicatedTest[i].s[1] = 0;
imageDuplicatedTest[i].s[2] = 0;
imageDuplicatedTest[i].s[3] = 0;
}
double gpuTimer = clock();
err = queue.enqueueReadImage(bufferIn, CL_FALSE, origin, region, 0, 0, imageDuplicatedTest, NULL, NULL);
checkErr(err, "CommandQueue::enqueueReadImage()");
// Output from above matches input image
err = queue.enqueueNDRangeKernel(basic, cl::NullRange, cl::NDRange(height, width), cl::NDRange(1, 1), NULL, NULL);
checkErr(err, "CommandQueue::enqueueNDRangeKernel()");
queue.flush();
err = queue.enqueueReadImage(bufferOut, CL_TRUE, origin, region, 0, 0, imageResultDuplicated, NULL, NULL);
checkErr(err, "CommandQueue::enqueueReadImage()");
queue.flush();
err = queue.enqueueReadBuffer(imageBufferOut, CL_TRUE, 0, numOutputBytes, imageResult, NULL, NULL);
checkErr(err, "CommandQueue::enqueueReadBuffer()");
queue.finish();
OpenCL kernel:
__kernel void basic(__read_only image2d_t input, __write_only image2d_t output, __global int *result)
{
const sampler_t smp = CLK_NORMALIZED_COORDS_TRUE | //Natural coordinates
CLK_ADDRESS_NONE | //Clamp to zeros
CLK_FILTER_NEAREST; //Don't interpolate
int2 coord = (get_global_id(1), get_global_id(0));
uint4 pixel = read_imageui(input, smp, coord);
result[coord.s0 + coord.s1 * 9216] = pixel.s0;
write_imageui(output, coord, pixel);
}
The coordinates in the kernel are currently mapped to (x, y) = (width, height).
The input image is a single channel greyscale image with 16 bits per pixel, which is why I had to duplicate the channels to fit into OpenCL's Image2D. The output after convolution will be 32 bits per pixel, which is why numOutputBytes is set to that. Also, although the width and height appear weird, the input image's dimensions are 9216x7824, so I'm only taking a portion of it to test the code first, so it doesn't take forever.
I added in a write to global memory after reading from the image in the kernel to see if the issue was reading the image or writing the image. After the kernel executes, this section of global memory also contains mostly zeros.
Any help would be greatly appreciated!
The documentation for read_imageui states that
Furthermore, the read_imagei and read_imageui calls that take integer coordinates must use a sampler with normalized coordinates set to CLK_NORMALIZED_COORDS_FALSE and addressing mode set to CLK_ADDRESS_CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE; otherwise the values returned are undefined.
But you're creating a sampler with CLK_NORMALIZED_COORDS_TRUE (but seem to be passing in non-normalized coords :S ?).

Raw Sound playing

I've been working for some time with image formats and i know that an image is an array of pixels (24- maybe 32 bits long). The question is: what is the way a sound file is represented? To be honest i'm not even sure what i should be googling for. Also i would be interested how do you use the data, i mean actually playing the sounds in the file. For an image file you have all sorts of abstract devices to draw an image on(Graphics:java,c#, HDC:cpp(win32), etc.) .I hope i have been clear enough.
Here's a dandy overview of how .wav is stored. I found it by typing "wave file format" into google.
http://www.sonicspot.com/guide/wavefiles.html
WAV files can also store compressed audio, but I believe most of the time they are not compressed. But the WAV format is designed as a container for a number of options on how that audio is stored.
Here's a snipped of code that I found at another question here at stackoverflow that I like in C# that builds a WAV-formatted audio MemoryStream and then plays that stream (without saving it to a file, like many other answers rely on). But saving it to a file can easily be added with one line of code if you want it saved to disk, but I would think that most of the time, that'd be undesirable.
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Windows.Forms;
public static void PlayBeep(UInt16 frequency, int msDuration, UInt16 volume = 16383)
{
var mStrm = new MemoryStream();
BinaryWriter writer = new BinaryWriter(mStrm);
const double TAU = 2 * Math.PI;
int formatChunkSize = 16;
int headerSize = 8;
short formatType = 1;
short tracks = 1;
int samplesPerSecond = 44100;
short bitsPerSample = 16;
short frameSize = (short)(tracks * ((bitsPerSample + 7) / 8));
int bytesPerSecond = samplesPerSecond * frameSize;
int waveSize = 4;
int samples = (int)((decimal)samplesPerSecond * msDuration / 1000);
int dataChunkSize = samples * frameSize;
int fileSize = waveSize + headerSize + formatChunkSize + headerSize + dataChunkSize;
// var encoding = new System.Text.UTF8Encoding();
writer.Write(0x46464952); // = encoding.GetBytes("RIFF")
writer.Write(fileSize);
writer.Write(0x45564157); // = encoding.GetBytes("WAVE")
writer.Write(0x20746D66); // = encoding.GetBytes("fmt ")
writer.Write(formatChunkSize);
writer.Write(formatType);
writer.Write(tracks);
writer.Write(samplesPerSecond);
writer.Write(bytesPerSecond);
writer.Write(frameSize);
writer.Write(bitsPerSample);
writer.Write(0x61746164); // = encoding.GetBytes("data")
writer.Write(dataChunkSize);
{
double theta = frequency * TAU / (double)samplesPerSecond;
// 'volume' is UInt16 with range 0 thru Uint16.MaxValue ( = 65 535)
// we need 'amp' to have the range of 0 thru Int16.MaxValue ( = 32 767)
// so we simply set amp = volume / 2
double amp = volume >> 1; // Shifting right by 1 divides by 2
for (int step = 0; step < samples; step++)
{
short s = (short)(amp * Math.Sin(theta * (double)step));
writer.Write(s);
}
}
mStrm.Seek(0, SeekOrigin.Begin);
new System.Media.SoundPlayer(mStrm).Play();
writer.Close();
mStrm.Close();
} // public static void PlayBeep(UInt16 frequency, int msDuration, UInt16 volume = 16383)
But this code shows a bit of insight into the WAV-format, and it is even code that allows a person to build your own WAV-format in C# source code.

unsigned char* buffer to System::Drawing::Bitmap

I'm trying to create a tool/asset converter that rasterises a font to a texture page for an XNA game using the FreeType2 engine.
Below, the first image is the direct output from the FreeType2]1 engine. The second image is the result after attempting to convert it to a System::Drawing::Bitmap.
target http://www.freeimagehosting.net/uploads/fb102ee6da.jpg currentresult http://www.freeimagehosting.net/uploads/9ea77fa307.jpg
Any hints/tips/ideas on what is going on here would be greatly appreciated. Links to articles explaining byte layout and pixel formats would also be helpful.
FT_Bitmap *bitmap = &face->glyph->bitmap;
int width = (face->bitmap->metrics.width / 64);
int height = (face->bitmap->metrics.height / 64);
// must be aligned on a 32 bit boundary or 4 bytes
int depth = 8;
int stride = ((width * depth + 31) & ~31) >> 3;
int bytes = (int)(stride * height);
// as *.bmp
array<Byte>^ values = gcnew array<Byte>(bytes);
Marshal::Copy((IntPtr)glyph->buffer, values, 0, bytes);
Bitmap^ systemBitmap = gcnew Bitmap(width, height, PixelFormat::Format24bppRgb);
// create bitmap data, lock pixels to be written.
BitmapData^ bitmapData = systemBitmap->LockBits(Rectangle(0, 0, width, height), ImageLockMode::WriteOnly, bitmap->PixelFormat);
Marshal::Copy(values, 0, bitmapData->Scan0, bytes);
systemBitmap->UnlockBits(bitmapData);
systemBitmap->Save("Test.bmp");
Update. Changed PixelFormat to 8bppIndexed.
FT_Bitmap *bitmap = &face->glyph->bitmap;
// stride must be aligned on a 32 bit boundary or 4 bytes
int depth = 8;
int stride = ((width * depth + 31) & ~31) >> 3;
int bytes = (int)(stride * height);
target = gcnew Bitmap(width, height, PixelFormat::Format8bppIndexed);
// create bitmap data, lock pixels to be written.
BitmapData^ bitmapData = target->LockBits(Rectangle(0, 0, width, height), ImageLockMode::WriteOnly, target->PixelFormat);
array<Byte>^ values = gcnew array<Byte>(bytes);
Marshal::Copy((IntPtr)bitmap->buffer, values, 0, bytes);
Marshal::Copy(values, 0, bitmapData->Scan0, bytes);
target->UnlockBits(bitmapData);
Ah ha. Worked it out.
FT_Bitmap is an 8bit image, so the correct PixelFormat was 8bppIndexed, which resulted this output.
Not aligned to 32byte boundary http://www.freeimagehosting.net/uploads/dd90fa2252.jpg
System::Drawing::Bitmap needs to be aligned on a 32 bit boundary.
I was calculating the stride but was not padding it when writing the bitmap. Copied the FT_Bitmap buffer to a byte[] and then wrote that to a MemoryStream, adding the necessary padding.
int stride = ((width * pixelDepth + 31) & ~31) >> 3;
int padding = stride - (((width * pixelDepth) + 7) / 8);
array<Byte>^ pad = gcnew array<Byte>(padding);
array<Byte>^ buffer = gcnew array<Byte>(size);
Marshal::Copy((IntPtr)source->buffer, buffer, 0, size);
MemoryStream^ ms = gcnew MemoryStream();
for (int i = 0; i < height; ++i)
{
ms->Write(buffer, i * width, width);
ms->Write(pad, 0, padding);
}
Pinned the memory so the GC would leave it alone.
// pin memory and create bitmap
GCHandle handle = GCHandle::Alloc(ms->ToArray(), GCHandleType::Pinned);
target = gcnew Bitmap(width, height, stride, PixelFormat::Format8bppIndexed, handle.AddrOfPinnedObject());
ms->Close();
As there is no Format8bppIndexed Grey the image was still not correct.
alt text http://www.freeimagehosting.net/uploads/8a883b7dce.png
Then changed the bitmap palette to grey scale 256.
// 256-level greyscale palette
ColorPalette^ palette = target->Palette;
for (int i = 0; i < palette->Entries->Length; ++i)
palette->Entries[i] = Color::FromArgb(i,i,i);
target->Palette = palette;
alt text http://www.freeimagehosting.net/uploads/59a745269e.jpg
Final solution.
error = FT_Load_Char(face, ch, FT_LOAD_RENDER);
if (error)
throw gcnew InvalidOperationException("Failed to load and render character");
FT_Bitmap *source = &face->glyph->bitmap;
int width = (face->glyph->metrics.width / 64);
int height = (face->glyph->metrics.height / 64);
int pixelDepth = 8;
int size = width * height;
// stride must be aligned on a 32 bit boundary or 4 bytes
// padding is the number of bytes to add to make each row a 32bit aligned row
int stride = ((width * pixelDepth + 31) & ~31) >> 3;
int padding = stride - (((width * pixelDepth) + 7) / 8);
array<Byte>^ pad = gcnew array<Byte>(padding);
array<Byte>^ buffer = gcnew array<Byte>(size);
Marshal::Copy((IntPtr)source->buffer, buffer, 0, size);
MemoryStream^ ms = gcnew MemoryStream();
for (int i = 0; i < height; ++i)
{
ms->Write(buffer, i * width, width);
ms->Write(pad, 0, padding);
}
// pin memory and create bitmap
GCHandle handle = GCHandle::Alloc(ms->ToArray(), GCHandleType::Pinned);
target = gcnew Bitmap(width, height, stride, PixelFormat::Format8bppIndexed, handle.AddrOfPinnedObject());
ms->Close();
// 256-level greyscale palette
ColorPalette^ palette = target->Palette;
for (int i = 0; i < palette->Entries->Length; ++i)
palette->Entries[i] = Color::FromArgb(i,i,i);
target->Palette = palette;
FT_Done_FreeType(library);
Your "depth" value doesn't match the PixelFormat of the Bitmap. It needs to be 24 to match Format24bppRgb. The PF for the bitmap needs to match the PF and stride of the FT_Bitmap as well, I don't see you take care of that.

BlackBerry - image 3D transform

I know how to rotate image on any angle with drawTexturePath:
int displayWidth = Display.getWidth();
int displayHeight = Display.getHeight();
int[] x = new int[] { 0, displayWidth, displayWidth, 0 };
int[] x = new int[] { 0, 0, displayHeight, displayHeight };
int angle = Fixed32.toFP( 45 );
int dux = Fixed32.cosd(angle );
int dvx = -Fixed32.sind( angle );
int duy = Fixed32.sind( angle );
int dvy = Fixed32.cosd( angle );
graphics.drawTexturedPath( x, y, null, null, 0, 0, dvx, dux, dvy, duy, image);
but what I need is a 3d projection of simple image with 3d transformation (something like this)
Can you please advice me how to do this with drawTexturedPath (I'm almost sure it's possible)?
Are there any alternatives?
The method used by this function(2 walk vectors) is the same as the oldskool coding tricks used for the famous 'rotozoomer' effect. rotozoomer example video
This method is a very fast way to rotate, zoom, and skew an image. The rotation is done simply by rotating the walk vectors. The zooming is done simply by scaling the walk vectors. The skewing is done by rotating the walkvectors in respect to one another (e.g. they don't make a 90 degree angle anymore).
Nintendo had made hardware in their SNES to use the same effect on any of the sprites and or backgrounds. This made way for some very cool effects.
One big shortcoming of this technique is that one can not perspectively warp a texture. To do this, every new horizontal line, the walk vectors should be changed slightly. (hard to explain without a drawing).
On the snes they overcame this by altering every scanline the walkvectors (In those days one could set an interrupt when the monitor was drawing any scanline). This mode was later referred to as MODE 7 (since it behaved like a new virtual kind of graphics mode). The most famous games using this mode were Mario kart and F-zero
So to get this working on the blackberry, you'll have to draw your image "displayHeight" times (e.g. Every time one scanline of the image). This is the only way to achieve the desired effect. (This will undoubtedly cost you a performance hit since you are now calling the drawTexturedPath function a lot of times with new values, instead of just one time).
I guess with a bit of googling you can find some formulas (or even an implementation) how to calc the varying walkvectors. With a bit of paper (given your not too bad at math) you might deduce it yourself too. I've done it myself too when I was making games for the Gameboy Advance so I know it can be done.
Be sure to precalc everything! Speed is everything (especially on slow machines like phones)
EDIT: did some googling for you. Here's a detailed explanation how to create the mode7 effect. This will help you achieve the same with the Blackberry function. Mode 7 implementation
With the following code you can skew your image and get a perspective like effect:
int displayWidth = Display.getWidth();
int displayHeight = Display.getHeight();
int[] x = new int[] { 0, displayWidth, displayWidth, 0 };
int[] y = new int[] { 0, 0, displayHeight, displayHeight };
int dux = Fixed32.toFP(-1);
int dvx = Fixed32.toFP(1);
int duy = Fixed32.toFP(1);
int dvy = Fixed32.toFP(0);
graphics.drawTexturedPath( x, y, null, null, 0, 0, dvx, dux, dvy, duy, image);
This will skew your image in a 45º angle, if you want a certain angle you just need to use some trigonometry to determine the lengths of your vectors.
Thanks for answers and guidance, +1 to you all.
MODE 7 was the way I choose to implement 3D transformation, but unfortunately I couldn't make drawTexturedPath to resize my scanlines... so I came down to simple drawImage.
Assuming you have a Bitmap inBmp (input texture), create new Bitmap outBmp (output texture).
Bitmap mInBmp = Bitmap.getBitmapResource("map.png");
int inHeight = mInBmp.getHeight();
int inWidth = mInBmp.getWidth();
int outHeight = 0;
int outWidth = 0;
int outDrawX = 0;
int outDrawY = 0;
Bitmap mOutBmp = null;
public Scr() {
super();
mOutBmp = getMode7YTransform();
outWidth = mOutBmp.getWidth();
outHeight = mOutBmp.getHeight();
outDrawX = (Display.getWidth() - outWidth) / 2;
outDrawY = Display.getHeight() - outHeight;
}
Somewhere in code create a Graphics outBmpGraphics for outBmp.
Then do following in iteration from start y to (texture height)* y transform factor:
1.create a Bitmap lineBmp = new Bitmap(width, 1) for one line
2.create a Graphics lineBmpGraphics from lineBmp
3.paint i line from texture to lineBmpGraphics
4.encode lineBmp to EncodedImage img
5.scale img according to MODE 7
6.paint img to outBmpGraphics
Note: Richard Puckett's PNGEncoder BB port used in my code
private Bitmap getMode7YTransform() {
Bitmap outBmp = new Bitmap(inWidth, inHeight / 2);
Graphics outBmpGraphics = new Graphics(outBmp);
for (int i = 0; i < inHeight / 2; i++) {
Bitmap lineBmp = new Bitmap(inWidth, 1);
Graphics lineBmpGraphics = new Graphics(lineBmp);
lineBmpGraphics.drawBitmap(0, 0, inWidth, 1, mInBmp, 0, 2 * i);
PNGEncoder encoder = new PNGEncoder(lineBmp, true);
byte[] data = null;
try {
data = encoder.encode(true);
} catch (IOException e) {
e.printStackTrace();
}
EncodedImage img = PNGEncodedImage.createEncodedImage(data,
0, -1);
float xScaleFactor = ((float) (inHeight / 2 + i))
/ (float) inHeight;
img = scaleImage(img, xScaleFactor, 1);
int startX = (inWidth - img.getScaledWidth()) / 2;
int imgHeight = img.getScaledHeight();
int imgWidth = img.getScaledWidth();
outBmpGraphics.drawImage(startX, i, imgWidth, imgHeight, img,
0, 0, 0);
}
return outBmp;
}
Then just draw it in paint()
protected void paint(Graphics graphics) {
graphics.drawBitmap(outDrawX, outDrawY, outWidth, outHeight, mOutBmp,
0, 0);
}
To scale, I've do something similar to method described in Resizing a Bitmap using .scaleImage32 instead of .setScale
private EncodedImage scaleImage(EncodedImage image, float ratioX,
float ratioY) {
int currentWidthFixed32 = Fixed32.toFP(image.getWidth());
int currentHeightFixed32 = Fixed32.toFP(image.getHeight());
double w = (double) image.getWidth() * ratioX;
double h = (double) image.getHeight() * ratioY;
int width = (int) w;
int height = (int) h;
int requiredWidthFixed32 = Fixed32.toFP(width);
int requiredHeightFixed32 = Fixed32.toFP(height);
int scaleXFixed32 = Fixed32.div(currentWidthFixed32,
requiredWidthFixed32);
int scaleYFixed32 = Fixed32.div(currentHeightFixed32,
requiredHeightFixed32);
EncodedImage result = image.scaleImage32(scaleXFixed32, scaleYFixed32);
return result;
}
See also
J2ME Mode 7 Floor Renderer - something much more detailed & exciting if you writing a 3D game!
You want to do texture mapping, and that function won't cut it. Maybe you can kludge your way around it but the better option is to use a texture mapping algorithm.
This involves, for each row of pixels, determining the edges of the shape and where on the shape those screen pixels map to (the texture pixels). It's not so hard actually but may take a bit of work. And you'll be drawing the pic only once.
GameDev has a bunch of articles with sourcecode here:
http://www.gamedev.net/reference/list.asp?categoryid=40#212
Wikipedia also has a nice article:
http://en.wikipedia.org/wiki/Texture_mapping
Another site with 3d tutorials:
http://tfpsly.free.fr/Docs/TomHammersley/index.html
In your place I'd seek out a simple demo program that did something close to what you want and use their sources as base to develop my own - or even find a portable source library, I´m sure there must be a few.

Resources