How come it is always the GATT server that exposes services? - bluetooth

Looking at various GATT-based profiles, it seems that services are always exposed in the GATT server rather than the GATT client. For instance, the Time Profile (TIP) has the server exposing the Current Time Service (CTS). So, if a phone is to update a heart rate monitor with the current time using TIP, the phone will be the server whereas the monitor will be the client. But, being a heart rate monitor, the Heart Rate Profile expects the monitor to be a GATT server.
So, for a monitor that takes the current time from a phone, should it be a GATT client or server? Should it be set as a client whilst time syncing with the phone and set as a server otherwise? Should a custom profile be implemented such that the CTS is exposed in the client instead?
Thanks

Generic Attribute Profile (GATT) defines how server and client communicate with
each other using Attribute Protocol for the purpose of transporting data. Client
and server roles are determined when a procedure is initiated and released when the procedure is ended. Hence, a device can act in both roles at the same time.
I would suggest you to read Bluetooth Spec. In Part G 2.2 it explains the roles and configurations.
Client—This is the device that initiates commands and requests towards the
server and can receive responses, indications and notifications sent by the
server.
Server—This is the device that accepts incoming commands and requests
from the client and sends responses, indications and notifications to a client.
Back to your question:
The Time profile enables the device to get the date, time, time zone,
and DST information and control the functions related the time.
In your case, the monitor will be the GATT client when it takes the time from a phone. However, it can be a server at the same time for another procedure (operation, request etc.) with the phone.
In short, client and server roles are not fixed to the devices. When your phone exposes the current time, it will be server. Similarly, when it gets the current time from the monitor, it will be client. no need to customize the profile. If you want your phone to get the current time from a device and expose it to another device, just implement the same profile for client and server roles to your phone.
EDIT:
According to TIP profile spec, to get the current time information, the GATT Read Characteristic Value sub-procedure shall be used with the handle of the Current Time Characteristic. Monitor as a client will read the Current Time Characteristic from the GATT Table of the server (in this case it is the phone). As soon as the monitor retrieves the value from phone, it can update its Current Time Characteristic Value, and expose it to its environment in three ways:
Notifying it to its subscribed clients (BLE notifications). If you do it in this way, you will customize the Bluetooth TIP profile since this procedure is not defined there (I had a quick look to the document and didn't see it).
Broadcasting it in the advertisement packet (Doesn't require BLE connection)
Another BLE device connects to the monitor and reads the Current Time Characteristic value. This is the recommended way if you want to use Bluetooth SIG defined TIP profile as a server.

Related

How to keep information synchronized between the cloud and the device

I'm coding a project which needs cloud control device operation, and want to keep information in sync.
The cloud needs to know the state of device, such as when the network is interrupted and when the network is restored.
When the network is restored, the modified information on the cloud is synchronized to device.
anyone got an idea of how my approach should be like? any tips?
I intend to add resident programs in the background at both ends to determine, but in fact, it is impossible for the cloud in the project to connect only one device, and multiple apps may run in one device, which is very tedious to do. Is there any simple component to realize this function?
I wish control information and data information to be synchronized on the cloud and device
Based on your tag, I'm assuming that you are using MQTT as a messaging protocol for your system. If so, to address your need for tracking the device-cloud connection state, MQTT specifies a feature called "Last Will and Testament".
From the MQTT 3.1.1 Standard Section 3.1.2.5:
If the Will Flag is set to 1 this indicates that, if the Connect request is accepted, a Will Message MUST be stored on the Server and associated with the Network Connection. The Will Message MUST be published when the Network Connection is subsequently closed unless the Will Message has been deleted by the Server on receipt of a DISCONNECT Packet [MQTT-3.1.2-8].
This can be leveraged to let the remote MQTT client on the cloud know when the device is connected and when it disconnects by publishing an online payload to a topic (for example) device/conn_status after a successful connection, and registering a Last Will offline message to the same topic. Now, whenever the device client goes offline, the broker will publish the offline payload on his behalf to the cloud client that can now act accordingly.

Changing the connection interval in a Bluez-based GATT-oriented application

We are currently working on an application on linux (a.o. RasPi running latest Debian Jessie) that connects to a BLE device (developed by us). This tool has evolved from cherry-picking files from the bluez (5.46) stack and adding an application layer on top. This all works quite nicely, except for the fact that connecting is incredibly slow. From the output of our tool, I understand that a truckload of messages need to be exchanged to communicate GATT services and characteristics, and each of those costs one connection interval of time. Since it is a low power device, we want the connection interval to be relatively high, and thus the high delay.
When connecting with Android BLE Scanner, I see (on the device side) that BLE Scanner manipulates the connection interval to a low value, gets all the requested data, and then sets the connection interval back to its original value. Note, btw, that neither BLE Scanner nor our Bluez-derived application take the preferred connection parameters into account.
Now I want to have our application do the same: set the connection interval to 8ms, get all info about characteristics and services, and set the connection interval back. In the Bluez stack I even find a nice function in the HCI layer for this: hci_le_conn_update.
But now the challenge: the rest of the application is built on top of the GATT functionality and even though the BLE specification defines a hierarchy between those two (with some layers in between), in code they seem absolutely independent of each other.
There are two parameters to the hci_le_conn_update function that are HCI specific: 'dd' (file descriptor to device) and 'handle' (some value that identifies the connection). The hcitool tells me that when I create a connection, the first handle is 64, so I tried with that value. For 'dd' I used hci_dev_open to get a file descriptor for the device. This worked. Sort of.
As I said before, the min/max values are not entirely taking into account. So when I set it to 6/10, I get 11 and when I set it to 6/50, I get 60. This is a bit too undeterministic for my taste, and I would prefer a function that directly changes the connection interval instead of giving a range that is mostly ignored anyway. Also the fact that I have to use a hardcoded magic number 64 gives me a bad itch. I can actually control the connection interval on the embedded device's side, but I want the control at the side of the client application.
The goal is to update the connection interval in a Bluez-GATT-based application. Within certain limits, I do not mind that much how I get there. Any suggestions?
In the official dbus API, there is no method to change connection parameters. (See https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/doc/gatt-api.txt and https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/doc/device-api.txt). The key is therefore to send the Connection Parameter Update Request from the peripheral side. You can of course experiment with sending a raw hci command but that is a bit "hacky" and has no guarantees to not mess up the BlueZ daemon.
If you would like to discuss the features of BlueZ such as an connection parameter update request api, you should do that on the BlueZ mailing list (http://www.bluez.org/contact/) rather than here.

Developing a web app to log messages from GPS device

this is my first question here and I realize this question might be open ended, but I'm looking for specific solutions, and any solution would be accepted.
I have GPS devices which send data packets to an IP on a port, both of which I can configure. I wish to use one of Google's, Amazon's or Microsoft's offering of cloud services. I am using python. Here is an implementation I found online :-
https://github.com/rdkls/gps-tracker-server
The data is coming as packets which are not over HTTP protocol. I have considered building a network listener over a socket on Google Compute Engine, but I'm not sure if it will be able to handle simultaneous requests from 1000 devices if such a situation ever arises. The Google Cloud IoT core offering seems to fit my need perfectly, but it is in private beta right now, which means I can't use it. I think I'll need a message queue service. But most of the offerings from these three companies requires messages over HTTP. Keep in mind that I can't change how the messages are sent from the GPS devices.
The messages sent are in this format -
https://drive.google.com/file/d/0B2EklrIn3KugS2NJYWZGWlVWeGdMbjM4WHQ2TUZmYWhIRmt3/view?usp=drive_web
Format:
data is sent in (byte sized) packets directly to the IP:Port over GPRS connections, one heartbeat packet every minute and GPS details every minute from each device. It also requires teh server to eply to the messagee for acknowledgement since it's not over TCP/IP.
So basically, which service and which architecture should I use keeping scalability, reliability and cost in mind?
I think for a 1000 devices, that would send such messages every minute, total would be 43M messages. I'm not sure but I'm looking for something that'll cost me about 1000$ that is 1$ per device per month.

Controlling multiple Chromecast Receivers from one Sender?

Is it possible to write a Chrome extension (or Android app) that creates multiple Senders, each connecting to a different Receiver?
In other words, I need to build an interface from which an operator can control the streams on multiple different Chromecasts in the vicinity - each will be playing a different video stream.
I understand from other posts that the chrome.cast API does not allow for this - that the Chrome extension may acts as a single Sender only? This restriction seems arbitrary - I read somewhere that someone was able to control two devices by running two different versions of Chrome, so if this restriction exists in the Chrome API, it's not due to any limitation of the underlying protocol, correct? (what then, politics?)
Is there a lower-level API (perhaps on Android?) that would permit you to create multiple Senders and connect them to different Receivers?
I've seen some apps (such as Videostream) which appear to continue to run on the Receiver after you've closed the Sender. Might it be possible to, for example, launch a Receiver app on multiple devices, one at a time, have them identify themselves and connect to a local webserver, e.g. via WebSockets, and then have my webserver send messages to those Receiver apps to ask them to change videostreams?
As a last resort, is there an open specification of the underlying protocol?
There is nothing to stop you from writing a sender app that connects to a chromecast, launches an app and then disconnects from that device while letting the chromecast continue running the app; you would need to make sure that you do not stop the receiver when it detects that there are no connected devices. Then, on the sender side, you can repeat the same process but this time connect to a second device and so on. The important thing to keep in mind is that your sender device cannot hold multiple concurrent connections to multiple devices (MediaRouter is a global instance); this means you cannot receive messages (status updates, etc) from different Cast devices except the one you are directly connected to at that time. Also, there is nothing to stop a different user to connect to one of these devices and launch a different app.
To answer your other question, the underlying protocol is not open.

Socket connection on iPhone (IOS 4.x)

I am working on a Chatting application (needs to connect to a server) on iPhone. The sending packet from iPhone shouldn't be a problem.
But I would like to know whether it is possible for iPhone to establish a incoming socket connection to server continuously or forever under mobile environment.
OR What do I need to do to give the connection alive ? Need to send something over it to keep it alive ?
Thanks.
Not sure why you want to have chatting app to have persisted connection... I'd better use SMS like model. Anyways, Cocoa NSStream is based on NSSocket and allows a lot of functionality. Take a look at it.
Response to the question. Here is in a nutshell, what I would do:
Get an authentication token from the server.
this will also take care of user presence if necessary but now we are talking about the state; once presence is known, the server may send out notifications to clients that are active and have a user on their contact list.
Get user's contact list and contact presence state.
When a message send, handle it according to addressee state, i.e. if online, communicate back to the other user, if offline, queue for later delivery or reject.
Once token expires, reject communication with appropriate error and make the client to request a new token.
Communication from server to client, can be based on pull or push model. In first case, client periodically makes a request and fetches all messages. This may sound not good but in reality, how often users compose and send messages? Several times a minute? That's not too much. So fetching may happen every 5-10 seconds.
For push model, client must be able to listen and accept connections.
Finally, check out SIP, session initiation protocol. No need to use full version of it though. Just basic stuff.
This is very rough and perhaps simplified. I don't know the target complexity of your chatting system. For example, the simplest thing can also be that server just enables client to client communication by distributing their end points and clients take care of everything themselves.
Good luck!
Super out of date response, but maybe it will help the next person.
I would use xmppframework and a jabber server.

Resources