Why does the input LibSVM dat format for Decision Tree in Spark MLLib look like this? - apache-spark

I am looking at the documentation of Decision Tree in Spark MLLib. Here is a line of code
data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt')
that loads the input data. When I opened the sample_libsv_data.txt file, one of the lines looked like:
0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202 215:84 216:252 217:253 218:122 236:163 237:252 238:252 239:252 240:253 241:252 242:252 243:96 244:189 245:253 246:167 263:51 264:238 265:253 266:253 267:190 268:114 269:253 270:228 271:47 272:79 273:255 274:168 290:48 291:238 292:252 293:252 294:179 295:12 296:75 297:121 298:21 301:253 302:243 303:50 317:38 318:165 319:253 320:233 321:208 322:84 329:253 330:252 331:165 344:7 345:178 346:252 347:240 348:71 349:19 350:28 357:253 358:252 359:195 372:57 373:252 374:252 375:63 385:253 386:252 387:195 400:198 401:253 402:190 413:255 414:253 415:196 427:76 428:246 429:252 430:112 441:253 442:252 443:148 455:85 456:252 457:230 458:25 467:7 468:135 469:253 470:186 471:12 483:85 484:252 485:223 494:7 495:131 496:252 497:225 498:71 511:85 512:252 513:145 521:48 522:165 523:252 524:173 539:86 540:253 541:225 548:114 549:238 550:253 551:162 567:85 568:252 569:249 570:146 571:48 572:29 573:85 574:178 575:225 576:253 577:223 578:167 579:56 595:85 596:252 597:252 598:252 599:229 600:215 601:252 602:252 603:252 604:196 605:130 623:28 624:199 625:252 626:252 627:253 628:252 629:252 630:233 631:145 652:25 653:128 654:252 655:253 656:252 657:141 658:37
I can understand that the first element is the class label (0) and I know about decision tree algorithm but I don't understand why each feature is like a tuple? Shouldn't we have just numbers representing features? What is the meaning of 128:51 as a feature value here?

128:51 as a feature value here means that there is value 51 in column 128. This is SVMLight format first introduced in svmlight and is good for representing sparse vectors. All indices that are not mentioned by name are omitted from the list and those features have 0 value. In other words, all columns from 1 to 127 are 0 in your example.
Note: the indexing of the columns in Spark sparse vectors like above starts from 0. So, there is a column with index 0, and 0:100 is a possible entry in the SVMLight format.

Related

How does sklearn.linear_model.LinearRegression work with insufficient data?

To solve a 5 parameter model, I need at least 5 data points to get a unique solution. For x and y data below:
import numpy as np
x = np.array([[-0.24155831, 0.37083184, -1.69002708, 1.4578805 , 0.91790011,
0.31648635, -0.15957368],
[-0.37541846, -0.14572825, -2.19695883, 1.01136142, 0.57288752,
0.32080956, -0.82986857],
[ 0.33815532, 3.1123936 , -0.29317028, 3.01493602, 1.64978158,
0.56301755, 1.3958912 ],
[ 0.84486735, 4.74567324, 0.7982888 , 3.56604097, 1.47633894,
1.38743513, 3.0679506 ],
[-0.2752026 , 2.9110031 , 0.19218081, 2.0691105 , 0.49240373,
1.63213241, 2.4235483 ],
[ 0.89942508, 5.09052174, 1.26048572, 3.73477373, 1.4302902 ,
1.91907482, 3.70126468]])
y = np.array([-0.81388378, -1.59719762, -0.08256274, 0.61297275, 0.99359647,
1.11315445])
I used only 6 data to fit a 8 parameter model (7 slopes and 1 intercept).
lr = LinearRegression().fit(x, y)
print(lr.coef_)
array([-0.83916772, -0.57249998, 0.73025938, -0.02065629, 0.47637768,
-0.36962192, 0.99128474])
print(lr.intercept_)
0.2978781587718828
Clearly, it's using some kind of assignment to reduce the degrees of freedom. I tried to look into the source code but couldn't found anything about that. What method do they use to find the parameter of under specified model?
You don't need to reduce the degrees of freedom, it simply finds a solution to the least squares problem min sum_i (dot(beta,x_i)+beta_0-y_i)**2. For example, in the non-sparse case it uses the linalg.lstsq module from scipy. The default solver for this optimization problem is the gelsd LAPACK driver. If
A= np.concatenate((ones_v, X), axis=1)
is the augmented array with ones as its first column, then your solution is given by
x=numpy.linalg.pinv(A.T*A)*A.T*y
Where we use the pseudoinverse precisely because the matrix may not be of full rank. Of course, the solver doesn't actually use this formula but uses singular value Decomposition of A to reduce this formula.

How to understand the format type of libsvm of Spark MLlib?

I am new for learning Spark MLlib. When I was reading about the example of Binomial logistic regression, I don't understand the format type of "libsvm". (Binomial logistic regression)
The text looks like:
0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202 215:84 216:252 217:253 218:122 236:163 237:252 238:252 239:252 240:253 241:252 242:252 243:96 244:189 245:253 246:167 263:51 264:238 265:253 266:253 267:190 268:114 269:253 270:228 271:47 272:79 273:255 274:168 290:48 291:238 292:252 293:252 294:179 295:12 296:75 297:121 298:21 301:253 302:243 303:50 317:38 318:165 319:253 320:233 321:208 322:84 329:253 330:252 331:165 344:7 345:178 346:252 347:240 348:71 349:19 350:28 357:253 358:252 359:195 372:57 373:252 374:252 375:63 385:253 386:252 387:195 400:198 401:253 402:190 413:255 414:253 415:196 427:76 428:246 429:252 430:112 441:253 442:252 443:148 455:85 456:252 457:230 458:25 467:7 468:135 469:253 470:186 471:12 483:85 484:252 485:223 494:7 495:131 496:252 497:225 498:71 511:85 512:252 513:145 521:48 522:165 523:252 524:173 539:86 540:253 541:225 548:114 549:238 550:253 551:162 567:85 568:252 569:249 570:146 571:48 572:29 573:85 574:178 575:225 576:253 577:223 578:167 579:56 595:85 596:252 597:252 598:252 599:229 600:215 601:252 602:252 603:252 604:196 605:130 623:28 624:199 625:252 626:252 627:253 628:252 629:252 630:233 631:145 652:25 653:128 654:252 655:253 656:252 657:141 658:37
1 159:124 160:253 161:255 162:63 186:96 187:244 188:251 189:253 190:62 214:127 215:251 216:251 217:253 218:62 241:68 242:236 243:251 244:211 245:31 246:8 268:60 269:228 270:251 271:251 272:94 296:155 297:253 298:253 299:189 323:20 324:253 325:251 326:235 327:66 350:32 351:205 352:253 353:251 354:126 378:104 379:251 380:253 381:184 382:15 405:80 406:240 407:251 408:193 409:23 432:32 433:253 434:253 435:253 436:159 460:151 461:251 462:251 463:251 464:39 487:48 488:221 489:251 490:251 491:172 515:234 516:251 517:251 518:196 519:12 543:253 544:251 545:251 546:89 570:159 571:255 572:253 573:253 574:31 597:48 598:228 599:253 600:247 601:140 602:8 625:64 626:251 627:253 628:220 653:64 654:251 655:253 656:220 681:24 682:193 683:253 684:220
1 125:145 126:255 127:211 128:31 152:32 153:237 154:253 155:252 156:71 180:11 181:175 182:253 183:252 184:71 209:144 210:253 211:252 212:71 236:16 237:191 238:253 239:252 240:71 264:26 265:221 266:253 267:252 268:124 269:31 293:125 294:253 295:252 296:252 297:108 322:253 323:252 324:252 325:108 350:255 351:253 352:253 353:108 378:253 379:252 380:252 381:108 406:253 407:252 408:252 409:108 434:253 435:252 436:252 437:108 462:255 463:253 464:253 465:170 490:253 491:252 492:252 493:252 494:42 518:149 519:252 520:252 521:252 522:144 546:109 547:252 548:252 549:252 550:144 575:218 576:253 577:253 578:255 579:35 603:175 604:252 605:252 606:253 607:35 631:73 632:252 633:252 634:253 635:35 659:31 660:211 661:252 662:253 663:35
1 153:5 154:63 155:197 181:20 182:254 183:230 184:24 209:20 210:254 211:254 212:48 237:20 238:254 239:255 240:48 265:20 266:254 267:254 268:57 293:20 294:254 295:254 296:108 321:16 322:239 323:254 324:143 350:178 351:254 352:143 378:178 379:254 380:143 406:178 407:254 408:162 434:178 435:254 436:240 462:113 463:254 464:240 490:83 491:254 492:245 493:31 518:79 519:254 520:246 521:38 547:214 548:254 549:150 575:144 576:241 577:8 603:144 604:240 605:2 631:144 632:254 633:82 659:230 660:247 661:40 687:168 688:209 689:31
1 152:1 153:168 154:242 155:28 180:10 181:228 182:254 183:100 209:190 210:254 211:122 237:83 238:254 239:162 265:29 266:254 267:248 268:25 293:29 294:255 295:254 296:103 321:29 322:254 323:254 324:109 349:29 350:254 351:254 352:109 377:29 378:254 379:254 380:109 405:29 406:255 407:254 408:109 433:29 434:254 435:254 436:109 461:29 462:254 463:254 464:63 489:29 490:254 491:254 492:28 517:29 518:254 519:254 520:28 545:29 546:254 547:254 548:35 573:29 574:254 575:254 576:109 601:6 602:212 603:254 604:109 630:203 631:254 632:178 658:155 659:254 660:190 686:32 687:199 688:104
0 130:64 131:253 132:255 133:63 157:96 158:205 159:251 160:253 161:205 162:111 163:4 184:96 185:189 186:251 187:251 188:253 189:251 190:251 191:31 209:16 210:64 211:223 212:244 213:251 214:251 215:211 216:213 217:251 218:251 219:31 236:80 237:181 238:251 239:253 240:251 241:251 242:251 243:94 244:96 245:251 246:251 247:31 263:92 264:253 265:253 266:253 267:255 268:253 269:253 270:253 271:95 272:96 273:253 274:253 275:31 290:92 291:236 292:251 293:243 294:220 295:233 296:251 297:251 298:243 299:82 300:96 301:251 302:251 303:31 317:80 318:253 319:251 320:251 321:188 323:96 324:251 325:251 326:109 328:96 329:251 330:251 331:31 344:96 345:240 346:253 347:243 348:188 349:42 351:96 352:204 353:109 354:4 356:12 357:197 358:251 359:31 372:221 373:251 374:253 375:121 379:36 380:23 385:190 386:251 387:31 399:48 400:234 401:253 413:191 414:253 415:31 426:44 427:221 428:251 429:251 440:12 441:197 442:251 443:31 454:190 455:251 456:251 457:251 468:96 469:251 470:251 471:31 482:190 483:251 484:251 485:113 495:40 496:234 497:251 498:219 499:23 510:190 511:251 512:251 513:94 522:40 523:217 524:253 525:231 526:47 538:191 539:253 540:253 541:253 548:12 549:174 550:253 551:253 552:219 553:39 566:67 567:236 568:251 569:251 570:191 571:190 572:111 573:72 574:190 575:191 576:197 577:251 578:243 579:121 580:39 595:63 596:236 597:251 598:253 599:251 600:251 601:251 602:251 603:253 604:251 605:188 606:94 624:27 625:129 626:253 627:251 628:251 629:251 630:251 631:229 632:168 633:15 654:95 655:212 656:251 657:211 658:94 659:59
1 159:121 160:254 161:136 186:13 187:230 188:253 189:248 190:99 213:4 214:118 215:253 216:253 217:225 218:42 241:61 242:253 243:253 244:253 245:74 268:32 269:206 270:253 271:253 272:186 273:9 296:211 297:253 298:253 299:239 300:69 324:254 325:253 326:253 327:133 351:142 352:255 353:253 354:186 355:8 378:149 379:229 380:254 381:207 382:21 405:54 406:229 407:253 408:254 409:105 433:152 434:254 435:254 436:213 437:26 460:112 461:251 462:253 463:253 464:26 487:29 488:212 489:253 490:250 491:149 514:36 515:214 516:253 517:253 518:137 542:75 543:253 544:253 545:253 546:59 570:93 571:253 572:253 573:189 574:17 598:224 599:253 600:253 601:84 625:43 626:235 627:253 628:126 629:1 653:99 654:248 655:253 656:119 682:225 683:235 684:49
1 100:166 101:222 102:55 128:197 129:254 130:218 131:5 155:29 156:249 157:254 158:254 159:9 183:45 184:254 185:254 186:174 187:2 210:4 211:164 212:254 213:254 214:85 238:146 239:254 240:254 241:254 242:85 265:101 266:245 267:254 268:254 269:254 270:85 292:97 293:248 294:254 295:204 296:254 297:254 298:85 315:12 316:59 317:98 318:151 319:237 320:254 321:254 322:109 323:35 324:254 325:254 326:85 343:41 344:216 345:254 346:254 347:239 348:153 349:37 350:4 351:32 352:254 353:254 354:85 372:7 373:44 374:44 375:30 379:32 380:254 381:254 382:96 407:19 408:230 409:254 410:174 436:197 437:254 438:110 464:197 465:254 466:85 492:197 493:253 494:63 515:37 516:54 517:54 518:45 519:26 520:84 521:221 522:84 523:21 524:31 525:162 526:78 540:6 541:41 542:141 543:244 544:254 545:254 546:248 547:236 548:254 549:254 550:254 551:233 552:239 553:254 554:138 567:23 568:167 569:254 570:254 571:254 572:254 573:229 574:228 575:185 576:138 577:138 578:138 579:138 580:138 581:138 582:44 595:113 596:254 597:254 598:254 599:179 600:64 601:5 623:32 624:209 625:183 626:97
0 155:53 156:255 157:253 158:253 159:253 160:124 183:180 184:253 185:251 186:251 187:251 188:251 189:145 190:62 209:32 210:217 211:241 212:253 213:251 214:251 215:251 216:251 217:253 218:107 237:37 238:251 239:251 240:253 241:251 242:251 243:251 244:251 245:253 246:107 265:166 266:251 267:251 268:253 269:251 270:96 271:148 272:251 273:253 274:107 291:73 292:253 293:253 294:253 295:253 296:130 299:110 300:253 301:255 302:108 319:73 320:251 321:251 322:251 323:251 327:109 328:251 329:253 330:107 347:202 348:251 349:251 350:251 351:225 354:6 355:129 356:251 357:253 358:107 375:150 376:251 377:251 378:251 379:71 382:115 383:251 384:251 385:253 386:107 403:253 404:251 405:251 406:173 407:20 410:217 411:251 412:251 413:253 414:107 430:182 431:255 432:253 433:216 438:218 439:253 440:253 441:182 457:63 458:221 459:253 460:251 461:215 465:84 466:236 467:251 468:251 469:77 485:109 486:251 487:253 488:251 489:215 492:11 493:160 494:251 495:251 496:96 513:109 514:251 515:253 516:251 517:137 520:150 521:251 522:251 523:251 524:71 541:109 542:251 543:253 544:251 545:35 547:130 548:253 549:251 550:251 551:173 552:20 569:110 570:253 571:255 572:253 573:98 574:150 575:253 576:255 577:253 578:164 597:109 598:251 599:253 600:251 601:251 602:251 603:251 604:253 605:251 606:35 625:93 626:241 627:253 628:251 629:251 630:251 631:251 632:216 633:112 634:5 654:103 655:253 656:251 657:251 658:251 659:251 683:124 684:251 685:225 686:71 687:71
0 128:73 129:253 130:227 131:73 132:21 156:73 157:251 158:251 159:251 160:174 182:16 183:166 184:228 185:251 186:251 187:251 188:122 210:62 211:220 212:253 213:251 214:251 215:251 216:251 217:79 238:79 239:231 240:253 241:251 242:251 243:251 244:251 245:232 246:77 264:145 265:253 266:253 267:253 268:255 269:253 270:253 271:253 272:253 273:255 274:108 292:144 293:251 294:251 295:251 296:253 297:168 298:107 299:169 300:251 301:253 302:189 303:20 318:27 319:89 320:236 321:251 322:235 323:215 324:164 325:15 326:6 327:129 328:251 329:253 330:251 331:35 345:47 346:211 347:253 348:251 349:251 350:142 354:37 355:251 356:251 357:253 358:251 359:35 373:109 374:251 375:253 376:251 377:251 378:142 382:11 383:148 384:251 385:253 386:251 387:164 400:11 401:150 402:253 403:255 404:211 405:25 410:11 411:150 412:253 413:255 414:211 415:25 428:140 429:251 430:251 431:253 432:107 438:37 439:251 440:251 441:211 442:46 456:190 457:251 458:251 459:253 460:128 461:5 466:37 467:251 468:251 469:51 484:115 485:251 486:251 487:253 488:188 489:20 492:32 493:109 494:129 495:251 496:173 497:103 512:217 513:251 514:251 515:201 516:30 520:73 521:251 522:251 523:251 524:71 540:166 541:253 542:253 543:255 544:149 545:73 546:150 547:253 548:255 549:253 550:253 551:143 568:140 569:251 570:251 571:253 572:251 573:251 574:251 575:251 576:253 577:251 578:230 579:61 596:190 597:251 598:251 599:253 600:251 601:251 602:251 603:251 604:242 605:215 606:55 624:21 625:189 626:251 627:253 628:251 629:251 630:251 631:173 632:103 653:31 654:200 655:253 656:251 657:96 658:71 659:20
Can you help me to understand the format type of libsvm of Spark MLlib? Thanks!
The LibSVM format is quite simple. The first row contains the class label, in this case 0 or 1. Following that are the features, here there are two values for each one; the first one is the feature index (i.e. which feature it is) and the second one is the actual value.
The feature indices starts from 1 (there is no index 0) and are in ascending order. The indices not present on a row are 0.
In summary, each row looks like this;
<label> <index1>:<value1> <index2>:<value2> ... <indexN>:<valueN>
This format is advantageous to use when the data is sparse and contain lots of zeroes. All 0 values are not saved which will make the files both smaller and easier to read.

How to estimate camera pose according to a projective transformation matrix of two consecutive frames?

I'm working on the kitti visual odometry dataset. I use projective transformation to register two 2D consecutive frames(see projective transformation example here
). I want to know how this 3*3 projective transformation matrix is related to the ground truth poses provided by the kitti dataset.
This dataset gives the ground truth poses (trajectory) for the sequences, which is described below:
Folder 'poses':
The folder 'poses' contains the ground truth poses (trajectory) for the
first 11 sequences. This information can be used for training/tuning your
method. Each file xx.txt contains a N x 12 table, where N is the number of
frames of this sequence. Row i represents the i'th pose of the left camera
coordinate system (i.e., z pointing forwards) via a 3x4 transformation
matrix. The matrices are stored in row aligned order (the first entries
correspond to the first row), and take a point in the i'th coordinate
system and project it into the first (=0th) coordinate system. Hence, the
translational part (3x1 vector of column 4) corresponds to the pose of the
left camera coordinate system in the i'th frame with respect to the first
(=0th) frame. Your submission results must be provided using the same data
format.
Some samples of the given groud-truth poses:
1.000000e+00 9.043680e-12 2.326809e-11 5.551115e-17 9.043683e-12 1.000000e+00 2.392370e-10 3.330669e-16 2.326810e-11 2.392370e-10 9.999999e-01 -4.440892e-16
9.999978e-01 5.272628e-04 -2.066935e-03 -4.690294e-02 -5.296506e-04 9.999992e-01 -1.154865e-03 -2.839928e-02 2.066324e-03 1.155958e-03 9.999971e-01 8.586941e-01
9.999910e-01 1.048972e-03 -4.131348e-03 -9.374345e-02 -1.058514e-03 9.999968e-01 -2.308104e-03 -5.676064e-02 4.128913e-03 2.312456e-03 9.999887e-01 1.716275e+00
9.999796e-01 1.566466e-03 -6.198571e-03 -1.406429e-01 -1.587952e-03 9.999927e-01 -3.462706e-03 -8.515762e-02 6.193102e-03 3.472479e-03 9.999747e-01 2.574964e+00
9.999637e-01 2.078471e-03 -8.263498e-03 -1.874858e-01 -2.116664e-03 9.999871e-01 -4.615826e-03 -1.135202e-01 8.253797e-03 4.633149e-03 9.999551e-01 3.432648e+00
9.999433e-01 2.586172e-03 -1.033094e-02 -2.343818e-01 -2.645881e-03 9.999798e-01 -5.770163e-03 -1.419150e-01 1.031581e-02 5.797170e-03 9.999299e-01 4.291335e+00
9.999184e-01 3.088363e-03 -1.239599e-02 -2.812195e-01 -3.174350e-03 9.999710e-01 -6.922975e-03 -1.702743e-01 1.237425e-02 6.961759e-03 9.998991e-01 5.148987e+00
9.998890e-01 3.586305e-03 -1.446384e-02 -3.281178e-01 -3.703403e-03 9.999605e-01 -8.077186e-03 -1.986703e-01 1.443430e-02 8.129853e-03 9.998627e-01 6.007777e+00
9.998551e-01 4.078705e-03 -1.652913e-02 -3.749547e-01 -4.231669e-03 9.999484e-01 -9.229794e-03 -2.270290e-01 1.649063e-02 9.298401e-03 9.998207e-01 6.865477e+00
9.998167e-01 4.566671e-03 -1.859652e-02 -4.218367e-01 -4.760342e-03 9.999347e-01 -1.038342e-02 -2.554151e-01 1.854788e-02 1.047004e-02 9.997731e-01 7.724036e+00
9.997738e-01 5.049868e-03 -2.066463e-02 -4.687329e-01 -5.289072e-03 9.999194e-01 -1.153730e-02 -2.838096e-01 2.060470e-02 1.164399e-02 9.997198e-01 8.582886e+00
9.997264e-01 5.527315e-03 -2.272922e-02 -5.155474e-01 -5.816781e-03 9.999025e-01 -1.268908e-02 -3.121547e-01 2.265686e-02 1.281782e-02 9.996611e-01 9.440275e+00
9.996745e-01 6.000540e-03 -2.479692e-02 -5.624310e-01 -6.345160e-03 9.998840e-01 -1.384246e-02 -3.405416e-01 2.471098e-02 1.399530e-02 9.995966e-01 1.029896e+01
9.996182e-01 6.468772e-03 -2.686440e-02 -6.093087e-01 -6.873365e-03 9.998639e-01 -1.499561e-02 -3.689250e-01 2.676374e-02 1.517453e-02 9.995266e-01 1.115757e+01
9.995562e-01 7.058450e-03 -2.894213e-02 -6.562052e-01 -7.530449e-03 9.998399e-01 -1.623192e-02 -3.973964e-01 2.882292e-02 1.644266e-02 9.994492e-01 1.201541e+01
9.995095e-01 5.595311e-03 -3.081450e-02 -7.018788e-01 -6.093682e-03 9.998517e-01 -1.610315e-02 -4.239119e-01 3.071983e-02 1.628303e-02 9.993953e-01 1.286965e+01
The common name for your "projective transformation" is homography. In a calibrated setup (i.e. if you know your camera's field of view or, equivalently, its focal length) a homography can be decomposed into 3D rotation and translation, the latter only up to scale. The decomposition algorithm additionally produces the normal to the 3D plane inducting the homography. The algorithm has up to 4 solutions, of which only one is feasible when you apply additional constraints, such as that the matched image points triangulate in front of the camera, and that the general direction of the translation match a known prior.
More information about the method is in a well-known paper by Malis and Vargas. There is an implementation in OpenCV, under the name decomposeHomographyMat.

Why do mllib word2vec word vectors only have 100 elements?

I have a word2vec model that I created in PySpark. The model is saved as a .parquet file. I want to be able to access and query the model (or the words and word vectors) using vanilla Python because I am building a flask app that will allow a user to enter words of interest for finding synonyms.
I've extracted the words and word vectors, but I've noticed that while I have approximately 7000 unique words, my word vectors have a length of 100. For example, here are two words "serious" and "breaks". Their vectors only have a length of 100. Why is this? How is it able to then reconstruct the entire vector space with only 100 values for each word? Is it simply only giving me the top 100 or the first 100 values?
vectors.take(2)
Out[48]:
[Row(word=u'serious', vector=DenseVector([0.0784, -0.0882, -0.0342, -0.0153, 0.0223, 0.1034, 0.1218, -0.0814, -0.0198, -0.0325, -0.1024, -0.2412, -0.0704, -0.1575, 0.0342, -0.1447, -0.1687, 0.0673, 0.1248, 0.0623, -0.0078, -0.0813, 0.0953, -0.0213, 0.0031, 0.0773, -0.0246, -0.0822, -0.0252, -0.0274, -0.0288, 0.0403, -0.0419, -0.1122, -0.0397, 0.0186, -0.0038, 0.1279, -0.0123, 0.0091, 0.0065, 0.0884, 0.0899, -0.0479, 0.0328, 0.0171, -0.0962, 0.0753, -0.187, 0.034, -0.1393, -0.0575, -0.019, 0.0151, -0.0205, 0.0667, 0.0762, -0.0365, -0.025, -0.184, -0.0118, -0.0964, 0.1744, 0.0563, -0.0413, -0.054, -0.1764, -0.087, 0.0747, -0.022, 0.0778, -0.0014, -0.1313, -0.1133, -0.0669, 0.0007, -0.0378, -0.1093, -0.0732, 0.1494, -0.0815, -0.0137, 0.1009, -0.0057, 0.0195, 0.0085, 0.025, 0.0064, 0.0076, 0.0676, 0.1663, -0.0078, 0.0278, 0.0519, -0.0615, -0.0833, 0.0643, 0.0032, -0.0882, 0.1033])),
Row(word=u'breaks', vector=DenseVector([0.0065, 0.0027, -0.0121, 0.0296, -0.0467, 0.0297, 0.0499, 0.0843, 0.1027, 0.0179, -0.014, 0.0586, 0.06, 0.0534, 0.0391, -0.0098, -0.0266, -0.0422, 0.0188, 0.0065, -0.0309, 0.0038, -0.0458, -0.0252, 0.0428, 0.0046, -0.065, -0.0822, -0.0555, -0.0248, -0.0288, -0.0016, 0.0334, -0.0028, -0.0718, -0.0571, -0.0668, -0.0073, 0.0658, -0.0732, 0.0976, -0.0255, -0.0712, 0.0899, 0.0065, -0.04, 0.0964, 0.0356, 0.0142, 0.0857, 0.0669, -0.038, -0.0728, -0.0446, 0.1194, -0.056, 0.1022, 0.0459, -0.0343, -0.0861, -0.0943, -0.0435, -0.0573, 0.0229, 0.0368, 0.085, -0.0218, -0.0623, 0.0502, -0.0645, 0.0247, -0.0371, -0.0785, 0.0371, -0.0047, 0.0012, 0.0214, 0.0669, 0.049, -0.0294, -0.0272, 0.0642, -0.006, -0.0804, -0.06, 0.0719, -0.0109, -0.0272, -0.0366, 0.0041, 0.0556, 0.0108, 0.0624, 0.0134, -0.0094, 0.0219, 0.0164, -0.0545, -0.0055, -0.0193]))]
Any thoughts on the best way to reconstruct this model in vanilla python?
Just to improve on the comment by zero323, for anyone else who arrives here.
Word2Vec has a default setting to create word vectors of 100dims. To change this:
model = Word2Vec(sentences, size=300)
when initializing the model will create vectors of 300 dimensions.
I think the problem lays with your minCount parameter value for the Word2Vec model.
If this value is too high, less words get used in the training of the model resulting in a words vector of only 100.
7000 unique words is not a lot.
Try setting the minCount lower than the default 5.
model.setMinCount(value)
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html?highlight=word2vec#pyspark.ml.feature.Word2Vec

using SVM for binary classification

I am using sVM-light for binary classification.and I am using SVM in the learning mode.
I have my train.dat file ready.but when i run this command ,instead of creating file model ,it writes somethings in terminal:
my command:
./svm_learn example1/train.dat example1/model
output:
Scanning examples...done
Reading examples into memory...Feature numbers must be larger or equal to 1!!!
: Success
LINE: -1 0:1.0 6:1.0 16:1.0 18:1.0 28:1.0 29:1.0 31:1.0 48:1.0 58:1.0 73:1.0 82:1.0 93:1.0 95:1.0 106:1.0 108:1.0 118:1.0 121:1.0 122:1.0151:1.0 164:1.0 167:1.0 169:1.0 170:1.0 179:1.0 190:1.0 193:1.0 220:1.0 237:1.0250:1.0 252:1.0 267:1.0 268:1.0 269:1.0 278:1.0 283:1.0 291:1.0 300:1.0 305:1.0320:1.0 332:1.0 336:1.0 342:1.0 345:1.0 348:1.0 349:1.0 350:1.0 368:1.0 370:1.0384:1.0 390:1.0 394:1.0 395:1.0 396:1.0 397:1.0 400:1.0 401:1.0 408:1.0 416:1.0427:1.0 433:1.0 435:1.0 438:1.0 441:1.0 446:1.0 456:1.0 471:1.0 485:1.0 510:1.0523:1.0 525:1.0 526:1.0 532:1.0 540:1.0 553:1.0 567:1.0 568:1.0 581:1.0 583:1.0604:1.0 611:1.0 615:1.0 616:1.0 618:1.0 623:1.0 624:1.0 626:1.0 651:1.0 659:1.0677:1.0 678:1.0 683:1.0 690:1.0 694:1.0 699:1.0 713:1.0 714:1.0 720:1.0 722:1.0731:1.0 738:1.0 755:1.0 761:1.0 763:1.0 768:1.0 776:1.0 782:1.0 792:1.0 817:1.0823:1.0 827:1.0 833:1.0 834:1.0 838:1.0 842:1.0 848:1.0 851:1.0 863:1.0 867:1.0890:1.0 900:1.0 903:1.0 923:1.0 935:1.0 942:1.0 946:1.0 947:1.0 949:1.0 956:1.0962:1.0 965:1.0 968:1.0 983:1.0 986:1.0 987:1.0 990:1.0 998:1.0 1007:1.0 1014:1.0 1019:1.0 1022:1.0 1024:1.0 1029:1.0 1030:1.01032:1.0 1047:1.0 1054:1.0 1063:1.0 1069:1.0 1076:1.0 1085:1.0 1093:1.0 1098:1.0 1108:1.0 1109:1.01116:1.0 1120:1.0 1133:1.0 1134:1.0 1135:1.0 1138:1.0 1139:1.0 1144:1.0 1146:1.0 1148:1.0 1149:1.01161:1.0 1165:1.0 1169:1.0 1170:1.0 1177:1.0 1187:1.0 1194:1.0 1212:1.0 1214:1.0 1239:1.0 1243:1.01251:1.0 1257:1.0 1274:1.0 1278:1.0 1292:1.0 1297:1.0 1304:1.0 1319:1.0 1324:1.0 1325:1.0 1353:1.01357:1.0 1366:1.0 1374:1.0 1379:1.0 1392:1.0 1394:1.0 1407:1.0 1412:1.0 1414:1.0 1419:1.0 1433:1.01435:1.0 1437:1.0 1453:1.0 1463:1.0 1464:1.0 1469:1.0 1477:1.0 1481:1.0 1487:1.0 1506:1.0 1514:1.01519:1.0 1526:1.0 1536:1.0 1549:1.0 1551:1.0 1553:1.0 1561:1.0 1569:1.0 1578:1.0 1603:1.0 1610:1.01615:1.0 1617:1.0 1625:1.0 1638:1.0 1646:1.0 1663:1.0 1666:1.0 1672:1.0 1681:1.0 1690:1.0 1697:1.01699:1.0 1706:1.0 1708:1.0 1717:1.0 1719:1.0 1732:1.0 1737:1.0 1756:1.0 1766:1.0 1771:1.0 1789:1.01804:1.0 1805:1.0 1808:1.0 1814:1.0 1815:1.0 1820:1.0 1824:1.0 1832:1.0 1841:1.0 1844:1.0 1852:1.01861:1.0 1875:1.0 1899:1.0 1902:1.0 1904:1.0 1905:1.0 1917:1.0 1918:1.0 1919:1.0 1921:1.0 1926:1.01934:1.0 1937:1.0 1942:1.0 1956:1.0 1965:1.0 1966:1.0 1970:1.0 1971:1.0 1980:1.0 1995:1.0 2000:1.02009:1.0 2010:1.0 2012:1.0 2015:1.0 2018:1.0 2022:1.0 2047:1.0 2076:1.0 2082:1.0 2095:1.0 2108:1.02114:1.0 2123:1.0 2130:1.0 2133:1.0 2141:1.0 2142:1.0 2143:1.0 2148:1.0 2157:1.0 2160:1.0 2162:1.02170:1.0 2195:1.0 2199:1.0 2201:1.0 2202:1.0 2205:1.0 2211:1.0 2218:1.0
I dont know what to do.
p.s.when i make my train.dat very shorter ,everything works fine!!!
Thank you
From what I could interpret from the log, your training set has an issue.
The first few characters of the training row that has issue are
-1 0:1.0 6:1.0
The issue is not with the size but with feature indexing. You are starting your feature index at 0 (0:1) whereas svmlight requires that all feature index be equal or greater than 1.
Change the indexing to start at 1 and it should work fine.

Resources